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Abstract. We propose algorithms for maintaining two variants ofkd-trees of a
set of moving points in the plane. A pseudokd-tree allows the number of points
stored in the two children to differ. An overlappingkd-tree allows the bounding
boxes of two children to overlap. We show that both of them support range search
operations inO(n1/2+ε) time, whereε only depends on the approximation preci-
sion. When the points move, we use event-based kinetic data structures to update
the tree when necessary. Both trees undergo only a quadratic number of events,
which is optimal, and the update cost for each event is only polylogarithmic. To
maintain the pseudokd-tree, we make use of algorithms for computing an ap-
proximate median level of a line arrangement, which itself is of great interest. We
show that the computation of the approximate median level of a set of lines or line
segments, can be done in an online fashion smoothly, i.e., there are no expensive
updates for any events. For practical consideration, we study the case when there
are speed limit restrictions or smooth trajectory requirements. The maintenance
of the pseudokd-tree, as a consequence of the approximate median algorithm,
can also adapt to those restrictions.

1 Introduction

Motion is ubiquitous in the physical world. Several areas such as digital battlefields,
air-traffic control, mobile communication, navigation system, geographic information
systems, call for storing moving objects into a data structure so that various queries on
them can be answered efficiently; see [24, 26] and the references therein. The queries
might relate either to the current configuration of objects or to a configuration in the
future — in the latter case, we are asking to predict the behavior based on the current
information. In the last few years there has been a flurry of activity on extending the
capabilities of existing database systems to represent moving-object databases (MOD)
and on indexing moving objects; see, e.g., [15, 23, 24]. The known data structures for
answering range queries on moving points either do not guarantee a worst-case bound
on the query time [27, 26, 20] or are too complicated [1, 16].

In this paper we develop kinetic data structures forkd-trees, a widely used data
structure for answering various proximity queries in practice [10], which can efficiently
answer range queries on moving points. Originally proposed by Baschet al. [5], the
kinetic data structureframework has led to efficient algorithms for several geometric



problems involving moving objects; see [14] and references therein. The main idea
in the kinetic framework is that even though the objects move continuously, the rele-
vant combinatorial structure of the data structure changes only at certain discrete times.
Therefore one does not have to update the data structure continuously. Thekinetic up-
datesare performed on the data structure only when certainkinetic eventsoccur; see [5,
14] for details.

Recall that akd-tree on a set of points is a binary tree, each nodev of which is
associated with a subsetSv of points. The points inSv are partitioned into two halves
by a vertical or horizontal line atv and each half is associated with a child ofv. The
orientation of the partition line alternates as we follow a path of the tree. In order to
develop a kinetic data structure forkd-trees, the first step is to develop a kinetic data
structure for maintaining the median of a set of points moving on a line. In fact, this
subroutine is needed for several other data structures. The second problem that we study
in this paper is thus maintaining the median of a set of moving points.

Related work. The problem of maintaining the point of rankk in a setS of points
moving on thex-axis is basically the same as computing thek-level in the arrangement
of curves; thek-level in an arrangement ofx-monotone curves is the set of edges of
the arrangement that lie above exactlyk curves [4]. If the points inS are moving with
fixed speed, i.e., their trajectories are lines in thext-plane, then the result by Dey [11]
implies that the point of rankk changesO(nk1/3) times; the best-known lower bound is
neΩ(

√
log k) [25]. Only much weaker bounds are known if the trajectories of points are

polynomial curves. Edelsbrunner and Welzl [13] developed an algorithm for computing
a level in an arrangements of lines. By combining their idea with kinetic tournaments
proposed by Baschet al. [6] for maintaining the maximum of a set of moving points on
a line, one can construct an efficient kinetic data structure for maintaining the median
of set of moving points.

