
Staying in the Middle: Exact and Approximate Medians inR1 andR2 for
Moving Points ∗

Pankaj K. Agarwal† Mark de Berg‡ Jie Gao§ Leonidas J. Guibas¶

Sariel Har-Peled‖

June 2, 2005

Abstract

Many divide-and-conquer based geometric algorithms and order-statistics problems ask for a point
that lies “in the middle” of a given point set. We study several fundamental problems of this type
for moving points in one and two dimensions. In particular, we show how to kinetically maintain the
median of a set ofn points moving on the real line, and a center point of a set ofn points moving in
the plane, that is, a point such that any line through it has at most2n/3 on either side of it. Since the
maintenance of exact medians and center points can be quite expensive, we also show how to maintain
ε-approximate medians and center points and argue that the latter can be made to be much more stable
under motion. These results are based on a new algorithm to maintain anε-approximation of a range
space under insertions and deletions, which is of independent interest. All our approximation algorithms
run in near-linear time.

1 Introduction

In this paper we study the problem of “staying in the middle”: we have a set of points moving in a geometric
space and wish to maintain another point (possibly one of the given points, but not necessarily) that stays
continuously “in the middle” of the moving set. Our motivation for studying this problem stems from a
number of different applications. First, many data structures for efficiently querying a point set are based
on balanced partitions of the set using medians or other equi-partitioning constructs — for example, many
well-known range-searching data structures and graph-separator based algorithms utilize such balanced par-
titioning [2, 26]. When a point set is in motion, however, these partitions need to be updated, and it becomes
important to avoid the cost of recomputing them from scratch at each time step.

∗P.A. was partially supported by NSF under grants CCR-00-86013 EIA-98-70724, EIA-99-72879, EIA-01-31905, and CCR-
02-04118, and by a grant from the U.S.-Israeli Binational Science Foundation. Work by L.G. and J.G. was supported by NSF grant
CCR-9910633 and grants from the Stanford Networking Research Center, the Okawa Foundation, and the Honda Corporation. S.
H.-P. was supported by NSF CAREER award CCR-0132901.

†Department of Computer Science, Duke University, Durham, NC 27708, USA. E-mail: pankaj@cs.duke.edu
‡Institute of Information and Computing Sciences, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, the Netherlands.

markdb@cs.uu.nl
§Center for the Mathematics of Information, California Institute of Technology, Pasadena, CA 91125, USA. Work was done

when the author was with Department of Computer Science, Stanford University. E-mail: jgao@ist.caltech.edu
¶Department of Computer Science, Stanford University, Stanford, CA 94305, USA. E-mail: guibas@cs.stanford.edu
‖Department of Computer Science, University of Illinois, Urbana, IL 61801, USA. Email: sariel@uiuc.edu

1

We wish to maintain the median, or more generally a point of rankk, in a set of points moving inR1. It
is well-known that the notion of median and rank order can be extended to higher dimensions, as follows.
Let P be a point set inRd, and define thedepth∆(p) of a pointp ∈ Rd as the minimum number of points
of P on either side of any hyperplane passing throughp. A point with depth at leastδn is called aδ-center
point. A 1/(d + 1)-center point is called just acenter point, and it generalizes the concept of median. It
has been proven using Helly’s Theorem that any point set has a center point [16]. ForR2, given some
k ≤ n/2, the set of points with depth at leastk is calledk-th depth contour, denoted byDk. Center points
and depth contours are widely used in the analysis of rank and order statistics in point sets and bivariate
distributions [20], computing separators for planar graphs [26], and other areas, thus providing a second
motivation for studying the kinetic or parametric versions of these problems.

This notion of kinetic medians and center points is related to, but distinct from more classic kinetic
facility-location problems [8], where the goal is to maintain certain mobile servers near groups of mobile
clients. An important special instance of that is the kinetic maintenance of clusters of mobile nodes so that
the clustering is both nearly optimal and stable under motion [18]. In these client-server problems a metric
notion of “being in the middle” is more appropriate (as in the 1-center problem in which we minimize the
maximum distance from server to the most distant client), while our emphasis is on combinatorial medians
— since our primary goal is to use them for divide-and-conquer data structures. However, we are also
interested in applications where the medians must have a physical embodiment and not just be data structure
helpers, and thus we require that their motion be continuous (so as to be physically realizable).

Like in the kinetic facility-location problems, we provide a trade-off between the quality of our medians
and their continuity and stability under motion. We study both exact and approximate algorithms for kinetic
medians (inR1) and kinetic center points and depth contours (inR2). As we will see, in both cases the
approximate algorithms offer far greater stability and maintenance efficiency, for a very modest loss in the
quality of the partitions they can generate. Another advantage of approximation algorithms is that we can
not only maintain the (median or) center point of current configuration of the points but we can also maintain
a compact representation of the trajectory of an approximate (median or) center point over the entire motion
of points, so we can answer various queries on the center point of any future configuration of points. Such
queries are central to spatial-temporal database systems. A main tool we develop for these approximate
algorithms is the efficient maintenance of anε-approximation of a range space under point insertion and
deletion — which we believe to be of independent interest.

