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ABSTRACT
This paper studies task assignment in a network of resource con-
strained computing platforms (calledmicroservers). A task is an
abstraction of a computational agent or data that is hosted by the
microservers. For example, in an object tracking scenario, a task
represents a mobile tracking agent, such as a vehicle location up-
date computation, that runs on microservers, which can receive sen-
sor data pertaining to the object of interest. Due to object motion,
the microservers that can observe a particular object change over
time and there is overhead involved in migrating tasks among mi-
croservers. Furthermore, communication, processing, or memory
constraints, allow a microserver to only serve a limited number of
objects at the same time. Our overall goal is to assign tasks to mi-
croservers so as to minimize the number of migrations, and thus be
kinetically stable, while guaranteeing that as many tasks as possi-
ble are monitored at all times. When the task trajectories are known
in advance, we show that this problem is NP-complete (even over
just two time steps), has an integrality gap of at least2, and can
be solved optimally in polynomial time if we allow tasks to be as-
signed fractionally. When only probabilistic information about fu-
ture movement of the tasks is known, we propose two algorithms:
a multi-commodity flow based algorithm and a maximum match-
ing algorithm. We use simulations to compare the performance of
these algorithms against the optimum task allocation strategy.

Categories and Subject Descriptors
A.m [F.2]: I.6

General Terms
Algorithms, Stochastic Processes, Matchings

1. INTRODUCTION
We consider the problem of task assignment in a network of

resource-constrained computer nodes, which we callmicroservers.
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A task is an abstraction of a computational agent or a piece of data
that is hosted by the microservers. Each microserver, due to com-
munication, processing, or memory constraints, can only host a
limited number of tasks at a time. Furthermore, due to physical
or system dynamics, such as the motion of objects to be moni-
tored or the motion of data consumers, the microservers that can
host a particular task change over time. We also assume that tasks
can be migrated among microservers for continuous execution, but
this migration has certain costs, such as energy consumption and
deterioration of quality of service; it is therefore something to be
avoided whenever possible. At the microserver level this creates a
dynamic resource allocation problem, in terms of deciding which
microservers host which tasks.

Our overall goal is to assign tasks to microservers so as to mini-
mize the number of migrations, and thus bekinetically stable, while
guaranteeing that as many tasks as possible are hosted at all times.

As a concrete example, we motivate the problem by a vehicle
tracking scenario in a parking garage. There are a set of camera
sensors, each of which directly connects to a microserver. The
cameras can pan and tilt to focus on specific areas in the garage.
Each camera has a limited set of fields of view, and these fields of
view may overlap, in the sense that multiple cameras can look at
the same region. Generally, there will be multiple vehicles of in-
terest driving in the garage that the cameras will track. The vehicle
motions are somewhat predictable — there are road constraints in
the garage as well as traffic patterns at various times of day that are
known.

The microservers communicate through Ethernet among them-
selves and with a central server. A task is a video signal processing
agent that can estimate the location of the vehicles it observes. We
assume that due to video signal processing load, each microserver
can only host a limited number of tracking tasks at a time.

When a vehicle performs a small motion, the tracking camera
can pan or tilt to follow it. Over time, the vehicle may move out of
one camera’s field of view and must be tracked by another camera.
Due to the design of the tracking algorithm, using the same cam-
era to track a vehicle is easier than switching to another camera.
Switching introduces the overhead of redetecting the vehicle from
a different viewing angle, which may degrade the tracking perfor-
mance. Tracking all vehicles may not be feasible. When conflicts
on resource requests cannot be resolved, the video will be sent to
central server for processing, but this should only be used as a last
resort due to communication bandwidth limitations.

The goal is to minimize the number of task migrations, i.e. re-
duction of the vehicle redetection and task transfer overheads. Note



that some task migration is essential, in order for the system to
adapt to the vehicle motion(s). Our focus is on avoiding unneces-
sary task migrations.

The migration of code and/or data among microservers in a sen-
sor network is a generic problem that arises in several other con-
texts, beyond the tracking scenario discussed here. For example,
in a setting where the users are mobile and operating in the same
space as the sensors, we may want to migrate data of potential in-
terest towards nodes near particular users, so that it is always acces-
sible to them with low latency. Such migrating information caches
may be of interest in many applications, from mobile telephony, to
location-aware services, to search-and-rescue operations.

