Kinetic Medians and kd-Trees

Pankaj K. Agarwal, Jie Gad, and Leonidas J. Guibas

! Department of Computer Science, Duke University,
Durham, NC 27708, USA
pankaj@cs.duke.edu

2 Department of Computer Science, Stanford University,
Stanford, CA 94305, USA
{jgao, guibas }@cs.stanford.edu

Abstract. We propose algorithms for maintaining two variantskdftrees of a

set of moving points in the plane. A pseullé-tree allows the number of points
stored in the two children to differ. An overlappirig-tree allows the bounding
boxes of two children to overlap. We show that both of them support range search
operations irO(n'/?*<) time, where: only depends on the approximation preci-
sion. When the points move, we use event-based kinetic data structures to update
the tree when necessary. Both trees undergo only a quadratic number of events,
which is optimal, and the update cost for each event is only polylogarithmic. To
maintain the pseudéd-tree, we make use of algorithms for computing an ap-
proximate median level of a line arrangement, which itself is of great interest. We
show that the computation of the approximate median level of a set of lines or line
segments, can be done in an online fashion smoothly, i.e., there are no expensive
updates for any events. For practical consideration, we study the case when there
are speed limit restrictions or smooth trajectory requirements. The maintenance
of the pseuddid-tree, as a consequence of the approximate median algorithm,
can also adapt to those restrictions.

1 Introduction

Motion is ubiquitous in the physical world. Several areas such as digital battlefields,
air-traffic control, mobile communication, navigation system, geographic information
systems, call for storing moving objects into a data structure so that various queries on
them can be answered efficiently; see [24, 26] and the references therein. The queries
might relate either to the current configuration of objects or to a configuration in the
future — in the latter case, we are asking to predict the behavior based on the current
information. In the last few years there has been a flurry of activity on extending the
capabilities of existing database systems to represent moving-object databases (MOD)
and on indexing moving objects; see, e.g., [15, 23, 24]. The known data structures for
answering range queries on moving points either do not guarantee a worst-case bound
on the query time [27, 26, 20] or are too complicated [1, 16].

In this paper we develop kinetic data structures Kdrtrees, a widely used data
structure for answering various proximity queries in practice [10], which can efficiently
answer range queries on moving points. Originally proposed by Beisah [5], the
kinetic data structurdramework has led to efficient algorithms for several geometric

problems involving moving objects; see [14] and references therein. The main idea
in the kinetic framework is that even though the objects move continuously, the rele-
vant combinatorial structure of the data structure changes only at certain discrete times.
Therefore one does not have to update the data structure continuouskin€tie up-
datesare performed on the data structure only when cekietic event®ccur; see [5,
14] for details.

Recall that akd-tree on a set of points is a binary tree, each nodd which is
associated with a subs8t of points. The points irf, are partitioned into two halves
by a vertical or horizontal line at and each half is associated with a childwofThe
orientation of the partition line alternates as we follow a path of the tree. In order to
develop a kinetic data structure fbid-trees, the first step is to develop a kinetic data
structure for maintaining the median of a set of points moving on a line. In fact, this
subroutine is needed for several other data structures. The second problem that we study
in this paper is thus maintaining the median of a set of moving points.

Related work. The problem of maintaining the point of rarikin a setS of points
moving on ther-axis is basically the same as computing Aklevel in the arrangement

of curves; thek-levelin an arrangement af-monotone curves is the set of edges of
the arrangement that lie above exadtlgurves [4]. If the points it are moving with
fixed speed, i.e., their trajectories are lines in thelane, then the result by Dey [11]
implies that the point of rank change®) (nk'/?) times; the best-known lower bound is
ne?(VIogk) [25] Only much weaker bounds are known if the trajectories of points are
polynomial curves. Edelsbrunner and Welzl [13] developed an algorithm for computing
a level in an arrangements of lines. By combining their idea with kinetic tournaments
proposed by Bascét al. [6] for maintaining the maximum of a set of moving points on

a line, one can construct an efficient kinetic data structure for maintaining the median
of set of moving points.