Most of our algorithms are based on thekinetic data structure(KDS) framework, originally proposed
by Baschet al. [6], which provides a toolbox for designing and analyzing data structures under motion.
The basic idea in the kinetic framework is that even though the objects move continuously, the relevant
combinatorial structure changes only at certain discrete times — therefore one need not update the data
structure continuously. See the review article by Guibas [19] for details.

Related work. Finding the median (or more generally the point of rankk, for some givenk) of a set
of points inR1 can be done in linear time [13]. If the points move on the real line, then maintaining the
point of rankk is closely related to the concept oflevelsin the arrangement1 defined by the trajectories in
thext-plane, as defined next. Thelevel of a pointp ∈ R2 in an arrangementA(Γ) defined by a setΓ of
x-monotone curves is the number of curves inΓ lying belowp. LetΛk(Γ) denote the closure of the edges of
A(Γ) whose level isk; Λk(Γ) is anx-monotone curve and it is called thek-level of the arrangement. Hence,

1The arrangementA(Γ) is the planar decomposition induced byΓ. Its vertices are the intersection points of curves inΓ, its
edges are maximal (open) connected portions of curves that do not contain a vertex, and its faces are the connected components of
R2 \SΓ.

2

the point of rankk at timet0 is given by the trajectory that is on thek-level fort = t0. Setλk(Γ) = |Λk(Γ)|,
and defineλk(n) = max{λk(Γ)}, where the maximum is taken over all setsΓ of n curves of a given type
(lines, for example, or algebraic curves of a certain maximum degree). Maintaining the median thus reduces
to computing then/2-level, andλn/2(n) bounds the number of changes of the median if the trajectories in
thext-plane are of the given type. IfΓ is a set ofn lines, thenλk(Γ) = O(n4/3) [15]. For general curves, a
recent result of Chan [9] implies thatλk(Γ) = O(n2−1/2s), wheres is the maximum number of intersection
points between two curves.

Maintaining anε-approximate median reduces to computing anε-approximaten/2-level, that is, anx-
monotone curve lying between the(1− ε)n/2-level and the(1 + ε)n/2-level. There has been a lot of work
on computing approximate levels. Edelsbrunner and Welzl [17] showed that anε-approximate median level
with at mostdλn/2(n)/(εn)e edges can be computed for line arrangements. Later Matoušek [22] proposed
an algorithm for obtaining anε-approximate median level with constant complexity (depending onε only)
for an arrangement ofn lines. This idea was further explored by Agarwalet al.[3] to obtain efficient off-line
and on-line maintenance of an approximate median level of an arrangement of lines or line segments. They
compute anε-approximate median with sizeO(1/ε2) in timeO(n log n/ε2).

In 2-D, a center point can be computed in linear time [21]. Clarksonet al.[12] proposed a randomized
algorithm to compute anε-approximate center point. The computational cost is polynomial in only the
dimension and1/ε. Miller et al. usedO(n2) time and space to find all the depth contours, by computing
the arrangement of then lines in the dual plane [25]. A singlek-th depth contour can be computed in
O(n log2 n) time [10]. To our knowledge, there are no prior results on maintaining the exact/approximate
depth contours or center points under motion.

Our results. We start by briefly looking at the (rather easy) problem of maintaining medians and points of
a given rankk for points moving inR1 (Section 2.1). Then we present two KDS’s for maintaining a center
point of a set ofn points moving in the plane (Sections 2.2 and 2.3). The first KDS actually maintains the
k-th depth contour for any given0 ≤ k < n. As a byproduct, it also gives a KDS for maintaining the entire
center region, i.e., the set of all center points. It requiresO(n2) certificates and processesO(n4+δ) events
under pseudo-algebraic motion of points, each event requiringO(log2 n) time. The second KDS maintains
a subset of the center points. It requires onlyO(n log n) certificates but processesO(n7+δ) events in the
worst case. As stated above, these are the first results known for this problem.

Since these exact algorithms are quite expensive, we then study approximation algorithms. We first
describe an algorithm for maintaining anε-approximationA ⊆ S of a finite range space(S,R) under
insertions and deletions of points (see Section 3). Becauseε-approximations are a widely-used tool in
computational geometry, this result is of interest on its own. We show that a center point ofA for a suitably
defined range space is anε-approximate center point ofS. Whenever we computeA, we also compute in
O(1/εO(1)) time at-monotone polygonal curveγ so thatγ(t) is a center point ofA(t). Therefore for any
t, we can compute inO(log(1/ε)) time anε-approximate center point of the points inS(t) based on their
current trajectories (Section 4.1). The setA does not change as long as the trajectories of the points inS
don’t change. Whenever a pointp changes its trajectory, we deletep from S and re-insert it with the new
trajectory. Our algorithm can updateA in (log(n)/ε)O(1) time. The same idea can also be used to maintain
anε-approximate median of a set of points moving inR1.