Since no near-linear bound is known on the complexity of a level, work has been
done on computing an approximate median level. Aδ-approximate median-level is de-
fined as ax-monotone curve that lies between(1/2 − δ)n- and (1/2 + δ)n-levels.
Edelsbrunner and Welzl [13] showed that aδ-approximate median level with at most
dλ(n)/(δn)e edges, whereλ(n) is the number of vertices on the median level of the
arrangement, can be computed for line arrangements. Later Matoušek [17] proposed
an algorithm to obtain aδ-approximate median level with constant complexity for an
arrangement ofn lines. However no efficient kinetic data structure is known for main-
taining an approximate median of a set of moving points.

Because of their simplicity,kd-trees are widely used in practice and several variants
of them have been proposed [3, 7, 18]. It is well known that akd-tree can answer a
two-dimensional orthogonal range query inO(

√
n + k) time, wherek is the number

of points reported. Variants ofkd-trees that support insertions and deletions are studied
in [19, 9]. No kinetic data structures are known forkd-trees.

Agarwalet al. [1] were the first to develop kinetic data structures for answer range
searching queries on moving points. They developed a kinetic data structure that an-
swers a two-dimensional range query in optimalO(log n+k) time usingO(n log n/(log log n))
space, wherek is the output size. The amortized cost of a kinetic event isO(log2 n),



and the total number of events isO(n2).3 They also showed how to modify the structure
in order to obtain a tradeoff between the query bound and the number of kinetic events.
Kollios et al. [16] proposed a data structure for range searching among points moving
on thex-axis, based on partition trees [3]. The structure usesO(n) space and answers
queries inO(n1/2+ε+k) time, for an arbitrarily small constantε > 0. Agarwalet al.[1]
extended the result to 2D. Unlike kinetic data structures, these data structures are time
oblivious in the sense that they do not evolve over time. However all these data struc-
tures are too complex to be used in practice.

In the database community, a number of practical methods have been proposed for
accessing and searching moving objects (see [27, 26, 20] and the references therein).
Many of these data structures index the trajectories of points either directly or by map-
ping to higher dimensions. These approaches are not efficient since trajectories do not
cluster well. To alleviate this problem, one can parametrize a structure such as the R-
tree, which partitions the points but allows the bounding boxes associated with the chil-
dren of a node to overlap. To expect good query efficiency, the areas of overlap and the
areas of the bounding boxes must be small. Although R-tree works correctly even when
the overlap areas are too large, the query performance deteriorates in this case. Kinetic
data structure based on R-tree were proposed in [26, 21] to handle range queries over
moving points. Unfortunately, these structures also do not guarantee sublinear query
time in the worst case.

Our results. Let S = {p1, . . . , pn} be a set ofn points inR1, each moving indepen-
dently. The position of a pointpi at timet is given bypi(t). We usēpi =

⋃
t(pi(t), t) to

denote thegraphof the trajectory ofpi in thext-space. The user is allowed to change
the trajectory of a point at any time. For a given parameterδ > 0, we call a point
x, not necessarily a point ofS, a δ-approximate medianif its rank is in the range
[(1/2 − δ)n, (1/2 + δ)n]. We first describe an off-line algorithm that can maintain
a δ-approximate median ofS in a total time ofO((t/(n2δ2) + 1/δ)n log n), wheret is
the number of times two points swap position. We then show how aδ-median can be
maintained on-line as the points ofS move. Our algorithm maintains a pointx∗ on the
x-axis, not necessarily one of the input points, whose rank is in the range(1/2±δ)n. As
the input points move,x∗ also moves, and its trajectory depends on the motion of input
points. We show that the speed of this point is not larger than the fastest moving point,
and that our algorithm can be adapted so that the trajectory ofx∗ is Ck-continuous for
anyk ≥ 0.