This paper defines and studies the kinetically stable task assign-
ment (KSTA) problem. In section 2, we give a formal definition
of the KSTA problem. In section 3, we analyze the determinis-
tic KSTA problem, where the trajectory of objects are known. We
show that the problem, even when the trajectories are deterministic
and considering two steps, is NP-complete, has an integrality gap
of at least2, and can be solved optimally in polynomial time if we
allow tasks to be assigned fractionally. In section 4, we study the
problem for senarios where only probabilistic information about fu-
ture trajectories is known, we propose two assignment algorithms:
a multi-commodity flow based algorithm and a maximum matching
algorithm. Section 5 compares the algorithms in a vehicle tracking
scenario.

2. PROBLEM DEFINITION

We now formally define theKinetically Stable Task Assignment
problem. We assume that task allocations happen at discrete time
steps indexed by integerst = 1, 2, . . . T . N is the set of mi-
croservers andK the tasks. There is also anN length vectorcap,
wherecap(i) equals the capacity of microserveri. At each time
step t ∈ T there is a bipartite graphBt = (K, N, Et) where
Et = {(u, v)|tasku can be hosted by microserverv at timet}. A
sequence of bipartite graphs is illustrated in Figure 1. We will con-
sider scenarios where the edges of future bipartite graphs are known
in advance and also where there is only probabilistic information
about the future. We are looking for assignments of tasks to servers
that are:

• Maximum: A solution to the problem will produce a max-
imum matching for every time step. Thus, if not all tasks
can be covered at a given time step, the solution will cover
as many tasks as possible, regardless of the number of mi-
grations. For example, if there is the option that all tasks
are covered and all tasks must migrate, this is preferable to
covering all but one of the tasks without a single migration.

• Feasible: No microserver is assigned more tasks than it can
process (i.e. microserveri is assigned no more thancap(i)
tasks at each time step).

• Stable: A feasible assignment has to be maintained as the
tasks move around. Under the two constraints above, the
primary optimality criterion is thestabilityof the assignment,
which is measured by the sum over all tasks of the number
of times a task has to be switched to a new server during a
period of task motions. Precisely, the number of migrations
at time stept is the number of edges in the matching forBt

that do not exist in the matching forBt−1. The goal is to
produce a matching for all the bipartite graphs such that the
total number of migrations from time zero until timeT is
minimized.

Figure 1: A sequence of bipartite graphs.

We will further assume a setting where:

• Time synchronization is available for microservers.

• All data traffic is quickly routed through microservers; in par-
ticular, we have a (multi-hop, if necessary) routing protocol
for getting data from the actual sensor nodes to nearby mi-
croservers.

• Source interference can be resolved at the microserver or
high-end server level, so that source separation is not an is-
sue.

• Higher-level processes can make predictions (though with
uncertainty) about the motion or evolution of the phenom-
ena of interest.

• Energy and communication are not explicitly considered. Mi-
grations incur a fixed cost (as opposed to factoring in com-
munication which might vary based on distance, etc.).

If we set microserver capacities and the number of time steps
equal to1 and look at the static setting only, this is the classical
and very well studiedassignmentor bipartite matchingproblem.
Distributed algorithms exist for its solution, such as the market-
based auction algorithm [4]. As we will discuss later, our heuristics
take advantage of this previous research.

3. DETERMINISTIC KINETICALLY STA-
BLE TASK ASSIGNMENT

In the Deterministic Kinetically Stable Task Assignment prob-
lem, the future trajectories of tasks are fully known. The bipartite
graphs that will arise in future time steps are known with certainty,
as is the bipartite graph in the current time step (Time =1) and the
assignment from the previous step (Time =0).

3.1 NP-Completeness Reduction
We now show that finding an integral solution to the Determin-

istic Kinetically Stable Task Assignment problem, even when there
are just two time steps, is NP-complete, via a reduction from MAX
SET COVER.

THEOREM 1. Given two bipartite graphsG = (V, E) andH =
(V, E′), finding a maximum matching for each graph, so that the
number of edges in common between matchings is maximized, is
NP-complete.

PROOF. The reduction is from MAX SET COVER. An instance
of MAX SET COVER is as follows: Given a set of elementsS =
A1, A2, . . . , An andm subsets of these elementsC1, C2, . . . ,



Cm, the objective is to findk subsets that cover as many elements
in S as possible. Given such an instance, we construct the fol-
lowing Integral Deterministic Kinetically Stable Task Assignment
problem:
List of microserver and task nodes:

1. For every elementAj ∈ S and every subsetCi, if Aj ∈ Ci,
there is one microserver nodeSi,j and one task nodeKi,j .

2. There arem ‘link’ microserver nodesSlink,1, Slink,2, . . . ,
Slink,m andm ‘link’ task nodesKlink,1, Klink,2, . . . ,Klink,m.