Theε-approximation based algorithm maintains anε-approximate median that changesO(1/ε4 log2(1/ε))
times, and the total time spent isO(n/εO(1)). If the trajectories of the points are known in advance, then
one can improve the running time and maintain a more stable median (Section 4.2). More precisely, if the

3

trajectories of points are fixed-degree algebraic curves, then we can compute inO(n + 1/εO(1)) time at-
monotone curveγ with O(1/ε2) breakpoints so thatγ(t) is anε-approximate median ofS(t). If furthermore
the points inS move with fixed velocities, we can give a Las Vegas algorithm that reduces the number of
breakpoints onγ to O(1/ε4/3 log2(1/ε)) by spendingO(n/ε1/3 log(1/ε)) expected time, , thus improving
the result of Agarwal et al. [3].

2 Exact Algorithms

We begin by describing a KDS for maintaining the median of a set of points moving inR1. Next, we
describe a KDS to maintain the depth contour of a setS of points moving in the plane, which as a byproduct
also gives a KDS for maintaining thecenter region, which is the set of all center points ofS. Finally, we
describe an alternate more space-efficient KDS for maintaining a center point ofS.

2.1 Maintaining the median

Maintaining the exact median of a setS of n points moving inR1, or more generally, maintaining the point
of rankk for a fixedk, can be done by adapting the HeapSweep algorithm [7]. We maintain (i) the point
of rankk, (ii) the maximum ofS<k(t), the points of rank less thenk, in a kinetic tournament, and (iii) the
minimum ofS>k, the points with rank greater thank, in a kinetic tournament. This is easy to maintain. E.g.,
when the maximum ofS<k(t) swaps with the point of rankk, it is deleted fromS<k(t), and it becomes the
new point of rankk; the old point of rankk is inserted intoS<k(t). Following the analysis of [7], we prove
the following.

Theorem 2.1 Let S be a set ofn points moving inR1, and letk be an integer. We can maintain the point
of S of rankk using a KDS that usesO(n) certificates. Assuming pseudo-algebraic motion, the number of
events processed by the KDS isO(λk(n) log2 n), and each event can be handled inO(log n) time.

2.2 Maintaining the depth contour and center region

Given a setS of n points moving inR2 and an integer0 ≤ k < dn/2e, we describe a KDS for maintaining
thek-th depth contourDk of S as the points inS move. The center region ofS is simply Dbn/3c. Note
that thek-th depth contour of a setP of n stationary points in the plane is also closely related to thek-th
and(n − k)-th levels in arrangements: if we dualize [14]P , we obtain a setP ∗ of n lines, and a point at
depthk dualizes to a line lying betweenΛk(P ∗) andΛn−k(P ∗). Hence, the dual of points whose depth is
at leastk is the region lying between the lower hull ofΛn−k(S∗) and the upper hull ofΛk(S∗). Thus the
problem at hand reduces to the following. LetL = {`1, . . . , `n} be a set ofn lines in the plane, each moving
independently, i.e.,̀i : y = ai(t) + bi(t)x, whereai(·) andbi(·) are polynomials int. We wish to maintain
the upper (or lower) hull ofΛk(L), thek-th level ofA(L), as the lines inL move.

For each linè ∈ L, let v−(`) (resp.v+(`)) be the leftmost (resp. rightmost) point ofΛk(L) ∩ `. Let
V = {v−(`), v+(`) | ` ∈ L}. The upper hull ofΛk(L) is the same as that ofV . We maintain the upper hull
of V using the kinetic data structure described in [6]. In more detail, we proceed as follows.

For a line` ∈ L, let Σ(`) be the sequence of vertices ofA(L) ∩ `, sorted from left to right.Σ(`)
partitions` into the edges ofA(L). For each edgee, let λ(e) be the level of the points ine. Note that ife′

lies immediately to the right ofe, thenλ(e′) = λ(e) ± 1 depending on the local geometric situation. We
maintain the setE(`) of all the edges oǹ whose level isk. We add the left endpoint of the leftmost edge

4

and the right endpoint of the rightmost edge ofE(`) (i.e.,v−(`), v+(`)) to V . For each̀ , we maintain: (i)
the sequence of vertices and edges of the arrangement on`, (ii) E(`), and (iii)v−(`), v+(`). In addition, we
also use a KDS to maintain the upper hull ofV , as the lines inL move [6]. We will also need it to handle
insertion and deletion of points.

`2

`2

`1

`1
σ3

`3
`2

σ2 σ3

σ2

`1 `1
`3

`2

Figure 1: (i) An event of type (E1);̀1 and`2 become parallel. (ii) An event of type (E2);`1, `2, `3 become
concurrent.

There are three types of events that the algorithm has to handle to maintain the above structures:

(E1) Two lines`1, `2 become parallel.Supposè1 ∩ `2 was the rightmost intersection point on`1 (and`2)
before the event. Theǹ1 ∩ `2 becomes the leftmost intersection point on`1 (and`2) after the event;
see Fig. 1 (i). We update the ordering ofΣ(`1) andΣ(`2). The two rightmost edges oǹ1 and`2

are merged and the leftmost edge on each of`1 and`2 is split into two edges. The level of the new
edge oǹ 1 (resp.̀ 2) can be computed inO(1) time from the level of its neighboring edge on`1 (resp.
`2). If necessary, we also updateE(`1), E(`2), V , and the KDS for maintainingUH(V). There are
O(n2) such events, each requiringO(log n) time to updateA(L) andE(`). In addition, at each such
event, we may also performsO(1) insert/deletion operations on the KDS, which in turn can generate
additional internal events for the KDS.

