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Abstract

Many divide-and-conquer based geometric algorithms and order-statistics problems ask for a point
that lies “in the middle” of a given point set. We study several fundamental problems of this type
for moving points in one and two dimensions. In particular, we show how to kinetically maintain the
median of a set of. points moving on the real line, and a center point of a set pbints moving in
the plane, that is, a point such that any line through it has at g4t on either side of it. Since the
maintenance of exact medians and center points can be quite expensive, we also show how to maintain
e-approximate medians and center points and argue that the latter can be made to be much more stable
under motion. These results are based on a new algorithm to maintaka@proximation of a range
space under insertions and deletions, which is of independent interest. All our approximation algorithms
run in near-linear time.

1 Introduction

In this paper we study the problem of “staying in the middle”: we have a set of points moving in a geometric
space and wish to maintain another point (possibly one of the given points, but not necessarily) that stays
continuously “in the middle” of the moving set. Our motivation for studying this problem stems from a
number of different applications. First, many data structures for efficiently querying a point set are based
on balanced partitions of the set using medians or other equi-partitioning constructs — for example, many
well-known range-searching data structures and graph-separator based algorithms utilize such balanced par-
titioning [2, 26]. When a point set is in motion, however, these partitions need to be updated, and it becomes
important to avoid the cost of recomputing them from scratch at each time step.
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We wish to maintain the median, or more generally a point of fank a set of points moving iR!. It
is well-known that the notion of median and rank order can be extended to higher dimensions, as follows.
Let P be a point set iiR?, and define thelepthA (p) of a pointp € R? as the minimum number of points
of P on either side of any hyperplane passing thropghA point with depth at leasin is called aj-center
point A 1/(d + 1)-center point is called just @eenter point and it generalizes the concept of median. It
has been proven using Helly's Theorem that any point set has a center point [16R? Fgiven some
k < n/2, the set of points with depth at ledsts calledk-th depth contourdenoted byD.. Center points
and depth contours are widely used in the analysis of rank and order statistics in point sets and bivariate
distributions [20], computing separators for planar graphs [26], and other areas, thus providing a second
motivation for studying the kinetic or parametric versions of these problems.

This notion of kinetic medians and center points is related to, but distinct from more classic kinetic
facility-location problems [8], where the goal is to maintain certain mobile servers near groups of mobile
clients. An important special instance of that is the kinetic maintenance of clusters of mobile nodes so that
the clustering is both nearly optimal and stable under motion [18]. In these client-server problems a metric
notion of “being in the middle” is more appropriate (as in the 1-center problem in which we minimize the
maximum distance from server to the most distant client), while our emphasis is on combinatorial medians
— since our primary goal is to use them for divide-and-conquer data structures. However, we are also
interested in applications where the medians must have a physical embodiment and not just be data structure
helpers, and thus we require that their motion be continuous (so as to be physically realizable).

Like in the kinetic facility-location problems, we provide a trade-off between the quality of our medians
and their continuity and stability under motion. We study both exact and approximate algorithms for kinetic
medians (inR!) and kinetic center points and depth contoursK#). As we will see, in both cases the
approximate algorithms offer far greater stability and maintenance efficiency, for a very modest loss in the
quality of the partitions they can generate. Another advantage of approximation algorithms is that we can
not only maintain the (median or) center point of current configuration of the points but we can also maintain
a compact representation of the trajectory of an approximate (median or) center point over the entire motion
of points, so we can answer various queries on the center point of any future configuration of points. Such
gueries are central to spatial-temporal database systems. A main tool we develop for these approximate
algorithms is the efficient maintenance of asapproximation of a range space under point insertion and
deletion — which we believe to be of independent interest.

Most of our algorithms are based on tkieetic data structurdKDS) framework, originally proposed
by Baschet al. [6], which provides a toolbox for designing and analyzing data structures under motion.
The basic idea in the kinetic framework is that even though the objects move continuously, the relevant
combinatorial structure changes only at certain discrete times — therefore one need not update the data
structure continuously. See the review article by Guibas [19] for detalils.