3. There arek pairs of ‘set’ microserver and task nodesSset,1,
. . . ,Sset,k, Kset,1, . . . ,Kset,k.

4. If an elementAj appears int different subsets, then there are
t− 1 pairs of ‘element’ microserver and task nodesSelm,j,1,
Selm,j,2, . . .Selm,j,t−1, Kelm,j,1, Kelm,j,2, . . . ,Kelm,j,t−1.

Edges for Time Step1: As shown in figure 2,

1. There is an edge between every ‘set’ microserver nodeSset,i

and every ‘link’ task nodeKlink,j .

2. There is an edge between every ‘link’ microserver nodeSlink,i

and every ‘set’ task nodeKset,j .

3. There is an edge betweenSi,j andKi,j for everyAj ∈ Ci.

4. For every subsetCi, if the subsetCi contains elementsAx,
Ay, Az, then we add edges betweenKlink,i andSi,x, be-
tweenKi,x andSi,y, betweenKi,y andSi,z and between
Ki,z andSlink,i, as shown in figure 2.

5. There is an edge betweenSelm,i,j andKelm,i,j for everyi, j.

Edges for Time Step2: As shown in figure 2,

1. There is an edge betweenSi,j andKi,j for everyAj ∈ Ci.

2. There is an edge betweenSelm,j,x andKi,j for everyi, j, x.

3. There is an edge betweenKelm,j,x andSi,j for everyi, j, x.

4. There is an edge betweenSlink,i andKlink,i for everyi.

5. There is an edge betweenSset,i andKset,i for everyi.

In the above construction, the only common edges between time
1 and time 2 are the edges betweenSi,j andKi,j for everyi, j. In
a perfect matching for time = 1, the ‘set’ microserver nodes will be
paired with exactlyk ‘link’ task nodes. Hence there are exactlyk
valuesi1, i2, . . . , ik such that the edge betweenSix,j andKix,j

is used. At time = 2, we can get a perfect matching between mi-
croserver nodes and task nodes, if and only if for every element
Aj , there is exactly one edge betweenSi,j andKi,j being used in
the matching. So we can haveM edges commonly used in the two
perfect matchings if and only if we can findk subsetsCi1 , Ci2 , . . . ,
Cik such that these subsets coverM elements in the setS.

Figure 2: The construction of the NP-Completeness proof.

3.2 Multicommodity Flow Linear Program For-
mulation

The above negative result leads us, for now, to relax the require-
ment that tasks be assigned integrally. In some settings, splitting a
task across multiple microservers may indeed be reasonable. Under
this assumption, we can write the problem as a linear program us-
ing a multicommodity flow formulation. In this formulation, there
is a nodevit for everyi ∈ N, t ∈ T . All commodities originate
from the same source nodes and the destination for all commodi-
ties is sink nodēt. There are edges from nodes to nodesvi1 for
all i ∈ N , from vit to vjt′ only if time t′ follows time t, and
edges from nodesviT ,∀i ∈ N to the sinkt̄. The linear program
uses non-negative variablesxk

ijt to indicate whether or not taskk
is moved from microserveri to j at time stept. With a slight abuse
of notation, if the time is zero (orT ), then the source (or sink), is
considered the microserver for that time slot. The cost of migrating
taskk from microserveri ∈ N at time stept to microserverj ∈ N
at time stept + 1 is denotedck

ijt. We setck
ijt to 0 if i = j or if

eitheri or j is the source or sink, and the cost is1 otherwise. An
emergency node is used if a complete matching does not exist. The
cost of using the emergency node is set to be prohibitively expen-
sive, ensuring a maximum matching is chosen at every time step.
We assume that infeasible indicator variables are zero (i.e. if task
k cannot be monitored by microserverj at itemt, then∀i ∈ N ,
xk

ijt = 0 andxk
ji(t+1) = 0). The linear program can be written:

min
X
kijt

ck
ijtx

k
ijt (1)



Figure 3: Illustration of an integrality gap of 2.