Next, let S be a set ofn points inR2, each moving independently. We wish to
maintain thekd-tree ofS, so thatrange searchingqueries, i.e., given a query rectangle
R at timet, report|S(t) ∩ R|, can be answered efficiently, Even if the points inS are
moving with fixed velocity, thekd-tree onS can changeΘ(n2) times, and there are
point sets on which many of these events can cause a dramatic change of the tree, i.e.,
each of them requiresΩ(n) time to update the tree. We therefore propose two variants of
kd-trees, each of which answers a range query in timeO(n1/2+ε + k), for any constant

3 Agarwalet al. [1] actually describe their data structure in the standard two level I/O model, in
which the goal is to minimize the memory access time. Here we have described their perfor-
mance in the standard pointer-machine model.



ε > 0, (k is the number of points reported), processes quadratic number of events, and
spends polylogarithmic (amortized) time at each event. The first variant is called the
δ-pseudokd-tree, in which if a node hasm points stored in the subtree, then each of
its children has at most(1/2 + δ)m points in its subtree. In the second variant, called
δ-overlappingkd-tree, the bounding boxes of the points stored in the subtrees of two
children of a node can overlap. However, if the subtree at a node containsm points,
then the overlapping region at that node contains at mostδm points.

As the points move, both of the trees are maintained in the standard kinetic data
structure framework [5]. The correctness of the tree structure is certified by a set of
conditions, calledcertificates, whose failure time is precomputed and inserted into an
event queue. At each certificate failure, denoted as anevent, the KDS certification repair
mechanism is invoked to repair the certificate set and possibly the tree structure as well.
In the analysis of a KDS, we assume the points followpseudo-algebraic motions. By
this we mean that all certificates used by the KDS can switch fromTRUEto FALSEat
most a constant number of times. For both pseudo and overlappingkd-trees, we show
that the set of certificates has linear size, that the total number of events is quadratic,
and that each event has polylogarithmic amortized update cost. Dynamic insertion and
deletion, is also supported with the same update bound as for an event.

The pseudokd-tree data structure uses ourδ-approximate median algorithms as
a subroutine. Unlike pseudokd-trees, the children of a node of an overlappingkd-
tree store equal number of points and the minimum bounding boxes of the children
can overlap. However, maintaining overlappingkd-trees is somewhat simpler, and the
analysis extends to pseudo-algebraic motion of points.

2 Maintaining the Median

2.1 Off-line maintenance

Matoǔsek [17] used a level shortcutting idea to find a polygonal line with complexity
O(1/δ2) and proved it is aδ-approximate median. Here we extend it to the case of a set
S of line segments in the plane.

We divide the plane by vertical linesli’s into strips such that inside each strip there
are at mostδ2n2/16 intersections and at mostδn/4 endpoints. In addition, we can as-
sume that each strip either has exactlyδ2n2/16 intersections or exactlyδn/4 endpoints,
otherwise we can always enlarge the strip. The number of strips isO(t/(n2δ2) + 1/δ).
Along eachli, we compute the medianXi of the intersections betweenS and li. We
connect adjacent medians and the polygonal line is aδ-approximate median level. Con-
sider a strip bounded byli and li+1. We first delete the segments ofS that have at
least one endpoint inside the strip. LetU ⊆ S be the set of line segments that intersect
the segmentXiXi+1 and that lie aboveXi at li. Similarly let V ⊆ S be the set of
line segments that intersectXiXi+1 and that lie belowXi at li. |U | = u, |V | = v.
Since bothXi andXi+1 are on the exact median level and we have deleted at most
δn/4 segments,|u − v| ≤ δn/4. W.l.o.g., assumeu ≤ v ≤ u + δn/4. Notice that
the intersection of a segment inU and a segment inV must be inside the strip, see
Figure 1 (i). We haveuv ≤ δ2n2/16. Thereforeu ≤ δn/4, v ≤ δn/2. Therefore
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Fig. 1. (i) Approximate median level ofn lines; (ii)When points change motion plan.