Related work. Finding the median (or more generally the point of rdnkfor some giverk) of a set

of points inR! can be done in linear time [13]. If the points move on the real line, then maintaining the
point of rankk is closely related to the concept lefvelsin the arrangemertdefined by the trajectories in

the zt-plane, as defined next. Thevelof a pointp € R? in an arrangement{(I") defined by a seF of
x-monotone curves is the number of curve§'itying belowp. Let A, (T") denote the closure of the edges of
A(T") whose level is:; A, (I") is anz-monotone curve and it is called tkeevel of the arrangement. Hence,

1The arrangement(I") is the planar decomposition induced By Its vertices are the intersection points of curved jrits
edge§are maximal (open) connected portions of curves that do not contain a vertex, and its faces are the connected components of
R?\ .



the point of ranki at timet is given by the trajectory that is on thelevel fort = ty. Set\,(T') = |Ax(T)],
and define\;(n) = max{\x(I")}, where the maximum is taken over all s€tsf n curves of a given type
(lines, for example, or algebraic curves of a certain maximum degree). Maintaining the median thus reduces
to computing the:/2-level, and),, »(n) bounds the number of changes of the median if the trajectories in
the zt-plane are of the given type. Ifis a set ofx lines, then\, (T') = O(n*/3) [15]. For general curves, a
recent result of Chan [9] implies thag,(T') = O(n>~1/2%), wheres is the maximum number of intersection
points between two curves.

Maintaining anc-approximate median reduces to computing-approximate:/2-level, that is, anc-
monotone curve lying between tlie— ¢)n/2-level and thg1 + £)n/2-level. There has been a lot of work
on computing approximate levels. Edelsbrunner and Welzl [17] showed thaagproximate median level
with at most[\,, »(n)/(en)| edges can be computed for line arrangements. Later Mekoj22] proposed
an algorithm for obtaining ap-approximate median level with constant complexity (depending omly)
for an arrangement of lines. This idea was further explored by Agarwahl.[3] to obtain efficient off-line
and on-line maintenance of an approximate median level of an arrangement of lines or line segments. They
compute ar-approximate median with siz@(1/£2) in time O(n logn/s?).

In 2-D, a center point can be computed in linear time [21]. Clarketoa.[12] proposed a randomized
algorithm to compute am-approximate center point. The computational cost is polynomial in only the
dimension and /e. Miller et al. usedO(n?) time and space to find all the depth contours, by computing
the arrangement of the lines in the dual plane [25]. A single-th depth contour can be computed in
O(nlog®n) time [10]. To our knowledge, there are no prior results on maintaining the exact/approximate
depth contours or center points under motion.

Ourresults. We start by briefly looking at the (rather easy) problem of maintaining medians and points of
a given rankk for points moving inR! (Section 2.1). Then we present two KDS'’s for maintaining a center
point of a set of, points moving in the plane (Sections 2.2 and 2.3). The first KDS actually maintains the
k-th depth contour for any givel < k& < n. As a byproduct, it also gives a KDS for maintaining the entire
center region, i.e., the set of all center points. It requid¢s?) certificates and process€gn**?) events
under pseudo-algebraic motion of points, each event requidieg® ») time. The second KDS maintains

a subset of the center points. It requires oflgn log n) certificates but process€¥n’*?) events in the
worst case. As stated above, these are the first results known for this problem.

Since these exact algorithms are quite expensive, we then study approximation algorithms. We first
describe an algorithm for maintaining amapproximationA C S of a finite range spacéS, R) under
insertions and deletions of points (see Section 3). Becatsggproximations are a widely-used tool in
computational geometry, this result is of interest on its own. We show that a center pdifibioé suitably
defined range space is arapproximate center point &f. Whenever we computd, we also compute in
0(1/£°M) time at-monotone polygonal curve so thaty(t) is a center point ofd(t). Therefore for any
t, we can compute id(log(1/¢)) time anc-approximate center point of the points$iit) based on their
current trajectories (Section 4.1). The getloes not change as long as the trajectories of the poirfis in
don’t change. Whenever a pointchanges its trajectory, we delgidrom S and re-insert it with the new
trajectory. Our algorithm can updatein (log(n)/¢)°() time. The same idea can also be used to maintain
ane-approximate median of a set of points movingiih