∀i ∈ N, t ∈ T
X
kj

xk
ijt ≤ cap(i)

∀i ∈ N, i 6= s, t̄, t ∈ T, k ∈ K
X

j

xk
ijt −

X
j

xk
ji(t−1) = 0

for source nodes,∀k
X

i

xk
si0 = 1

3.3 Integrality
The linear programming formulation given above can only be

used if the solution can be fractional (i.e. the monitoring of a task
can be split so that microservers monitor fractional portions of the
tasks). Though this may be acceptable for specific applications, if
we require an integral solution, there is the possibility that the solu-
tion generated by the LP will be fractional and therefore infeasible.
We now show that, in fact, there exist scenarios where the opti-
mum fractional solution is twice as good as any optimum integral
solution.

We illustrate this integrality gap of2 in the example of Figure 3.
In the first time step, without loss of generality, let us assume we
assign taskk1 to microservers1, taskk2 to the microservers2, and
taskk3 to microservers3. In the second time step, if we require
an integral solution, either taskk1 stays assigned to microservers1
andk2 andk3 switch, or taskk3 stays assigned to microservers3
and tasksk1 andk2 switch. Either way, two tasks must migrate. If
we allow fractional assignments though, then each microserver can
monitor half of both the tasks it covers initially. In the second time
step, half of taskk1 migrates from microservers3 to microserver
s2 and half of taskk2 migrates from microservers2 to microserver
s3, for an optimum total of1 migration — twice as good as when
the solution was required to be integral.

4. PROBABILISTIC KINETICALLY STABLE
TASK ASSIGNMENT

In the Probabilistic Kinetically Stable Task Assignment prob-
lem, the goal is to use the previous assignment andprobabilistic
information about future movement of the tasks to minimize the
expected number of times tasks migrate between microservers. As
opposed to the deterministic case, there is only probabilistic infor-
mation about the future microservers that will be available to cover
a specific task.

4.1 Motivating Examples
We now give examples that will motivate the need for using

probabilistic information about task trajectories to determine the
current assignment. There are three types of scenarios in which
future probabilistic information is useful. First, there are situa-
tions where the number of matchings available for the algorithm
to choose from decreases over time. Second, situations arise when
there is contention for a microserver, and this contention forces a

Figure 4: As the tasks move outward, lack of foreknowledge
leads to additional migrations.

choice that will be detrimental in the future. Finally, there are sit-
uations where future information can allow us to anticipate which
microserver will be most useful later on. For the first two scenarios,
we give an extreme example to emphasize the drastic implications
of future knowledge, and a more realistic example to show that
these scenarios may actually occur often in practice.

• Dwindling Options. Consider a complete(K, N) bipartite
graph withK = N . In the first time step, we choose an arbi-
trary matching. In the next time step, all edges in the bipartite
graph remain except the edges from the matching chosen in
the previous time step. We continue this process forN time
steps, and at each time step all tasks are required to migrate.
We know that a perfect matching will exist at every time step
from [8], leavingK2 total migrations. In contrast, had the
edges in all future time steps been known in advance, then
the matching remaining in the last time step could have been
chosen first, resulting in zero total migrations.

Although compelling because of the dramatic advantage ob-
tained due to future knowledge, the previous example is not
particularly realistic. Figure 4 depicts a more realistic sce-
nario. The trajectories of the tasks are illustrated with bold
arrows. In the first time step, all tasks are situated at the cen-
ter. Every microserver can monitor every task and, therefore,
any assignment can be chosen from amongst all5! possibil-
ities. In the second time step, there are13 possible match-
ings since every task can now only be monitored by3 mi-
croservers. Finally, at Time 3, there is only one single possi-
ble matching of tasks to microservers. An algorithm that has
no knowledge about the task trajectories will choose a match-
ing uniformly at random from all5! possibilities in Time1.
At Time 2, the algorithm will choose a matching from all13
possibilities that avoids as many migrations as possible. For
each of the13 possibilities, the expected number of migra-
tions is at least2 since the probability that a task is no longer
capable of being monitored by a microserver is2

5
, and match-

ing requirements only decrease the likelihood that a task can
continue to be monitored by the microserver from Time1.
Furthermore, each of the13 possibilities is equally likely to
be chosen. At Time3, averaging over all13 choices in the
previous time step, the expected number of migrations is40

13
.

The above example can be duplicated an arbitrary number
of times, resulting in66K

13
expected migrations over2 time

steps compared with zero optimum migrations.

