
A. Zomorodian, G. Carlsson, Computing Persistent Homology, Discrete and Computational Geometry 33 (2005), 249274.
Abstract:
We show that the persistent homology of a filtered ddimensional simplicial complex is simply the standard homology of a particular graded module over a polynomial ring. Our analysis establishes the existence of a simple description of persistent homology groups over arbitrary fields. It also enables us to derive a natural algorithm for computing persistent homology of spaces in arbitrary dimension over any field. This results generalizes and extends the previously known algorithm that was restricted to subcomplexes of S^3 and Z_2 coefficients. Finally, our study implies the lack of a simple classification over nonfields. Instead, we give an algorithm for computing individual persistent homology groups over an arbitrary PIDs in any dimension.
Bibtex:
@article{zccph05,
author = "Zomorodian, A. and Carlsson, G.",
title = "Computing Persistent Homology",
journal = "Discrete Comput. Geom.",
year = 2005,
volume = 33,
number = 2,
pages = "249274",
}