Thes-approximation based algorithm maintains-ampproximate median that changegl /% log?(1/¢))
times, and the total time spent@(n/c°(). If the trajectories of the points are known in advance, then
one can improve the running time and maintain a more stable median (Section 4.2). More precisely, if the



trajectories of points are fixed-degree algebraic curves, then we can comgte in 1/:°()) time at-
monotone curve with O(1/22) breakpoints so that(t) is ane-approximate median &f(¢). If furthermore

the points inS move with fixed velocities, we can give a Las Vegas algorithm that reduces the number of
breakpoints ony to O(1/e*310g?(1/¢)) by spending)(n/e'/3log(1/¢)) expected time, , thus improving

the result of Agarwal et al. [3].

2 Exact Algorithms

We begin by describing a KDS for maintaining the median of a set of points moviiij .inNext, we
describe a KDS to maintain the depth contour of aSet points moving in the plane, which as a byproduct
also gives a KDS for maintaining theenter region which is the set of all center points 8t Finally, we
describe an alternate more space-efficient KDS for maintaining a center pdint of

2.1 Maintaining the median

Maintaining the exact median of a s&bf n points moving inR!, or more generally, maintaining the point

of rank k for a fixedk, can be done by adapting the HeapSweep algorithm [7]. We maintain (i) the point
of rank k, (ii) the maximum ofS_(¢), the points of rank less thén in a kinetic tournament, and (iii) the
minimum of S5, the points with rank greater thanin a kinetic tournament. This is easy to maintain. E.g.,
when the maximum of - (¢) swaps with the point of rank, it is deleted fromS.(¢), and it becomes the
new point of rankk; the old point of rankt is inserted intoS. 4 (¢). Following the analysis of [7], we prove

the following.

Theorem 2.1 Let S be a set of, points moving inR', and letk be an integer. We can maintain the point
of S of rankk using a KDS that use3(n) certificates. Assuming pseudo-algebraic motion, the number of
events processed by the KDSI$)\(n) log? n), and each event can be handledigog n) time.

2.2 Maintaining the depth contour and center region

Given a setS of n points moving inR? and an integed < k < [n/2], we describe a KDS for maintaining
the k-th depth contouD,, of S as the points i move. The center region df is simply D ,, /3. Note
that thek-th depth contour of a st of n stationary points in the plane is also closely related tokttie
and(n — k)-th levels in arrangements: if we dualize [12] we obtain a seP* of n lines, and a point at
depthk dualizes to a line lying betweety, (P*) andA,,_x(P*). Hence, the dual of points whose depth is
at leastk is the region lying between the lower hull &f, _;(S5*) and the upper hull oh\;(S*). Thus the
problem at hand reduces to the following. let= {/1, ..., ¢,} be a set of: lines in the plane, each moving
independently, i.e4; : y = a;(t) + b;(t)x, wherea;(-) andb;(-) are polynomials irt. We wish to maintain
the upper (or lower) hull of\; (L), thek-th level of A(L), as the lines i move.

For each line € L, letv=(¢) (resp.v™(£)) be the leftmost (resp. rightmost) point &f.(L) N ¢. Let
V ={v (£),v"(¢) | £ € L}. The upper hull of\; (L) is the same as that &. We maintain the upper hull
of V using the kinetic data structure described in [6]. In more detail, we proceed as follows.

For aline? € L, let ¥(¢) be the sequence of vertices df L) N ¢, sorted from left to right. X(¢)
partitions/ into the edges ofA(L). For each edge, let \(e) be the level of the points in. Note that ife’
lies immediately to the right of, then\(e’) = A(e) = 1 depending on the local geometric situation. We
maintain the seE/(¢) of all the edges oii whose level isc. We add the left endpoint of the leftmost edge



and the right endpoint of the rightmost edgerf) (i.e.,v~(¢),v*" (£)) to V. For eacl, we maintain: (i)
the sequence of vertices and edges of the arrangemén(ion~ (¢), and (i) v~ (¢), v (¢). In addition, we
also use a KDS to maintain the upper hulliéf as the lines i move [6]. We will also need it to handle
insertion and deletion of points.
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Figure 1: (i) An event of type (E1Y; and/, become parallel. (ii) An event of type (E2);, {2, {3 become
concurrent.