• Contention. If many tasks can be assigned to a microserver,
but only a few tasks will benefit from that assignment in the
future, then the multitude of contenders for service creates
a situation where future knowledge is beneficial. To illus-
trate this, we considern tasksk1, k2, ...kn, 2n microservers



s1, s2, ..., s2n, andn time steps.∀i such that2 ≤ i ≤ n,
taskki can be assigned to microserversi in all time steps.
Microservers1 can monitor all tasks in all time steps. In
addition, taskk1 can be monitored by microserversn+t at
time t. The optimum solution that knows the trajectories of
the tasks will assign every taskki to microserversi and in-
cur no migrations. If the future trajectories of the tasks are
not known in advance, then initially there aren + 1 possi-
ble matchings (whenk1 is assigned tos1 there is1 possible
matching and whenk1 is assigned tosn+1, sensors1 can be
unassigned or assigned any of the othern−1 tasks). There is
no way to discern which matching to choose, and ifs1 mon-
itors a task other thank1 initially, then at each consecutive
step the matching that requires the least migrations is to mi-
grate only taskk1 resulting in a total ofn migrations (one at
each time step).

A more common example of where contention pushes the
choice of the assignment in the wrong direction is given in
Figure 5. Each microserver monitors the rectangle of which
it is the center. Initially, the taskk1 is monitored by the mi-
croservers5 and taskk2 is monitored by the microserver
s1. Both tasks move out of range and must be reassigned
ofter two time steps. The movement is indicated with the
black arrows. In the future, the tasks will continue to move
in the same direction and the optimum assigns the taskk1
to microservers2 and taskk2 to microservers3. However,
contention for the microserverss2 ands3 push the taskk1
assignment in the wrong direction. Out of the four possi-
ble matchings, two assign taskk1 to microservers4, so this
is the most probable assignment, resulting in an increase in
expected migrations compared with the optimum.

• Anticipation An even more common example is a car mov-
ing along a path at an even pace with microservers spaced
evenly along the path. Precisely, there is a line of microservers,
S1, S2, ...Sk, and if the task can be monitored by microservers
Si andSi+1 at timet, then it can be monitored by microservers
Si+1 andSi+2 at timet + 1. If the algorithm knows the tra-
jectory in advance, it will migrate once every two time steps.
If the algorithm has no advance knowledge about the direc-
tion the car will follow, it must make a random choice be-
tween the two options available every time the task moves
out of sensing range. The expected number of migrations
at timet, E[t], is the probability that the microserver mon-
itoring at timet − 1 was microserverSt−1. Let ht be the
number of events ending with microserverSt monitoring the
task at timet. Thenht can be defined by the recursive for-
mulaht = ht−1 + ht−2, since monitoring can be transfered
from previous timet − 1 or t − 2. The probability that mi-
croserverSt monitors the task at timet is ht

ht+ht−1 , which

in the limit, ast approaches∞, approaches φ
φ+1

≈ .618,
whereφ is the golden ratio. The increase in migrations is
approximately20%.

4.2 Multicommodity Flow (MCF) Algorithm
Given current timet, we find a matching for the bipartite graph

of the current time stepBt = (K, N, Et) and the bipartite graphs
for all future time steps. The value of the matching is the time-
discounted1 number of migrations within a time window plus the

1By time discounted, we mean that migrations that are in the near
future are more costly that those in the distant future.

Figure 5: Additional migrations due to contention.

time-discounted likelihood that the matching will be possible. Let
pr(k, j, t) be the probability that taskk can be assigned to mi-
croserverj at timet and let0 < β < 1 be some time discount-
ing factor. LetC be a predefined constant. Precisely, the objective
function minimized is:

ck
ijt =

8<: 1000 ∗K ∗ T if j is emergency node
(−log(pr(k, j, t)− ε))(βt) if j = i
(C +−log(pr(k, j, t)− ε))(βt) otherwise

This objective function can be explained with a generative model.
Consider each task as an agent working on its own behalf with
no concern for the constraints of the overall system (i.e. the mi-
croserver capacities). Then the probability that a task will choose a
given trajectory is the product of probabilities that the choice was
available and that it was the best option at that time. Taking the
log we have the sum of migrations that occur plus the sum of the
log of probabilities along that edge. We can think of the objective
function as trying to let as many tasks choose as they please subject
to the capacities of the microservers.

An appealing property of the multicommodity flow algorithm is
that it approaches the optimum as certainty about the trajectories
increases. It also plans for future assignment constraints to avoid
additional migrations due to the maximum matching requirement.
It solves a linear program withN2WK variables andΘ(KNW )
constraints. The solution can be computed quickly using commer-
cial linear programming software such as CPLEX.