XiXi+1 is intersected at mostδn times, so it is aδ-approximation of the median level.
Computing the partition lineli involves computing thek-th leftmost intersection in an
arrangement. This can be done inO(n log n) time, using the slope selection algorithm
[8]. Computing a median along a cut line costsO(n). So the total computational cost is
O((t/(n2δ2) + 1/δ)n log n).

Theorem 1. A δ-approximate median level of an arrangement ofn line segments with
at mostO(t/(n2δ2) + 1/δ) vertices can be found inO((t/(nδ2) + n/δ) log n) time,
wheret is the number of intersections of the line segments.

2.2 On-line maintenance

In previous section we assume that we know the motion plan of the points beforehand
and compute the approximate median ahead of time. However, when the points change
their motion plan, we want to maintain the approximate median online and distribute
the amount of work more uniformly over time. Assume that the total number of motion
plan changes over time is only linear in the number of points. We will show that the
approximate median can be maintained smoothly, with linear number of events and
polylogarithmic time update cost per event.

A deterministic algorithm.Consider the time-space plane. As like Theorem 1, the plane
is divided by vertical linesli at timeti into strips. We maintain the invariant that each
strip either contains at mostδ2n2/36 vertices orδn/3 flight plan changes. Also if the
strip contains less thanδn/3 flight plan changes, then it contains at leastδ2n2/72 ver-
tices. We approximate the median level by computing a polygonal lineX1X2...Xm in
which Xi lies onli. We can see that the total number of strips is bounded byO(1/δ2)
since there are only linear number of flight plan changes in total.

However, instead of computing theO(1/δ2) cut lines all at one time, we compute
them one by one. We begin with computing the median on the two leftmost cut linesl1
andl2 (l1 corresponds to the starting time). There areδ2n2/72 vertices betweenl1 and
l2. The approximate median then moves along line segmentX1X2. This preprocessing
costsO(n log n). Basically we compute the position of the cut lineli+2 and the me-
dian alongli+2 gradually while we are moving alongXiXi+1. The position ofli+2 is
computed such that there areδ2n2/72 vertices betweenli+1 andli+2. SoXi+2 is our
prediction of the median onli+2, assuming there is no flight plan change betweenti+1



and ti+2. The cost of computingli+2 andXi+2, which is a slope selection problem,
will be amortized over the period betweenti andti+1, using the technique proposed by
Agarwalet al.[2]. In an online version, we need to accommodate the flight plan changes
in the future. If we seeδn/6 motion plan changes before we reachli+1, we start another
session to computeXi+2 based on the current (changed) trajectories. If we reachXi+1

before the next deltaδn/6 updates, we switch to the segmentXi+1Xi+2 computed
from the first construction. Otherwise, if we see anotherδn/6 motion plan changes be-
fore we reachli+1, then we just stop and moveli+1 to the current position.Xi+1 is also
moved to the current position of the approximate median. The next line segment that the
approximate median needs to follow isXi+1Xi+2, whereXi+2 is the value returned by
the second computation. Thus inside one strip, the number of intersections is at most
δ2n2/36, and the number of flight plan changes is at mostδn/3. Next we will prove the
polygonal line we get is aδ-approximation of the median level.

The only problem is, if some points change their flight plans between timeti and
ti+1, thenXi+1, which is computed beforeti, is no longer the real medianX ′

i+1. See
Figure 1 (ii). However, only the points betweenXi+1 andX ′

i+1 can crossXi+1Xi+2

without crossingX ′
i+1Xi+2. Since there are only at mostδn/3 flight plan changes,

there are at mostδn/3 points betweenXi+1 andX ′
i+1. SinceX ′

i+1Xi+2 is crossed by
at most2δn/3 lines,Xi+1Xi+2 is still a δ-approximation.

Theorem 2. Let S be a set ofn points, each moving with a constant velocity. Suppose
the flight paths ofS change a total ofm times. Then aδ-approximate median ofS can
be maintained in an online fashion so that the median moves continuously with at most
O(1/δ2) flight plan changes. The total maintenance cost isO((n+m) log n/δ2). Each
flight plan change costs polylogarithmic update time.