(E2) Three lines̀ 1, `2, `3 become concurrent.In this caseσ2 = `1 ∩ `2 andσ3 = `1 ∩ `3 are adjacent
along`1. After the event their ordering along̀1 flips; see Fig. 1 (ii). We therefore swapσ2 andσ3 in
Σ(`1), and update the levelλ(e) of the edgee ⊆ `1 induced byσ2 andσ3 in O(1) time. If necessary,
we also updateE(`1), V , and the KDS for maintainingUH(V). We repeat the same procedure for`2

and`3. There areO(n3) such events, each requiresO(log n) time andO(1) insert/delete operations
in the KDS.

(E3) An event of KDS for maintainingUH(V). Roughly speaking, the KDS by Baschet al.[6] to maintain
convex hull of a set of moving points is a tree data structure, which partitionsV into two roughly equal
subsetsV1 andV2 and recursively maintainsUH(V1) andUH(V2). The root of the tree maintains
the upper hull ofUH(V1) ∪ UH(V2) and a linear number of “certificates” that keep track of the
combinatorial structure ofUH(V) and some additional book-keeping information. The KDS triggers
aneventwhen one of the certificates is no longer true, indicating that the structure needs to be updated.
In addition to the events caused by the motion of points, insertion/deletion of a point also triggers
events in KDS. Each of these events can be processed inO(log2 n) time, as described in [6]. The
following lemma bounds the number of these events.

Lemma 2.1 There areO(n4+δ) events of type (E3).

Proof. We only count the number of events at the root of the KDS. The events at other nodes can be
counted by a recursive argument. Letq be a vertex ofA(L) that was inV during the time interval[t1, t2].
If q appears inV more than once, we regard these occurrences ofq as different points. Letq∗(t) be the line

5

dual toq(t). Defineγq to be the ruled surface in thetxy-space swept byq∗(t) during the interval[t1, t2],
i.e., γq =

⋃
t1≤t≤t2

t × q∗(t). Regard eachγq as the graph in thetxy-space of a partial bivariate function
γq(t, x). Let G1 (resp.G2) be the set of these surfaces corresponding to the points that ever appeared inV1

(resp.V2). Following the same argument as in [6], we can show that the number of events of type (E3) at the
root, including the ones triggered by insertion/deletion of points, is proportional to the number of vertices
in the overlay of the upper envelopes of surfaces inG1 andG2. It thus suffices to bound the number of such
vertices.

We partition thet-axis intoO(n2) slices so that there are at most2n events of type (E1) and (E2) in
each slice. For each slice∆, letG∆

1 (resp.G∆
2) be the set of surfaces inG1 (resp.G2) that intersect the slice

∆. Since the number of vertices inV at any given time is at most2n, we have|G∆
1 | + |G∆

2 | ≤ 4n. By a
result of Agarwalet al. [5], the number of vertices in the overlay of the upper envelopes ofG∆

1 andG∆
2 is

O(n2+δ). Summing this bound over allO(n2) slices and using a recursive argument to bound the number
of events at other nodes of the tree, we obtain the desired bound. ¤

The KDS for maintainingUH(V) maintainsO(n log n) certificates. We need additionalO(n2) certifi-
cates to detect events of type (E1) and (E2): (i) leftmost and right vertices along each line ofL, and (ii)
adjacent pairs of vertices ofA(L) along each line ofL. Hence, we conclude the following.

Theorem 2.2 Let L be a set ofn lines in the plane, each moving independently, and let0 ≤ k < n be an
integer. We can maintain the upper and lower hulls ofΛk(L) usingO(n2) certificates. The number of events
processed by the algorithm under the algebraic motion ofL is O(n4+δ), and each event can be processed in
O(log2 n) time.

Corollary 2.1 Let S be a set ofn points moving in the plane. We can maintain the center region ofS or,
more generally, thek-th depth contour ofS, usingO(n2) certificates. The algorithm processesO(n4+δ)
events under algebraic motion ofS, and each event can be processed inO(log2 n) time.

2.3 A space-efficient algorithm for maintaining a center point

We now describe another KDS for maintaining a center point of a setS of n = 3m points moving in the
plane. Unlike the previous algorithm, the new KDS uses onlyO(n log n) certificates. First, let us assume
that the points inS are stationary. A result by Tverberg [27] (see also [24]) implies thatS can be partitioned
into m triplesS1, . . . , Sm so that the intersection of triangles∆i = conv(Si), 1 ≤ i ≤ m, is nonempty.
Such a partition is called aTverberg partition, and any point in∆ =

⋂m
i=1 ∆i is called aTverberg point. Any

point in∆ is also a center point. Moreover, a Tverberg partition in the plane can be computed inO(n log n)
time [26]. Since each Tverberg triangle∆i can be regarded as the intersection of three halfplanes, each
bounded by a line passing through a pair of points in∆i, the region∆ is the intersection of a setH of
3m = n halfplanes. In the dual plane, a halfplaneh ∈ H is mapped to a pointh∗ and the intersection of the
halfplanes maps to the convex hull of the setH∗ of points. Therefore we use a KDS to maintain the convex
hull CH(H∗) [6]; it usesO(n log n) certificates.