4.3 Matching Algorithm
Given current timet, we find a maximum matching of minimum

cost for the bipartite graphBt = (K, N, Et) where the cost of an
edgek, n in this matching is

ck
n =


1000 ∗K ∗ T if n is the emergency node
−

PT
t=1(β

t)pr(k, n, t) otherwise

The matching algorithm is an attractive algorithm because of
its simplicity and because it is fast. It can be solved using stan-
dard centralized algorithms with running timeΘ(max(K, N)3 +
KNW ) (recall thatW is the size of the look-ahead window). Also,
there are several possible distributed implementations [4, 2, 6, 7]
that can be adapted to our setting.

4.4 Examples for Comparison
The MCF Algorithm Outperforms the Matching Algorithm

The multicommodity flow algorithm performs better than the
matching algorithm when the choice of edges in the future is heav-
ily dependent on the existence of a matching that contains those
edges. This concept is illustrated with an example in Figure 6.
Both algorithms have complete knowledge of the next time step.
There is only one matching in the second time step and it con-



Figure 6: Example where the multicommodity flow algorithm
outperforms the matching algorithm.

Figure 7: Example where the matching algorithm outperforms
the multicommodity flow algorithm.

tains bold edges(k1, s3), (k2, s1), and(k3, s2). The MCF algo-
rithm will choose the dotted matching(k1, s1)(k2, s3)(k3, s2) be-
cause it is the matching that requires the fewest migrations overall.
The matching algorithm will choose the dashed matching(k1, s1),
(k2, s2),(k3, s3) because2 edges in this set are also present in the
next time step and therefore the cost of the matching is−2. Alter-
natively, the dotted matching(k1, s1)(k2, s3)(k3, s2) has a more
expensive cost of−1.

Matching Algorithm Outperforms the MCF Algorithm
The multicommodity flow algorithm is especially vulnerable in

situations where the existence of aparticular matching is not likely,
but there is a high probability thatsomematching with a particular
set of edges will exist. Figure 7 illustrates this vulnerability. In the
second time step, the horizontal double lines exist with probabil-
ity .9, the bold edges exist with probability.1, and all other edges
exist with probability10−x. The multicommodity flow algorithm
evaluates the matching in time step1 made up of dashed edges as
having cost(w + 1)(−log 1

10
) = w + 1. The matching consisting

of dotted edges has costw(−log 9
10

) − log10−x = .046w + x.
For sufficiently largex, the matching with dashed edges is less ex-
pensive and the algorithm will choose this matching. However, the
matching made up of dotted edges will have fewer migrations in
expectation because each of the horizontal edges in time step2 is
highly likely, and the probability thatsomeedge connects nodeu
to one of the firsty microservers is(1 − 10−x)y, which could be
arbitrarily close to1 for largey. In contrast, the matching algo-
rithm will prefer the dotted matching at cost−9

10
w− 1−x, which is

smaller than−1
10

(w + 1).

5. SIMULATIONS

5.1 Problem Instances
A problem instanceconsists of

• Problem Parameters: Problem parameters include a set of
locationsP , a set of tasksK, and a set of microserversN .
The number of time steps that tasks will have to be monitored
in the future is denotedT . The time windowW is the num-
ber of time steps in the future that the algorithm considers
when determining its matching in the current time step.

• Markov Chains: We use a Markov chain to represent the
probabilistic information known about task movement. There
is a state for each discrete location where a task can be placed,
and a transition probability from states to s′ represents the
probability that the task will move to the location that cor-
responds with states’ in the next time step, given that it is
located at the location that corresponds to statess in the cur-
rent time step. There is a separate transition matrix defined
for each task, but the set of states over which the transition
matrix is defined is consistent between tasks. There is aP
by P transition matrixM for every taskk ∈ K such that
Mk(i, j) is the probability that taskk moves to locationi in
the next time step if it is at locationj in the current time step.

• Microserver Coverage:Each microserver covers some sub-
set of locations, and has the ability to monitor any task at a
location it covers. The microserver coverage is represented
with aP by N matrixC such thatC(i, j) = 1 if microserver
j covers locationi, and equals zero otherwise.

• Microserver Capacities: Each microserver has a capacity
limiting the number of tasks it can monitor in a single time
step. The capacity values are stored in anN length vector
cap, wherecap(i) equals the capacity of microserveri.

• Initial Assignment: A K by N matrixA whereA(i, j) = 1
iff microserverj monitors taski initially.