A randomized algorithm.In Theorem 2 finding the next cut line is based on some com-
plex algorithms and data structures, like slope selection. Next we propose a randomized
algorithm that computes the approximate median online with simple data structures.

Consider the time-space plane again, we choose a random sampleS′ of
√

n lines
and compute the arrangementA(S′), which costsO(n) [12]. From a standard proba-
bilistic analysis,A(S′) is a good approximation of the original arrangementA(S) of
the n lines. We compute the uniform cutting inA(S′). Then the expected number of
vertices ofA(S) inside the strip isδ2n2/72. The next cut line can be computed by
finding the nextδ2n/72-th vertex ofA(S′), which costs a total ofO(log n) time. If
the points change motion plan inside the strip, we need to update the line arrangement
A(S′). Insertion and deletion of a line in the arrangementA(S′) costO(

√
n log n).

Since a line is in the sample with probability1/
√

n, the expected update cost would be
O(log n). We can get high probability by Monte Carlo methods, i.e., taking samples
for at mostlog n times. The running time of the algorithm isO((n+m) log n/δ2) with
high probability, wherem is the total number of flight plan changes.

2.3 Approximate median with speed limit

In many applications like mobile networks and spatial databases, the maximum velocity
of the points is restricted. We’ll show an approximate median that moves no faster than
the fastest point.



Lemma 1. The approximate median computed above cannot move faster than the max-
imum speed of then points, if the points do not change flight plans.

Proof. Observe that the approximate median is composed of line segments connecting
two median pointsX andY at different time steps. So if there is a linel crossingXY
and going up, there must be another linel′ crossingXY and going down. So the slope
of XY is bounded by the slope ofl andl′. If XY is not crossed by any lines, sinceX
andY are both medians, they must be the same point which means that the approximate
median just moves along one point. This proves the lemma.

If the points can change their flight plan, our scheme in Theorem 2 does not guar-
antee that the approximate median moves within the limit restriction. But we can adjust
it as follows. We useXi andX ′

i to represent the precomputed and exact median re-
spectively. Basically we let the approximate median to move towards the precomputed
median, if we can get there, then everything is fine. Otherwise, we just move towards it
with maximum speed possible. Figure 2 (i) shows the second case. W.l.o.g., we assume
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Fig. 2. (i) Speed restricted median; (ii) Smooth medians.

Xi+1 is aboveX ′
i+1. Assume the approximate median gets to the pointX ′′

i+2 at time
ti+2. Since the approximate median moves the fastest, the points aboveXi+1 will stay
aboveX ′′

i+2. So only points betweenXi+1 andX ′
i+1, whose number is at mostδn/3,

can crossXi+1X
′′
i+2 without crossingX ′

i+1Xi+2. Following the argument in Theo-
rem 2,X ′

i+1Xi+2 is crossed by at most2δn/3 lines. SoXi+1X
′′
i+2 is aδ-approximate

median level. In addition, we can see that there aren/2 points belowX ′
i+1 andX ′

i+2

respectively. So the number of points betweenX ′′
i+2 andX ′

i+2 can only be less than the
number of points betweenXi+1 andX ′

i+1. So we can continue this scheme for the next
time step. By the analysis above, we can get the following theorem.

Theorem 3. The approximate median proposed above preserves all the properties of
Theorem 2. In addition, the approximate median cannot move faster than the maximum
speed of then points.

2.4 Smooth medians

For a set of moving points, the approximate median we computed above, follows a
polygonal line composed of line segments. Although the approximate median moves



continuously, it may have to make sharp turns. In practice, a smooth trajectory is pre-
ferred. A curve is said to haveCk continuity if itsk-th derivative is continuous.

Theorem 4. Given an arrangement ofn lines on the plane, we can compute a curve
with Ck continuity which is aδ-approximate median level. The curve is determined by
O(k2/δ2) control points and is computed inO(k2n log n/δ2) time.