Since no near-linear bound is known on the complexity of a level, work has been
done on computing an approximate median leved-&pproximate median-level is de-
fined as ax-monotone curve that lies betwe¢h/2 — §)n- and (1/2 + §)n-levels.
Edelsbrunner and Welzl [13] showed that-approximate median level with at most
[A(n)/(0n)] edges, where\(n) is the number of vertices on the median level of the
arrangement, can be computed for line arrangements. Later B&kdu7] proposed
an algorithm to obtain a-approximate median level with constant complexity for an
arrangement of. lines. However no efficient kinetic data structure is known for main-
taining an approximate median of a set of moving points.

Because of their simplicity;d-trees are widely used in practice and several variants
of them have been proposed [3, 7, 18]. It is well known thétiaree can answer a
two-dimensional orthogonal range query@{/n + k) time, wherek is the number
of points reported. Variants éfd-trees that support insertions and deletions are studied
in [19, 9]. No kinetic data structures are known fai-trees.

Agarwalet al. [1] were the first to develop kinetic data structures for answer range
searching queries on moving points. They developed a kinetic data structure that an-
swers a two-dimensional range query in opti©élog n+k) time usingO(n log n/(loglogn))
space, wheré is the output size. The amortized cost of a kinetic ever®(i®g? n),

and the total number of events(i¥n?).2 They also showed how to modify the structure

in order to obtain a tradeoff between the query bound and the number of kinetic events.
Kollios et al. [16] proposed a data structure for range searching among points moving
on thez-axis, based on partition trees [3]. The structure U3€s) space and answers
queries inD(n'/2*< 4 k) time, for an arbitrarily small constaat> 0. Agarwalet al. [1]
extended the result to 2D. Unlike kinetic data structures, these data structures are time
oblivious in the sense that they do not evolve over time. However all these data struc-
tures are too complex to be used in practice.

In the database community, a number of practical methods have been proposed for
accessing and searching moving objects (see [27, 26, 20] and the references therein).
Many of these data structures index the trajectories of points either directly or by map-
ping to higher dimensions. These approaches are not efficient since trajectories do not
cluster well. To alleviate this problem, one can parametrize a structure such as the R-
tree, which partitions the points but allows the bounding boxes associated with the chil-
dren of a node to overlap. To expect good query efficiency, the areas of overlap and the
areas of the bounding boxes must be small. Although R-tree works correctly even when
the overlap areas are too large, the query performance deteriorates in this case. Kinetic
data structure based on R-tree were proposed in [26, 21] to handle range queries over
moving points. Unfortunately, these structures also do not guarantee sublinear query
time in the worst case.

Our results. Let S = {p1,...,p,} be a set of, points inR!, each moving indepen-
dently. The position of a point; at timet is given byp; (t). We usep; = |, (pi(t),t) to
denote thegraph of the trajectory ofp; in the zt-space. The user is allowed to change
the trajectory of a point at any time. For a given parametes 0, we call a point

x, hot necessarily a point of, a J-approximate mediaiif its rank is in the range
[(1/2 — 0)n,(1/2 4+ 0)n]. We first describe an off-line algorithm that can maintain
ad-approximate median of in a total time ofO((t/(n?62) + 1/6)nlogn), wheret is

the number of times two points swap position. We then show héwreedian can be
maintained on-line as the points 8fmove. Our algorithm maintains a point on the
x-axis, not necessarily one of the input points, whose rank is in the (arge-o)n. As

the input points mover* also moves, and its trajectory depends on the motion of input
points. We show that the speed of this point is not larger than the fastest moving point,
and that our algorithm can be adapted so that the trajectary isf C'*-continuous for
anyk > 0.

Next, let S be a set ofn points inR?, each moving independently. We wish to
maintain thekd-tree ofS, so thatrange searchingjueries, i.e., given a query rectangle
R at timet, report|S(t) N R|, can be answered efficiently, Even if the pointsSimre
moving with fixed velocity, thekd-tree onS can changed(n?) times, and there are
point sets on which many of these events can cause a dramatic change of the tree, i.e.,
each of them require@(n) time to update the tree. We therefore propose two variants of
kd-trees, each of which answers a range query in timie!/>+< 4 k), for any constant

8 Agarwalet al.[1] actually describe their data structure in the standard two level /O model, in
which the goal is to minimize the memory access time. Here we have described their perfor-
mance in the standard pointer-machine model.

e > 0, (k is the number of points reported), processes quadratic number of events, and
spends polylogarithmic (amortized) time at each event. The first variant is called the
o-pseudokd-tree, in which if a node hasn points stored in the subtree, then each of

its children has at mogil/2 + ¢)m points in its subtree. In the second variant, called
d-overlappingkd-tree, the bounding boxes of the points stored in the subtrees of two
children of a node can overlap. However, if the subtree at a node comtapwnts,

then the overlapping region at that node contains at laspoints.