There are three types of events that the algorithm has to handle to maintain the above structures:

(E1) Two linesty, {5 become parallelSupposé, N ¢, was the rightmost intersection point én(and/s)
before the event. Thefy N /5 becomes the leftmost intersection pointi@r(and/s) after the event;
see Fig. 1 (i). We update the ordering®{¢;) andX(¢2). The two rightmost edges o and/,
are merged and the leftmost edge on each @&nd/; is split into two edges. The level of the new
edge orY; (resp.f;) can be computed i@ (1) time from the level of its neighboring edge én(resp.
¢5). If necessary, we also updatg¢,), E(¢2), V, and the KDS for maintainingg (V). There are
O(n?) such events, each requiriig(log n) time to updated(L) and E(¢). In addition, at each such
event, we may also perforng(1) insert/deletion operations on the KDS, which in turn can generate
additional internal events for the KDS.

(E2) Three linesly, ¢2, ¢35 become concurrenin this casery = ¢1 N ¢y andos = ¢4 N £3 are adjacent
along/,. After the event their ordering alorfg flips; see Fig. 1 (ii). We therefore swap andos in
Y(¢41), and update the level(e) of the edge: C ¢; induced byo, andos in O(1) time. If necessary,
we also updaté’(¢;), V', and the KDS for maintainingH(V'). We repeat the same procedure for
and/s. There areD(n?) such events, each requir@glogn) time andO(1) insert/delete operations
in the KDS.

(E3) Anevent of KDS for maintaining{’H (V). Roughly speaking, the KDS by Basehal.[6] to maintain
convex hull of a set of moving points is a tree data structure, which partitidnto two roughly equal
subsets/; andV; and recursively maintaing (V1) andi/H(V2). The root of the tree maintains
the upper hull of/H (V1) U UH(V2) and a linear number of “certificates” that keep track of the
combinatorial structure @+ (1) and some additional book-keeping information. The KDS triggers
aneventwhen one of the certificates is no longer true, indicating that the structure needs to be updated.
In addition to the events caused by the motion of points, insertion/deletion of a point also triggers
events in KDS. Each of these events can be processédlig’ n) time, as described in [6]. The
following lemma bounds the number of these events.

Lemma 2.1 There ared(n**+°) events of type (E3).

Proof. We only count the number of events at the root of the KDS. The events at other nodes can be
counted by a recursive argument. lgebe a vertex ofd(L) that was inV” during the time intervalty, ¢2].
If ¢ appears it/ more than once, we regard these occurrencesasfdifferent points. Lej*(¢) be the line



dual tog(t). Define~, to be the ruled surface in they-space swept by*(t) during the intervalt,, t5],
e, vy = Utlggt2 t x ¢*(t). Regard each, as the graph in thery-space of a partial bivariate function
74(t, ). Let Gy (resp.Gz) be the set of these surfaces corresponding to the points that ever appéédred in
(resp.V5). Following the same argument as in [6], we can show that the number of events of type (E3) at the
root, including the ones triggered by insertion/deletion of points, is proportional to the number of vertices
in the overlay of the upper envelopes of surfaceSirandG,. It thus suffices to bound the number of such
vertices.

We partition thet-axis intoO(n?) slices so that there are at mast events of type (E1) and (E2) in
each slice. For each slik, let GlA (resp.GQA) be the set of surfaces &, (resp.G») that intersect the slice
A. Since the number of vertices I at any given time is at mogn, we havelGL| + |G5'| < 4n. By a
result of Agarwalet al.[5], the number of vertices in the overlay of the upper envelopﬁfbfamd%A is
O(n?**9). Summing this bound over ald(n?) slices and using a recursive argument to bound the number
of events at other nodes of the tree, we obtain the desired bound. O

The KDS for maintaining/7 (V') maintainsO(n logn) certificates. We need addition@l(n?) certifi-
cates to detect events of type (E1) and (E2): (i) leftmost and right vertices along each linewud (i)
adjacent pairs of vertices of(L) along each line of.. Hence, we conclude the following.