Now as the points inS move, we wish to maintain∆. More precisely, we compute an initial Tverberg
partition ofS in O(n log n) time and maintain∆ using the kinetic convex hull structure described by Basch
et al. [6], with the following twist. Whenever∆ shrinks to a point, we update the underlying Tverberg
partition so that the interior of∆ after the modification becomes nonempty. The idea is similar to the one
used by Tverberg [28]. There are two types of events that cause the interior of∆ to become empty.

6

c

b c
d

d

b

be

a
d

f
c

e b

d

c

a
f

a

h

o

e

f

g

d

b

c

i

b

d

g

fa

c

i o

e
h

(i) (ii) (iii)

Figure 2: (i) Vertexd of 4bcd crosses the edgebc. (ii) Vertex d of 4def crosses the edgebc of 4abc. (iii)
An edge-edge event.

(i) Edge-vertex event. Suppose a pointd ∈ ∆i crosses a line passing through a pair of pointsb, c ∈ ∆j .
If i = j (see Fig. 2 (i)), then basically the halfplanes defining∆i change. We updateH and modify
the KDS accordingly. The Tverberg partition does not change.

If i 6= j, then we update the Tverberg partition by redistributing the points ofSi ∪ Sj into two triples.
Let ∆i = 4def and∆j = abc. Then we setSi = {a, d, f} andSj = {b, c, e}. It can be checked
that the new∆i ∩∆j 6= ∅ and therefore∆ has nonempty intersection; see Fig. 2 (ii). We update the
setH and the KDS.

(ii) Edge-edge event. Suppose three edges, coming from distinct triangles, become concurrent, see Fig. 2 (iii)
for an example. We can again ensure that∆ remains non-empty by regrouping the vertices of the three
triangles involved. We omit the details.

Both events involveO(1) updates inH and KDS. There areO(n3) vertex-edge events andO(n6) edge-
edge events, so the total number of updates onH is O(n6). By partitioning the time-axis intoO(n5) slices
with n events each, and following the analysis of Lemma 2.1, we get:

Theorem 2.3 Let S be a set ofn points moving in the plane. We can maintain a center point ofS using
O(n log n) certificates. The algorithm processesO(n7+δ) events under algebraic motion ofS, and each
event can be processed inO(log2 n) time.

3 Maintaining ε-approximations

A range space is a pairX = (S,R), whereS is a set andR ⊂ 2S . S is called the set ofpoints, and
R is called the set ofranges. In the sequel we deal with finite range spaces, whereS is finite. A subset
A ⊆ S is called anε-approximationfor X if, for every rangeR ∈ R, ||A ∩R|/|A| − |R|/|S|| < ε. The
concept ofε-approximation plays an important role in computational geometry, and forms the basis of many
efficient randomized and deterministic algorithms and data structures [11]. In this section we describe an
algorithm for maintaining anε-approximation of a range space as points are inserted or deleted. Maintaining
anε-approximation under insertions and deletions is trivial if we allow randomization, because we can just
resample theε-approximation after each update, but we cannot efficiently verify whether the random sample

7

is anε-approximation. In the kinetic setting, where the number of updates of trajectories could be quite
large, this Monte Carlo approach is not viable because the size of the sample needed to guarantee success
with high probability would have to be large. Thus, a deterministic solution in this case is desirable, which
guarantees that we are always working with anε-approximation. We first briefly review an algorithm for
constructing anε-approximation [11] and then describe how we dynamize it. Before proceeding we state
some well-known properties ofε-approximations.

Lemma 3.1 (i) If A′, B′ areε-approximations for the range spaces(A,R) and(B,R) respectively, and
|A| = |B|, |A′| = |B′|, thenA′ ∪B′ is anε-approximation of(A ∪B,R).

(ii) If A′′ is anε-approximation for(A′,R) andA′ is anε′-approximation for(A,R), thenA′′ is an
(ε + ε′)-approximation of(A,R).

(iii) Halving: Given(A,R), a range space of VC-dimension2 d, one can compute a bichromatic coloring
of A such that the setA′ of black points is anO((log(n))/

√
n)-approximation for(A,R), and|A′| = |A|/2.

This takesO(nd+1) time, wheren = |A|.

Construction of an ε-approximation. Assume|S| = 2i. The algorithm can easily be modified to handle
general values ofn, but we omit the details here. Lemma 3.1 offers a rather natural way of computing
an ε-approximation of a point setS: build a balanced binary tree over the points ofS, and compute the
ε-approximation in a bottom-up fashion. At every nodev, take the two approximations computed for the
children, and merge them together to form an approximation for all the points stored in the subtree ofv. If
this set is too large, halve it using Lemma 3.1 (iii).