As the points move, both of the trees are maintained in the standard kinetic data
structure framework [5]. The correctness of the tree structure is certified by a set of
conditions, callectertificates whose failure time is precomputed and inserted into an
event queue. At each certificate failure, denoted as/ani the KDS certification repair
mechanism is invoked to repair the certificate set and possibly the tree structure as well.
In the analysis of a KDS, we assume the points follgseudo-algebraic motion8y
this we mean that all certificates used by the KDS can switch ff®dEto FALSE at
most a constant number of times. For both pseudo and overlapgibges, we show
that the set of certificates has linear size, that the total number of events is quadratic,
and that each event has polylogarithmic amortized update cost. Dynamic insertion and
deletion, is also supported with the same update bound as for an event.

The pseuddcd-tree data structure uses otHapproximate median algorithms as
a subroutine. Unlike pseudkd-trees, the children of a node of an overlapping
tree store equal number of points and the minimum bounding boxes of the children
can overlap. However, maintaining overlappitgrtrees is somewhat simpler, and the
analysis extends to pseudo-algebraic motion of points.

2 Maintaining the Median

2.1 Off-line maintenance

Matousek [17] used a level shortcutting idea to find a polygonal line with complexity
O(1/46%) and proved it is @-approximate median. Here we extend it to the case of a set
S of line segments in the plane.

We divide the plane by vertical linégs into strips such that inside each strip there
are at most2n?/16 intersections and at moét /4 endpoints. In addition, we can as-
sume that each strip either has exaétly? /16 intersections or exactiyn /4 endpoints,
otherwise we can always enlarge the strip. The number of stripgtign?62) + 1/6).
Along eachi;, we compute the mediai; of the intersections betweefandi;. We
connect adjacent medians and the polygonal lineispproximate median level. Con-
sider a strip bounded by and/;,;. We first delete the segments Sfthat have at
least one endpoint inside the strip. LL&tC S be the set of line segments that intersect
the segmentX; X;,; and that lie aboveX; at/;. Similarly letV C S be the set of
line segments that interseat; X, ;; and that lie belowX; atl;. |[U| = u, |V| = v.
Since bothX; and X;,; are on the exact median level and we have deleted at most
on/4 segmentsju — v| < dn/4. W.l.o.g., assume < v < u + én/4. Notice that
the intersection of a segment Ih and a segment iY¥’ must be inside the strip, see
Figure 1 (i). We haveiw < §2n?/16. Thereforeu < dn/4, v < dn/2. Therefore

X; Xit1 il

li liv1 l; lis1 liva

(i) (ii)

Fig. 1. (i) Approximate median level of lines; (ii)When points change motion plan.

X;X;41 isintersected at most: times, so it is a@-approximation of the median level.

Computing the partition ling; involves computing thé-th leftmost intersection in an

arrangement. This can be done(rin log n) time, using the slope selection algorithm
[8]. Computing a median along a cut line coét&1). So the total computational cost is
O((t/(n%6%) 4+ 1/6)nlogn).

Theorem 1. A §-approximate median level of an arrangementdine segments with
at mostO(t/(n?6?) + 1/§) vertices can be found i®((t/(nd?) + n/§)logn) time,
wheret is the number of intersections of the line segments.

2.2 On-line maintenance

In previous section we assume that we know the motion plan of the points beforehand
and compute the approximate median ahead of time. However, when the points change
their motion plan, we want to maintain the approximate median online and distribute
the amount of work more uniformly over time. Assume that the total number of motion
plan changes over time is only linear in the number of points. We will show that the
approximate median can be maintained smoothly, with linear number of events and
polylogarithmic time update cost per event.