Proof. The idea is to use B́ezier interpolation. Similarly we partition the plane into
4k2/δ2 strips, inside each there are at mostn2δ2/(4k2) intersections. We compute the
mediansXi (1 ≤ i ≤ 4k2/δ2) along the boundary of the strips. A curvec is computed
as a degreek Bézier curve withXi as control points.c hasCk continuity and passes
through the control pointsXik, where1 ≤ i ≤ 4k/δ2 [22]. The part ofc between
pointsXik andX(i+1)k is completely determined by the control points in between,
see Figure 2 (ii). From the variation diminishing property of the Bézier curves, if a
line intersects the polygonal line defined by the control points (called control polygon)
x times, then it intersects the Bézier curve at mostx times. Since each line segment
XjXj+1 is crossed by at mostδn/k lines, the control polygon is crossed by at mostδn
times, so is the B́ezier curve betweenXik andX(i+1)k. This proves the theorem.

3 Pseudokd-tree

3.1 Definition

Overmars [19] proposed the pseudokd-tree as a dynamic data structure that admits
efficient insertion and deletion. Aδ-pseudokd-treeis defined to be a binary tree created
by alternately partitioning the points with vertical and horizontal lines, such that for
each node withm points in the subtree, there are at most(1/2 + δ)m points in one
subtree. Aδ-pseudokd-tree is an almost balanced tree with depthlog2/(1−2δ) n. We
denote byd(u) the depth of a nodeu. With the same analysis as the standardkd-tree,
the range search query in aδ-pseudokd-tree can be done inO(n1/2+ε + k) time,k is
the number of points in the answer,ε = 1

−2 log(1/2−δ) − 1/2.

3.2 Maintaining the pseudokd-tree

One way to maintain the pseudokd-tree is to maintain thex-order andy-order sorted
lists for all the points and update the tree when a point crosses the partition line. Main-
taining the sorted lists will generateΩ(n2) events. The subtree is rebuilt if the number
of points in one child exceeds fraction1/2 + δ. Each event has an amortized update
cost ofO(log n). Or in another way, we can make use of the dynamic data structure
proposed by Overmars [19]. However, we have to maintain a forest ofkd-trees instead
of a single tree. Next we will show how to maintain a singlekd-tree with only poly-
logarithmic update cost per event without any rebuilding. In the following part of this
section, we assume the points move with constant velocity.

To maintain a pseudokd-tree, we need to maintain a hierarchical partition of the
points which always supports aδ-pseudokd-tree. Since points are inserted into or
deleted from a subtree, the trajectories of the points stored in a node are actually line



segments. Maintaining the partition line of a node involves finding the approximate me-
dian of a set of line segments. We define aδ-approximate partition lineof depthk to be
a δ-approximate median level in the arrangement of the trajectories of points stored in
the subtree of a node with depthk. Using Theorem 1, we obtain the following.

Lemma 2. A set ofδ-approximate partition lines with total complexityO( k+1
δ2α2k ) for

all the nodes in theδ-pseudokd-tree with depthk can be computed inO( (k+1)n log n
δ2α2k )

time, whereα = 1/2− δ.

Proof. A key observation is that the combination of the trajectories of all the points in
nodes of depthk is the arrangement ofn straight lines. So the total number of inter-
sections of the segments in nodes of depthk is bounded byO(n2). Assume a node of
depthk hasnk points associated with it,nk ≥ nαk, α = 1/2 − δ. Denote bysk the
total number of line segments in the nodes of depthk. Denote byck the complexity of
theδ-approximate partition lines for all the nodes of depthk. From Theorem 1, we have
thatck = O( n2

δ2n2
k
)+O( sk

δnk
). When a point crosses the partition line at a node of depth

k, it ends the trajectory in the old child and begins a trajectory in the new child. There-
fore we havesk+1 = 2ck× δnk = 2O( n2

δnk
)+2sk. By induction we getsk = O( kn

δαk ),
ck = O( k+1

δ2α2k ). The running time is bounded in the same way as in Theorem 1.