It is easy to verify that by fine-tuning the above construction we can get anε-approximation toS in the
root of this tree. Indeed, we just perform merging in nodes that have less thanµ = c

ε2 (log n log(log(n)/ε))2

points in their subtree. In every other node, we perform merging and halving. The merging itself does not
introduce any error. The only source for error is the halving, and the total error created is bounded by the
sum of the errors introduced in each level. We have that the approximation quality is

dlog2 ne∑

i=1

O

(
log µ√

µ

)
≤ ε

2
,

for c large enough. However, the set stored in the root of the tree is too big. We further shrink it by repeated
halving till it is of sizeO(1/ε2 log(1/ε)). This adds an extra error ofε/2. Overall, the resulting set is an
ε-approximation of sizeO(1/ε2 log 1/ε).

Lemma 3.2 Given a range spaceX = (S,R) of VC-dimensiond and a parameterε, we can compute anε-
approximation ofX of sizeO(1/ε2 log(1/ε)) in timeO(nµd), where|S| = n andµ = c

ε2 (log n log(log(n)/ε))2.

The above result can be extended to a range spaceX = (S,R) in which each pointp of S is assigned
a nonnegative weightw(p) and a subsetA ⊆ S is called anε-approximation ofS if |w(A ∩ R)/w(A) −
w(R)/w(S)| < ε, wherew(N) =

∑
p∈N w(p) of S.

Theorem 3.1 Given a weighted range spaceX = (S,R) of n points (the weights are non-negative real
numbers) of VC-dimensiond and a parameterε > 0, we can compute anε-approximation forX in
O

(
nµd log(1/ε)

)
time, whereµ = c

ε2 (log n log(log(n)/ε))2.

2TheVC-dimensionof a range spaceX = (S,R) is the size of the largest subsetN ⊆ S such that|{N ∩ r | r ∈ R}| = 2|N|.

8

Handling insertions and deletions. We are going to maintain the current setS as a set ofO(log n)
perfectly balanced trees, where a tree of ranki has2i points stored in it. Every node of those trees maintains
in it an approximation to all the points in the subtree rooted at this node. The size of the approximation is
m = c(log2 n)/ε2, wherec is a large enough constant.

When inserting a point, we create a tree that has only this point in it. When deleting a point from a
tree, we break it intoO(log n) trees. After every such operation, we go over the collection of trees sorted in
increasing order by their rank, and merge every two treesT1, T2 that have the same rankr. This is done by
creating a new tree with both trees as subtrees, and computing the approximation associated with the root
by merging the two approximations associated with its two children, and halving them. The two old trees
are removed from the collection, and the new tree is added with its rank beingr + 1. Clearly, afterO(log n)
such operations, the collection of trees becomes legal again.

This yieldsM = O(log n) setsS1, . . . , SM , each oneε/4-approximating the points stored in the tree
it was extracted from. We can not just merge those sets to form anε-approximation for the whole point
set, as the original point sets have different cardinalities. Instead, we associate with all the points ofSi a
weight which is2i/|Si| (the setSi associated with a tree of ranki containing2i points). S1 ∪ . . . ∪ SM

with those associated weights is anε/4-approximation for the current point set. We can finally normalize
this into an unweightedε-approximation, by computing anε/4-approximation of(S1 ∪ . . . ∪ Sm,R) using
Theorem 3.1. The resulting approximation is clearly the requiredε-approximation. Omitting the details of
the analysis, we conclude the following.

Theorem 3.2 Given a range spaceX = (S,R) of VC-dimensiond and a parameterε, one can (determin-

istically) maintain anε-approximation ofX of sizeO(1/ε2 log(1/ε)), in O
(

log2d+3 n
ε2d+2 (log(log(n)/ε))2d+2

)

time per insertion or deletion.

4 Approximation Algorithms

In this section we describe approximation algorithms for maintainingε-approximate median and center
points. We first show that we can get fast approximation algorithms using our results onε-approximations.
As mentioned in the introduction, they not only maintain anε-approximate median or center point of the cur-
rent configuration of points sets, but also compute at-monotone curveγ such thatγ(t) is anε-approximate
median or center point ofS(t). Next we show that we can develop even faster algorithms in the off-line
setting, where the trajectories of input points are given in advance, that maintain more stableε-approximate
medians.

4.1 Theε-approximation based algorithms

We show that the algorithm described in Section 3 can be used to maintain anε-approximate median and
center point. LetS be a set ofn points moving inR1. Let R be the set of vertically downward rays in
the tx-plane, i.e.,R = {(−∞, x] × t | x, t ∈ R}. For an elementρ = (−∞, x] × t ∈ R, let Sρ = {p |
there is at such thatp(t) ∈ ρ}. We define the range spaceM = (S, {Sρ | ρ ∈ R}). The following lemma
is straightforward.

Lemma 4.1 Let A ⊆ S be anε-approximation ofS for the range spaceM. Then for anyt, the median of
A(t) is anε-approximate median ofS(t).

9

It can be proved that if the trajectories ofS are algebraic then the VC-dimension ofM is finite. Therefore
we can use the algorithms of the previous section to maintain anε-approximation ofS. We can compute
the median level of the trajectories ofA. Since we compute the entire median level, there are no events
unless the trajectory of a point inS changes. When the trajectory of a point changes,A is recomputed in
(log(n)/ε)O(1) time using Theorem 3.2, and we recompute the median level ofA in (1/ε)O(1) additional
time. We thus obtain the following.