Theorem 2.2 Let L be a set of lines in the plane, each moving independently, and lstk < n be an
integer. We can maintain the upper and lower hull& gfL) usingO(n?) certificates. The number of events
processed by the algorithm under the algebraic motidhisfO(n**9), and each event can be processed in
O(log? n) time.

Corollary 2.1 Let S be a set ofi points moving in the plane. We can maintain the center regich o,
more generally, thé-th depth contour oF, usingO(n?) certificates. The algorithm process@én*+?)
events under algebraic motion $f and each event can be processed (tvg? n) time.

2.3 A space-efficient algorithm for maintaining a center point

We now describe another KDS for maintaining a center point of &'s#ftn = 3m points moving in the
plane. Unlike the previous algorithm, the new KDS uses @y logn) certificates. First, let us assume
that the points irb' are stationary. A result by Tverberg [27] (see also [24]) implies $hedn be partitioned
into m triples S1, . . ., Sy, so that the intersection of trianglés; = conv(S;), 1 < ¢ < m, iS nonempty.
Such a partition is calledBverberg partitionand any pointimA = (), A, is called alverberg point Any
pointin A is also a center point. Moreover, a Tverberg partition in the plane can be compaéd log )
time [26]. Since each Tverberg triangle; can be regarded as the intersection of three halfplanes, each
bounded by a line passing through a pair of point\in the regionA is the intersection of a sét of

3m = n halfplanes. In the dual plane, a halfplane H is mapped to a point* and the intersection of the
halfplanes maps to the convex hull of the B&tof points. Therefore we use a KDS to maintain the convex
hull CH(H*) [6]; it usesO(nlogn) certificates.

Now as the points irt move, we wish to maintaith. More precisely, we compute an initial Tverberg
partition of S in O(n logn) time and maintaim\ using the kinetic convex hull structure described by Basch
et al. [6], with the following twist. Whenevel shrinks to a point, we update the underlying Tverberg
partition so that the interior o\ after the modification becomes nonempty. The idea is similar to the one
used by Tverberg [28]. There are two types of events that cause the inteficiodiecome empty.



(i)

Figure 2: (i) Vertexd of Abed crosses the edge. (ii) Vertex d of Adef crosses the edge of Aabe. (iii)
An edge-edge event.

() Edge-vertex evenSuppose a point € A; crosses a line passing through a pair of pobntse A;.
If i = j (see Fig. 2 (i)), then basically the halfplanes definlngchange. We updat®& and modify
the KDS accordingly. The Tverberg partition does not change.

If i # j, then we update the Tverberg partition by redistributing the point ofS; into two triples.

Let A; = Adef andA; = abc. Then we setS; = {a,d, f} andS; = {b,c, e}. It can be checked
that the newA; N A; # () and therefore\ has nonempty intersection; see Fig. 2 (ii). We update the
setH and the KDS.

(i) Edge-edge evenBuppose three edges, coming from distinct triangles, become concurrent, see Fig. 2 (iii)
for an example. We can again ensure thaemains non-empty by regrouping the vertices of the three
triangles involved. We omit the details.

Both events involve) (1) updates iri{ and KDS. There ar®(n?) vertex-edge events ari(n°) edge-
edge events, so the total number of updatestda O(n%). By partitioning the time-axis int®(n°) slices
with n events each, and following the analysis of Lemma 2.1, we get:

Theorem 2.3 Let S be a set oh points moving in the plane. We can maintain a center poirft asing
O(nlogn) certificates. The algorithm processeén’*?) events under algebraic motion 8f and each
event can be processed@f{log? n) time.