• Trajectories: The actual trajectory taken by each task is held
in a P by K by T matrix J whereJ(i, j, t) = 1 iff task j
is located at locationi at timet. In Figure 8, the trajectories
of 4 tasks (indicated by the colored arrows) over4 time steps
(time starts at the tail of the arrow and ends at the head) is
shown.

An algorithm for the task assignment problem will determine an
assignment of tasks to microservers at each of several time steps.
It is given time invariant input:M , cap, C, andT . These inputs
do not change throughout the course of the simulation. In addition,
there are several inputs to the algorithm that will change during the
simulation including the initial assignment. Information about the
future trajectories of the tasks is hidden from the algorithm. The
algorithm can only use the Markov Chains to predict trajectories.

5.2 Baseline Settings
Unless otherwise indicated, the settings for our simulations are

shown in the table below. In Figure 9 we see the Markov chain
used by the baseline settings and also the microservers along with
the locations they cover.



Figure 8: Task trajectory through a Markov Chain.

Component Baseline Setting
Total TimeT 16
Time Window
W

4

LocationsP 16
Time Discount
β

.8

Cost Constant
C

1

Microservers
N

4

Capacitiescap Each microserver has capacity1.
TasksK 4
Initial Assign-
ment

An arbitrary maximum matching of tasks to
servers chosen at the start of the simulation.

Microserver
Coverage

There is a microserver at every location on
the grid with even row and column indices.
A microserver covers its location, its neigh-
bors, and if it exists, the location at its right
and bottom diagonal. There is also an emer-
gency microserver covering all locations.

Markov Chain
Topology

Locations are arranged in a grid and every
task has the same Markov chain topology.
Every location has either4 neighbors (if it is
internal),3 neighbors (if it is along an edge),
or 2 neighbors (if it is on a corner). Every
location is a neighbor of itself (i.e. all loca-
tions have self loops).

Markov Chain
Probabilities

The skew, γ = .5, signifies that one neigh-
bor is transitioned to with probabilityγ +

(1−γ)

neighborsand all other are transitioned to

with probability (1−γ)

neighbors. The chosen

neighbor is selected uniformly at random
from all neighbors and is the same for all
tasks.

5.3 Results
In the simulations, although the multicommodity flow algorithm

did produce some fractional solutions, fractional solutions were
rare. Less than1

500
of the solutions were fractional and of these, all

were half integral. Since fractional solutions were rare, the simula-
tions analyzed in this section are based solely on integral solutions.

Figure 9: Locations, transition probabilities, and microservers.

An algorithm’s performance is measured by the number of mi-
grations it performs. We usegOPT , gMatch, andgMCF to de-
note the number of migrations in each respective algorithm. The
percentage increase in migrations (

galg−gOP T

gOP T
) compares each al-

gorithm against the optimum. The number of migrations is most
meaningful relative toC, the number of tasks thatcanbe covered
(i.e. the sum, over all time steps, of the maximum matchings in the
bipartite graphs). The weighted number of migrations is the migra-
tions divided byC. All data is averaged over10 problem instances.
The random variables used to create the problem instance will be
chosen anew for each trial. We observe changes in performance as
the value of certain components in the baseline are varied.

Variation in Quantity of Tasks
There is a large percentage increase in the number of migrations as
the number of tasks in the system is varied from2 to 18 by incre-
ments of4 as shown in Figure 10. The average percentage increase
in migrations compared with the optimum increases from.06 to
.5 for the multicommodity flow algorithm and from.07 to .47 for
the matching algorithm. This may be attributed in part to the de-
crease in the overall number of migrations. However, this does not
account for the difference entirely, since the number of additional
migrations in the MCF and Matching algorithms increases, even
as the overall migrations decreases. The decrease in performance
is attributed to the additional option that are available to the opti-
mum. The more tasks available, the more likely it is that there will
be tasks (known only by the optimum) that require less migrations.
As there are more options, having full knowledge of these options
becomes more valuable.

Observe in Figure 11 that there is an increase in the overall num-
ber of switches as the number of tasks increases from1 to 8. De-
spite there being the same tasks with the same trajectories present
in the variation with8 tasks as the variation with only1 task, the
algorithm cannot simply apply the same solution as was used in the
variation with1 task since it isrequired to monitor as many tasks
as possible. The total number of tasks that must be monitored at
each time step increases as the maximum matching in each time
step increases, pushing up the number of migrations.

Skew Variation



Figure 10: Variable quantity of tasks on the system’s capacity.
Tasks far exceed microserver capacity.

Figure 11: System capacity remains constant while the number
of tasks varies. Tasks increase to twice the microserver capac-
ity.