Theorem 4.1 LetS be a set of points moving inR1, and letε > 0 be a parameter. Assuming that the motion
of S is algebraic, we can construct a data structure that can be updated in(log(n)/ε)O(1) time whenever the
trajectory of a point inS changes, and that, for any timet, can return anε-approximate median ofS(t) in
O(log(1/ε)) time based on the current trajectories ofS.

Using a similar argument, we can maintain anε-approximate center point ofS.

Theorem 4.2 Let S be a set of points moving inR2, and letε > 0 be a parameter. Assuming that the motion
of S is algebraic, we can construct a data structure that can be updated in(log(n)/ε)O(1) time whenever the
trajectory of a point inS changes, and that, for any timet, can return anε-approximate center point ofS(t)
in O(log(1/ε)) time based on the current trajectories ofS.

4.2 Faster off-line algorithms for approximate median

We show that anε-approximate median of a setS of n points moving inR1 can be computed more efficiently
in the off-line setting. However, unlike the algorithm described in Section 4, theε-approximate median we
maintain is not necessarily one of the input points, and we cannot change the trajectory of points on-line. Let
L denote the set of trajectories of points inS. We first describe an algorithm for the algebraic motion that
computes, inO(n+1/εO(1)) time, at-monotone curveγ (in thetx-plane) withO(1/ε2) breakpoints so that
γ(t) is anε-approximate median ofS(t). If the points move with fixed velocity, then the number of break-
points can be reduced toO(1/ε4/3 log2(1/ε)) by spendingO(n/ε1/3 log(1/ε)) expected time. Because of
lack of space we omit many details.

The case of algebraic motion. Setr = c/ε for some constantc > 0, and letµ be the maximum degree
of the polynomials defining the trajectories of input points. Using the linearization technique, we compute
in O(n log r + rµ+1) time, a(1/r)-cuttingΞ of L [23, 4] of sizeO(r2) = O(1/ε2).3 Let V be the set of
vertices ofΞ; |V | = O(rµ+1). By preprocessingV into a data structure, we can prove the following lemma.

Lemma 4.2 We compute in timeO(n log r + r2(µ+1)2) time the level of every point ofV in A(L).

Next, letE be the set of edges ofΞ whose both endpoints have level at leastn/2. The level of all points
on an edge ofΞ with u as one of its endpoints lies in the rangeλ(u)± εn/c. We take the lower envelopeγ
of E. Using the structural properties ofΞ, we can prove thatγ is a continuous curve with at mostO(1/ε2)
vertices and the level of every breakpoint inγ is at mostn/2 + εn/c. The level of any point inγ thus lies
in the range[n/2− εn/c, n/2 + 2εn/c]. If we choosec > 4, thenγ is anε-approximate median level ofL
and thusγ(t) is anε-approximate median ofS(t). Hence, we obtain the following.

3A 1/r-cutting ofL is a partition of the plane into pairwise-disjoint “pseudo-trapezoids” so that at most|L|/r arcs ofL cross
each pseudo-trapezoid ofΞ.

10

Theorem 4.3 Let S be a set of points moving inR1, andε > 0 a constant. Assuming that their trajectories
are algebraic with degree of motionµ, we can compute inO(n log(1/ε) + 1/εO(µ2)) time at-monotone
curveγ of sizeO(1/ε2) so that the rank ofγ(t), for anyt ∈ R, lies betweenn/2(1± ε).

The case of linear motion. We can compute anε-approximate median with fewer breakpoints if the
input points are moving with fixed velocities, as follows. LetL be a set of lines in the plane. We use
the randomized incremental algorithm by Agarwalet al. [1] for computing the level in the arrangement of
lines. It chooses a random permutation`1, . . . , `n of L and adds the lines one by one in this order. Let
Li = {`1, . . . , `i} andδi = c(n/i) log i for some constantc ≥ 1. After having inserted the firsti lines,
the algorithm maintains a familyCi of cells ofA(Li) each of which has at least one vertex whose level
with respect toL lies in the range[n/2 − δi, n/2 + δi]. Actually, the algorithm maintains a “canonical”
triangulation of the cells inCi, and for each triangle∆ in the triangulation it maintains the setL∆ ⊆ L of
lines that intersect the interior of∆. L∆ helps constructingCi+1 from Ci efficiently. See the original paper
for details.

In our case, instead of adding all the lines ofL we add only the firstr = (c/ε) log(1/ε) lines of the
permutation. As in the previous algorithm, we choose the edges of cells inCr whose both endpoints have
level at leastn/2 and compute their lower envelopeγ. Following the analysis in [1], we can argue thatγ is

a continuous curve and its expected size isO(n4/3δ
2/3
r) × (r2/n2) = O((1/ε)4/3 log2(1/ε)), and that the

expected running time of the algorithm isO((n/ε1/3) log(1/ε)). If γ has more thanO((1/ε)4/3 log2(1/ε))
breakpoints or an edge ofγ intersects more thanεn/4 lines ofL, we restart the algorithm. The expected
number of iterations isO(1). Hence, we conclude the following.