3 Maintaining e-approximations

A range space is a paX = (S,R), whereS is a set andR C 2°. S is called the set opoints and

R is called the set ofanges In the sequel we deal with finite range spaces, witerg finite. A subset

A C S is called arc-approximationfor X if, for every rangeR € R, ||AN R|/|A| — |R|/|S|| < . The
concept ot-approximation plays an important role in computational geometry, and forms the basis of many
efficient randomized and deterministic algorithms and data structures [11]. In this section we describe an
algorithm for maintaining an-approximation of a range space as points are inserted or deleted. Maintaining
ane-approximation under insertions and deletions is trivial if we allow randomization, because we can just
resample the-approximation after each update, but we cannot efficiently verify whether the random sample




is ane-approximation. In the kinetic setting, where the number of updates of trajectories could be quite
large, this Monte Carlo approach is not viable because the size of the sample needed to guarantee success
with high probability would have to be large. Thus, a deterministic solution in this case is desirable, which
guarantees that we are always working withsaapproximation. We first briefly review an algorithm for
constructing arz-approximation [11] and then describe how we dynamize it. Before proceeding we state
some well-known properties efapproximations.

Lemma 3.1 (i) If A’, B' arec-approximations for the range spades R) and(B, R) respectively, and
|A| = |BJ|, |A'| = |B|, thenA’ U B’ is anz-approximation of AU B, R).

(i) If A” is ane-approximation for{ A’, R) and A’ is an<’-approximation forl A, R), thenA” is an
(e + &’)-approximation of A, R).

(iii) Halving: Given(A, R), a range space of VC-dimensii, one can compute a bichromatic coloring
of A such that the set’ of black points is al)((log(n))/+/n)-approximation fof A, R), and|A’| = |A|/2.
This takesO(n4*1) time, wheren = | A.

Construction of an e-approximation. Assume|S| = 2¢. The algorithm can easily be modified to handle
general values of, but we omit the details here. Lemma 3.1 offers a rather natural way of computing
an e-approximation of a point sef: build a balanced binary tree over the pointsS9fand compute the
e-approximation in a bottom-up fashion. At every nagdake the two approximations computed for the
children, and merge them together to form an approximation for all the points stored in the subtréle of
this set is too large, halve it using Lemma 3.1 (jii).

It is easy to verify that by fine-tuning the above construction we can getagoproximation taS in the
root of this tree. Indeed, we just perform merging in nodes that have lesg thafi (log n log(log(n)/e))?
points in their subtree. In every other node, we perform merging and halving. The merging itself does not
introduce any error. The only source for error is the halving, and the total error created is bounded by the
sum of the errors introduced in each level. We have that the approximation quality is

|—10g2n] 10 e
Z O< gu) <&
VH 2

=1

for c large enough. However, the set stored in the root of the tree is too big. We further shrink it by repeated
halving till it is of sizeO(1/£21og(1/¢)). This adds an extra error ef 2. Overall, the resulting set is an
e-approximation of siz€(1/e%log 1/¢).

Lemma 3.2 Given a range spacgé = (S, R) of VC-dimensioni and a parameter, we can compute att
approximation ofX of sizeO(1/£%log(1/¢)) in timeO(nu), wherd S| = n andy = ﬁ(lognlog(log(n)/e)f.

The above result can be extended to a range sfaee (.S, R) in which each poinp of S is assigned
a nonnegative weight(p) and a subsel C S is called arc-approximation ofS if |w(A N R)/w(A) —
w(R)/w(9)| < e, wherew(N) =3y w(p) of S.

Theorem 3.1 Given a weighted range spade = (S, R) of n points (the weights are non-negative real
numbers) of VC-dimensiod and a parameter > 0, we can compute an-approximation forX in
O(nu?log(1/e)) time, whereu = a%(lognlog(log(n)/s))%

2TheVC-dimensiorof a range spac& = (S, R) is the size of the largest subs¥tC S such that{N N+ | r € R}| = 2!V,



Handling insertions and deletions. We are going to maintain the current setas a set ofO(logn)
perfectly balanced trees, where a tree of rah&s2’ points stored in it. Every node of those trees maintains

in it an approximation to all the points in the subtree rooted at this node. The size of the approximation is
m = c(log?n) /2, wherec is a large enough constant.