Simulations varying the skew parameter are graphed in Figure 12
and Figure 13. In these simulations, the total time is12 and the
time windowW was set equal to the remaining time left until the
end of the total time so that the algorithms could make full use of
all knowledge about the future. As expected, there is a dramatic
improvement in performance as the skew increases since the prob-
abilistic information more accurately reflects the true trajectories
of the tasks. The improvement in performance for the multicom-
modity flow algorithm is more pronounced, decreasing a full10%
from .11 to .47. In the extreme, when full information about the
trajectories is known in advance, the multicommodity flow linear
program performs exactly the same optimization as the linear pro-
gram from the deterministic scenario. The simulations suggest that
as the certainty in the probabilities increases, the correspondence
between the two LP formulations becomes more advantageous.

Variation in Microserver Radius
In Figure 14, there is a spike in the average percentage increase in
migrations when the radius is2. This may be because the prob-

Figure 12: Percentage increase in migrations as a function of
variation in skew

Figure 13: Total migrations as a function of variation in skew

Figure 14: Variation in microserver radius

lem is most constrained when the radius is around2, since this is
the smallest radius for which the area is mostly covered. The multi-
commodity flow algorithm performs better in the more constrained,
challenging problem settings.

6. CONCLUSION
We studied the Kinetically Stable Task Assignment problem us-

ing two heuristics that take the knowledge of future trajectories into
account. The results show that as the knowledge of the trajecto-
ries become stronger, both heuristics perform better, but the MCF
algorithm improves more than the matching algorithm. When fu-
ture knowledge is weak, the matching algorithm is a better choice.
Since it is less complex and is amenable to distributed implemen-
tation, we suggest using the matching algorithm unless the future
trajectories of the objects are clear. Also, the matching algorithm is
guaranteed to produce an integral solution, whereas the MCF solu-
tion may be fractional.

Figure 15: Variation in microserver radius



A particularly attractive option for distributing the matching al-
gorithm over the microservers is the reverse auction for asymmetric
assignment problems due to [6, 7]. This auction is well suited for
a fast and distributed implementation in our setting because of its
accelerated convergence time in simulations [7]. In our context, we
do not assume that the tasks have computational power. Therefore,
a microserver will serve as a proxy for the tasks it can monitor.
For each task there will be some sort of election from amongst the
servers that are candidates (perhaps using ID numbers), so that each
task is processed by only one server. In the auction algorithm, each
task (server) must communicate with every adjacent server (task).
With our proxy system, this communication is achieved by a server
broadcasting to twice the distance it monitors, so that it reaches all
other servers that can monitor the task. Once the proxies have been
established, the servers proceed in implementing the forward auc-
tion described in [6], assigning tasks to servers. We assume that
every server has information about the probability that in the fu-
ture it will be able to cover the tasks it can currently be assigned to
(and therefore the weights of relevant edges is known). When all
of server A’s tasks have been assigned and no changes made over
several time periods, a ‘finished’ message is sent to the coordinator
with the smallest price for every server that has been assigned to
a task proxied by A. If during the course of the auction one of the
tasks is reassigned to a new server, server A sends a ‘processing’
message to the coordinator. When the coordinator has received fin-
ished messages from all servers and no changes have been made for
several time periods, the auction is deemed to have completed. The
coordinator now computes the min price over all assigned servers,
and broadcasts this value as it is essential knowledge for the next re-
verse phase of the auction. Once the servers have received the min
price, they proceed with the reverse auction. To detect termination,
every server sends another ‘finished’ message to the coordinator
once their price is sufficiently low. Note also that the matching
problems we are solving at successive time steps are highly corre-
lated (the respective windows overlap in all but one position). We
may be able to take advantage of this fact to initialize the auction
algorithm so that termination occurs quickly.

We leave as future work the exploration of the auction algo-
rithm or other distributed implementations of the matching algo-
rithm and the multicommodity flow algorithm [4, 2]. There is also
future work to be done on the theoretical aspects of the Determin-
istic Kinetically Stable Matching Algorithm, including refining the
integrality gap, explaining why fractional optimal solutions appear
only very rarely, and designing algorithms with theoretical approx-
imation guarantees. The probabilistic formulation can also benefit
from a deeper understanding of the correlations in the presence of
microserver-task edges across successive time steps. We expect
that this will further demonstrate the advantage of being able to
look ahead and perform microserver assignments taking future po-
sitions of the tasks into account.
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