An event happens when a point crosses a partition line. Updating the pseudo tree
involves moving a point from one subtree to the other, which costslog2/(1−2δ) n. The
number of events of depthk is bounded bysk+1/2. So the total number of events
is O((n2/δ) log2/(1−2δ) n). Computing the approximate hierarchy would costO(n2)
since that is the cost of computing the arrangement ofn lines. In summary, we have

Theorem 5. For a set ofn moving points on the plane, we can find a moving hierarchi-
cal partition of the plane inO(n2) time which supports aδ-pseudokd-tree at any time.
The number of events isO((n2/δ) log2/(1−2δ) n) in total. Update cost for each event is
O(log2/(1−2δ) n).

For online maintenance, the ideas in 2.2 work for nodes of depthk as well. The
difference is, points may come in and out of the range of a node. So inside one strip the
number of intersections, endpoints of the line segments and flight plan changes should
be bounded all at the same time. The endpoints of the line segments can be treated in
the same way as the events of motion plan changes we described before. We omit the
details here.

4 Overlapping kd-tree

4.1 Definition

In the second variant of thekd-tree, the bounding boxes associated with the children of
a node can overlap. AssumeS(v) is the set of points stored in the subtree of a nodev,
B(v) is the minimum bounding box ofS(v). Defineσ(w) = B(u) ∩ B(v) to be the
overlapping regionof two childrenu andv of nodew. A δ-overlappingkd-tree is a
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Fig. 3. (i) δ-overlappingkd-tree; (ii) Only2 grandchildren ofu intersect linel.

perfectly balanced tree so that for each nodew with m points in the subtree, there can
be at mostδm points in the overlapping regionσ(w), 0 < δ < 1. Figure 3 (i) shows
the top two levels. The overlappingkd-tree has linear size and depthO(log n). (log
refers tolog2, if not specified.) We define a node to bex-partitioned (y-partitioned) if
it is partitioned by a vertical (horizontal) line. Rectangular range-search query can be
answered in the similar way as in the standardkd-tree.

Lemma 3. Let l be a vertical (or horizontal) line, and letv, w be two x-partitioned
(y-partitioned) nodes of aδ-overlappingkd-tree such thatw is a descendant ofv. If l
intersects bothσ(v) andσ(w), thend(w) ≥ d(v) + log γ, whereγ = 1−2δ

2δ .

Theorem 6. The range search query in aδ-overlappingkd-tree can be answered in
O(n1/2+ε + k) time, whereε = logγ 2, γ = 1−2δ

2δ , k is the number of points reported.

Proof. Like the standardkd-tree, the only non-trivial part is to bound the number of
nodes intersected by a vertical linel. Assume the point set is cut by a vertical line at
the top level.l intersects the rootr. Only whenl intersects the overlapping region do
we need to traverse both childrenu andv. However, ifδ is not too large, of the four
grandchildren of nodeu, at most two of them intersect linel, see Figure 3 (ii). This
property remains true when we go down the tree until we meet ax-partitioned nodew
such thatl intersectsσ(w). From Lemma 3, nodew has depth at leasth = log γ. We
then bound the number of intersected nodes from root to depthh. Notice that the number
of intersected nodes of depth2i + 1 is the same with that of depth2i, and they are both
bounded by2i+1, for 1 ≤ i ≤ h/2 − 1. The total number of intersected nodes from
depth1 to depthh is no more than2 ×∑j

i=0 2i+1 = 2j+3 = 8
√

γ . Assume the total
number of nodes intersected byl is C(n, δ). We haveC(n, δ) ≤ 2

√
γC(n/γ, δ)+8

√
γ.

By induction,C(n, δ) = O(n1/2+ε), whereε = logγ 2.