When inserting a point, we create a tree that has only this point in it. When deleting a point from a
tree, we break it int@ (log n) trees. After every such operation, we go over the collection of trees sorted in
increasing order by their rank, and merge every two tiige$; that have the same ramk This is done by
creating a new tree with both trees as subtrees, and computing the approximation associated with the root
by merging the two approximations associated with its two children, and halving them. The two old trees
are removed from the collection, and the new tree is added with its rank beirig Clearly, afterO(logn)
such operations, the collection of trees becomes legal again.

This yieldsM = O(logn) setsSy, ..., Sy, each one/4-approximating the points stored in the tree
it was extracted from. We can not just merge those sets to formagproximation for the whole point
set, as the original point sets have different cardinalities. Instead, we associate with all the pSjnas of
weight which is2?/|S;| (the setS; associated with a tree of rarikcontaining2 points). S; U ... U Sy
with those associated weights is @ft-approximation for the current point set. We can finally normalize
this into an unweighted-approximation, by computing ary4-approximation of S; U ... U S,,, R) using
Theorem 3.1. The resulting approximation is clearly the requiragproximation. Omitting the details of
the analysis, we conclude the following.

Theorem 3.2 Given a range spacg = (S, R) of VC-dimensiond and a parameter, one can (determin-
istically) maintain arz-approximation otX of sizeO(1/s%log(1/¢)), in O (IOEZE " (log(log(n)/ a))2d+2>
time per insertion or deletion.

4  Approximation Algorithms

In this section we describe approximation algorithms for maintainkagpproximate median and center
points. We first show that we can get fast approximation algorithms using our resglapproximations.

As mentioned in the introduction, they not only maintairesapproximate median or center point of the cur-
rent configuration of points sets, but also computer@notone curve such thaty(t) is ane-approximate
median or center point o (¢). Next we show that we can develop even faster algorithms in the off-line
setting, where the trajectories of input points are given in advance, that maintain more-sippleximate
medians.

4.1 Thee-approximation based algorithms

We show that the algorithm described in Section 3 can be used to maintatagproximate median and
center point. LetS be a set of, points moving inR'. Let R be the set of vertically downward rays in
thetz-plane, i.e.,R = {(—oo,z] x t | z,t € R}. For an elemenp = (—oo,z] x t € R, letS, = {p |
there is & such thap(t) € p}. We define the range spagd = (S, {S, | p € R}). The following lemma
is straightforward.

Lemma 4.1 Let A C S be an=-approximation of5 for the range spac®é1. Then for anyt, the median of
A(t) is ans-approximate median df(t).



It can be proved that if the trajectories®fre algebraic then the VC-dimension/ef is finite. Therefore
we can use the algorithms of the previous section to maintairaproximation ofS. We can compute
the median level of the trajectories df Since we compute the entire median level, there are no events
unless the trajectory of a point isi changes. When the trajectory of a point changess recomputed in
(log(n)/e)°M) time using Theorem 3.2, and we recompute the median leveliaf(1/¢)°(") additional
time. We thus obtain the following.

Theorem 4.1 Let S be a set of points moving R', and let > 0 be a parameter. Assuming that the motion
of S is algebraic, we can construct a data structure that can be upddteg(im) /<)°(!) time whenever the
trajectory of a point irS changes, and that, for any timecan return am-approximate median o (t) in
O(log(1/¢)) time based on the current trajectoriesSof

Using a similar argument, we can maintainsaapproximate center point of.

Theorem 4.2 Let S be a set of points moving R?, and let > 0 be a parameter. Assuming that the motion
of S is algebraic, we can construct a data structure that can be updateg(im) /=)°(V) time whenever the
trajectory of a point ir6 changes, and that, for any timecan return am-approximate center point 6f(t)

in O(log(1/¢)) time based on the current trajectoriesSof

4.2 Faster off-line algorithms for approximate median

We show that am-approximate median of a sétof » points moving inR! can be computed more efficiently

in the off-line setting. However, unlike the algorithm described in Section 4-dygproximate median we
maintain is not necessarily one of the input points, and we cannot change the trajectory of points on-line. Let
L denote the set of trajectories of pointsSh We first describe an algorithm for the algebraic motion that
computes, ir0(n +1/e°() time, at-monotone curve (in thetz-plane) withO(1/£%) breakpoints so that

v(t) is ane-approximate median df(¢). If the points move with fixed velocity, then the number of break-
points can be reduced (1/e%/3 log?(1/¢)) by spending)(n/c/?log(1/¢)) expected time. Because of

lack of space we omit many details.