Theorem 4.4 Let S be a set of points moving inR1 moving with fixed velocity, andε > 0 a parameter. We
can compute in expectedO((n/ε1/3) log(1/ε)) time at-monotone curveγ of sizeO(1/ε4/3 log2(1/ε)) so
that the rank ofγ(t), for anyt ∈ R, lies betweenn/2(1± ε).

It would be interesting to also obtain faster off-line algorithms for approximate center points of moving
points inR2. The above techniques do not seem to be directly applicable to this case.

References

[1] P. K. Agarwal, M. de Berg, J. Matoušek, and O. Schwarzkopf. Constructing levels in arrangements and higher
order Voronoi diagrams.SIAM J. Comput., 27:654–667, 1998.

[2] P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In B. Chazelle, J. E. Goodman, and
R. Pollack, editors,Advances in Discrete and Computational Geometry, volume 223 ofContemporary Mathe-
matics, pages 1–56. American Mathematical Society, Providence, RI, 1999.

[3] P. K. Agarwal, J. Gao, and L. J. Guibas. Kinetic medians andkd-trees. InProc. 10th Annu. European Sympos.
Algorithms, pages 5–16, 2002.

[4] P. K. Agarwal and J. Matoǔsek. On range searching with semialgebraic sets.Discrete Comput. Geom., 11:393–
418, 1994.

[5] P. K. Agarwal, O. Schwarzkopf, and M. Sharir. The overlay of lower envelopes and its applications.Discrete
Comput. Geom., 15:1–13, 1996.

[6] J. Basch, L. J. Guibas, and J. Hershberger. Data structures for mobile data.J. Algorithms, 31(1):1–28, 1999.

[7] J. Basch, L. J. Guibas, and G. D. Ramkumar. Reporting red-blue intersections between two sets of connected
line segments.Algorithmica, 35:1–20, 2003.

11

[8] S. Bespamyatnikh, B. Bhattacharya, D. Kirkpatrick, and M. Segal. Mobile facility location. In4th International
Workshop on Discrete Algorithms and Methods for Mobile Computing & Communications, pages 46–53, 2000.

[9] T. M. Chan. On levels in arrangements of curves, II: a simple inequality and its consequence. InProc. 44th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 544–550, 2003.

[10] T. M. Chan. An optimal randomized algorithm for maximum tukey depth. InProc. 15th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 423–429, 2004.

[11] B. Chazelle.The Discrepancy Method. Cambridge University Press, 2000.

[12] K. L. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant, and S.-H. Teng. Approximating center points with
iterative Radon points.Internat. J. Comput. Geom. Appl., 6:357–377, 1996.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to Algorithms. MIT Press / McGraw-Hill,
Cambridge, Mass., 2001.

[14] M. de Berg, M. van Kreveld, M. H. Overmars, and O. Schwarzkopf.Computational Geometry: Algorithms and
Applications. Springer-Verlag, 2nd edition, 2000.

[15] T. K. Dey. Improved bounds for planark-sets and related problems.Discrete Comput. Geom., 19(3):373–382,
1998.

[16] H. Edelsbrunner.Algorithms in Combinatorial Geometry. EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag, Heidelberg, 1987.

[17] H. Edelsbrunner and E. Welzl. Constructing belts in two-dimensional arrangements with applications.SIAM J.
Comput., 15:271–284, 1986.

[18] J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu. Discrete mobile centers.Discrete and Computational
Geometry, 30(1):45–63, 2003.

[19] L. J. Guibas. Kinetic data structures — a state of the art report. In P. K. Agarwal, L. E. Kavraki, and M. Mason,
editors,Proc. 5th Workshop Algorithmic Found. Robot., pages 191–209. A. K. Peters, Wellesley, MA, 1998.

[20] J. Hodges. A bivariate sign test.Annals of Math. Stat., 26:523–527, 1955.

[21] S. Jadhav and A. Mukhopadhyay. Computing a centerpoint of a finite planar set of points in linear time.Discrete
Comput. Geom., 12:291–312, 1994.

[22] J. Matoǔsek. Construction ofε-nets.Discrete Comput. Geom., 5:427–448, 1990.

[23] J. Matoǔsek. Efficient partition trees.Discrete Comput. Geom., 8:315–334, 1992.

[24] J. Matoǔsek.Lectures on Discrete Geometry. Springer, 2002.

[25] K. Miller, S. Ramaswami, P. Rousseeuw, T. Sellares, D. L. Souvaine, I. Streinu, and A. Struyf. Fast implemen-
tation of depth contours using topological sweep. InProc. 12th ACM-SIAM Sympos. Discrete Algorithms, pages
690–699, 2001.

[26] S. H. Teng.Points, Spheres, and Separators: a unified geometric approach to graph partitioning. PhD thesis,
School Comp. Sci., Carnegie-Mellon Univ., 1990. Report CMU-CS-91-184.

[27] H. Tverberg. A generalization of Radon’s theorem.J. London Math. Soc., 41:123–128, 1966.

[28] H. Tverberg. A generalization of Radon’s theorem II.Bull. Australian Math. Soc., 24:321–325, 1981.

12