4.2 Maintaining the overlapping kd-tree

Maintaining theδ-overlappingkd-tree mainly involves tracking the number of points in
the overlapping region. Consider the root of thekd-tree, assumen points are divided
into n/2 red points andn/2 blue points by a vertical line at the beginning. W.l.o.g,



assume red points have bigger coordinates. Consider the time-space plane, the goal is
to track the depth of the lower envelope of red lines in the arrangement of blue lines,
similarly the depth of the upper envelope of blue lines in the arrangement of red lines.
An event happens when those two numbers add up toδn. So at leastδn/2 points in
the overlapping region have the same color, suppose they are red. Then the highest
blue point must be aboveδn/2 red points. We define a red-blue inversion to be the
intersection of a red trajectory and a blue trajectory. So there must be at leastΩ(δn)
red-blue inversions since the last recoloring. The total recoloring events in the root of
thekd-tree is bounded byO(n/δ), if the points follow pseudo-algebraic motion.

Since the combination of the trajectories of points in all nodes of depthk becomes
the arrangement of the trajectories ofn points, we can prove that the total recoloring
events in the nodes of depthk of the δ-overlappingkd-tree is bounded byO(n2k/δ).
Therefore the total number of events is bounded byO(n2/δ). When an event happens
at a nodeu with m points stored in the subtree, we first recolor theδm points so that red
points and blue points do not overlap, which costsδm. This may invoke the recoloring
events at the children ofu. So the total update cost is no more thanO(m log m). A
recoloring event at depthk costsO(n log n/2k). So for all the recoloring events, the
total update cost sum up toO(n2 log n/δ). The amortized cost for one event is therefore
O(log n). Putting everything together, we obtain the following.

Theorem 7. The total number of recoloring events for aδ-overlappingkd-tree forn
points with pseudo-algebraic motion isO(n2/δ). Each event has an amortized cost of
O(log n).

Acknowledgements:The authors wish to thank John Hershberger and An Zhu for numerous dis-
cussions and for their contribution to the arguments in this paper. Research by all three authors is
partially supported by NSF under grant CCR-00-86013. Research by P. Agarwal is also supported
by NSF grants EIA-98-70724, EIA-01-31905, and CCR-97-32787, and by a grant from the U.S.–
Israel Binational Science Foundation. Research by J. Gao and L. Guibas is also supported by
NSF grant CCR-9910633.

References

1. P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. InProc. Annu. ACM
Sympos. Principles Database Syst., 2000. 175–186.

2. P. K. Agarwal, L. Arge, and J. Vahrenhold. Time responsive external data structures for
moving points. InWorkshop on Algorithms and Data Structures, pages 50–61, 2001.

3. P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In B. Chazelle,
J. E. Goodman, and R. Pollack, editors,Advances in Discrete and Computational Geometry,
volume 223 ofContemporary Mathematics, pages 1–56. American Mathematical Society,
Providence, RI, 1999.

4. P. K. Agarwal and M. Sharir. Arrangements and their applications. In J.-R. Sack and J. Ur-
rutia, editors,Handbook of Computational Geometry, pages 49–119. Elsevier Science Pub-
lishers B.V. North-Holland, Amsterdam, 2000.

5. J. Basch, L. Guibas, and J. Hershberger. Data structures for mobile data.J. Alg., 31(1):1–28,
1999.



6. J. Basch, L. J. Guibas, and G. D. Ramkumar. Reporting red-blue intersections between two
sets of connected line segments. InProc. 4th Annu. European Sympos. Algorithms, volume
1136 ofLecture Notes Comput. Sci., pages 302–319. Springer-Verlag, 1996.

7. J. L. Bentley. Multidimensional binary search trees used for associative searching.Commu-
nications of the ACM, 18(9):509–517, 1975.

8. R. Cole, J. Salowe, W. Steiger, and E. Szemerédi. An optimal-time algorithm for slope
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