The case of algebraic motion. Setr = ¢/e for some constant > 0, and letu be the maximum degree

of the polynomials defining the trajectories of input points. Using the linearization technique, we compute
in O(nlogr + r**1) time, a(1/r)-cutting = of L [23, 4] of sizeO(r?) = O(1/£?).2 Let V be the set of
vertices of=; |[V| = O(r#*1). By preprocessinyy’ into a data structure, we can prove the following lemma.

Lemma 4.2 We compute in tim@(nlogr + r2+1?) time the level of every point df in A(L).

Next, let £’ be the set of edges & whose both endpoints have level at leag2. The level of all points
on an edge oE with u as one of its endpoints lies in the rang:) + en/c. We take the lower envelope
of E. Using the structural properties &f we can prove that is a continuous curve with at moét(1/2)
vertices and the level of every breakpointjns at most:/2 + en/c. The level of any point iny thus lies
in the ranggn/2 — en/c,n/2 + 2en/c]. If we choose: > 4, thenr is ancs-approximate median level df
and thusy(t) is ane-approximate median df(¢). Hence, we obtain the following.

3A 1/r-cutting of L is a partition of the plane into pairwise-disjoint “pseudo-trapezoids” so that at [thpst arcs of L cross
each pseudo-trapezoid &f
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Theorem 4.3 Let S be a set of points moving iR, ands > 0 a constant. Assuming that their trajectories
are algebraic with degree of motign we can compute i) (nlog(1/¢) + 1/e°) time at-monotone
curvey of sizeO(1/£?) so that the rank of (t), for anyt € R, lies betweem /2(1 + ¢).

The case of linear motion. We can compute an-approximate median with fewer breakpoints if the
input points are moving with fixed velocities, as follows. Lebe a set of lines in the plane. We use
the randomized incremental algorithm by Agarwalal.[1] for computing the level in the arrangement of
lines. It chooses a random permutatian. .., ¢, of L and adds the lines one by one in this order. Let
L; = {l1,...,¢;} andd; = c(n/i)logi for some constant > 1. After having inserted the firstlines,
the algorithm maintains a familg; of cells of A(L;) each of which has at least one vertex whose level
with respect tol lies in the rangén/2 — 0;,n/2 + §;]. Actually, the algorithm maintains a “canonical”
triangulation of the cells ii€;, and for each trianglé\ in the triangulation it maintains the séty C L of
lines that intersect the interior &. LA helps constructing;; from C; efficiently. See the original paper
for details.

In our case, instead of adding all the lineslofve add only the first = (c¢/e)log(1/e) lines of the
permutation. As in the previous algorithm, we choose the edges of cellsvilnose both endpoints have
level at least/2 and compute their lower envelope Following the analysis in [1], we can argue tha
a continuous curve and its expected siz&{&*/352/) x (r2/n2) = O((1/e)*/3log?(1/e)), and that the
expected running time of the algorithmaX (n/c'/3) log(1/¢)). If v has more tha®((1/¢)*/3log?(1/¢))
breakpoints or an edge ofintersects more thai/4 lines of L, we restart the algorithm. The expected
number of iterations i§)(1). Hence, we conclude the following.

Theorem 4.4 Let S be a set of points moving iR' moving with fixed velocity, and > 0 a parameter. We
can compute in expect&d((n/c'/?)1og(1/¢)) time at-monotone curve of sizeO(1/c*/31og?(1/¢)) so
that the rank ofy(t), for anyt € R, lies betweem /2(1 + ¢).

It would be interesting to also obtain faster off-line algorithms for approximate center points of moving
points inR?2. The above techniques do not seem to be directly applicable to this case.
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