A deterministic algorithmConsider the time-space plane. As like Theorem 1, the plane
is divided by vertical lineg; at timet; into strips. We maintain the invariant that each
strip either contains at mostn? /36 vertices ordn/3 flight plan changes. Also if the
strip contains less thaim /3 flight plan changes, then it contains at le&st? /72 ver-
tices. We approximate the median level by computing a polygonalXin&,...X,,, in
which X; lies onl;. We can see that the total number of strips is bounde@ iy 52)
since there are only linear number of flight plan changes in total.

However, instead of computing ti(1/52) cut lines all at one time, we compute
them one by one. We begin with computing the median on the two leftmost cut{ines
andl, (I, corresponds to the starting time). There &e? /72 vertices betweeh and
l>. The approximate median then moves along line segoieXis. This preprocessing
costsO(nlogn). Basically we compute the position of the cut lihe, and the me-
dian along/;1» gradually while we are moving alony; X;.,. The position of; 5 is
computed such that there aién? /72 vertices betwee, ; andl; ;». S0 X, is our
prediction of the median oh.,, assuming there is no flight plan change betwgen

andt; . o. The cost of computing; ;> and X, ., which is a slope selection problem,
will be amortized over the period betwegrandt; 1, using the technique proposed by
Agarwalet al.[2]. In an online version, we need to accommodate the flight plan changes
in the future. If we seén /6 motion plan changes before we redgch;, we start another
session to comput¥; . » based on the current (changed) trajectories. If we rédgh
before the next deltdn/6 updates, we switch to the segmeXit,; X;2 computed
from the first construction. Otherwise, if we see anothef6 motion plan changes be-
fore we reachi; 1, then we just stop and movg ; to the current positionX; , ; is also
moved to the current position of the approximate median. The next line segment that the
approximate median needs to followX5; X;. 2, whereX, ., is the value returned by
the second computation. Thus inside one strip, the number of intersections is at most
52n? /36, and the number of flight plan changes is at ndest3. Next we will prove the
polygonal line we get is &-approximation of the median level.

The only problem is, if some points change their flight plans between#jraad
ti+1, thenX; 1, which is computed beforg, is no longer the real mediak;_ ,. See
Figure 1 (ii). However, only the points betweef) . ; and X; ; can crossX; 1 X; o
without crossingX;, ; X; . Since there are only at moét /3 flight plan changes,
there are at mostn /3 points betweerk; ;1 andX{H. SinceX{HXHQ is crossed by
at most2dn/3 lines, X, 11 X, is still ad-approximation.

Theorem 2. Let .S be a set oh points, each moving with a constant velocity. Suppose
the flight paths of change a total ofn times. Then &-approximate median & can

be maintained in an online fashion so that the median moves continuously with at most
0O(1/4?) flight plan changes. The total maintenance cog?{$n + m) logn/§?). Each

flight plan change costs polylogarithmic update time.

A randomized algorithmIn Theorem 2 finding the next cut line is based on some com-

plex algorithms and data structures, like slope selection. Next we propose a randomized

algorithm that computes the approximate median online with simple data structures.
Consider the time-space plane again, we choose a random safmpfle/n lines

and compute the arrangemefitS’), which costsO(n) [12]. From a standard proba-

bilistic analysis,A(S’) is a good approximation of the original arrangeméit5) of

then lines. We compute the uniform cutting #(S’). Then the expected number of

vertices ofA(S) inside the strip is¥>n?/72. The next cut line can be computed by

finding the nexts?n/72-th vertex of A(S’), which costs a total 0©(logn) time. If

the points change motion plan inside the strip, we need to update the line arrangement

A(S"). Insertion and deletion of a line in the arrangemérts’) costO(y/nlogn).

Since a line is in the sample with probability/n, the expected update cost would be

O(logn). We can get high probability by Monte Carlo methods, i.e., taking samples

for at mostlog n times. The running time of the algorithmd¥((n + m) log n/4?) with

high probability, wheren is the total number of flight plan changes.

2.3 Approximate median with speed limit

In many applications like mobile networks and spatial databases, the maximum velocity
of the points is restricted. We’'ll show an approximate median that moves no faster than
the fastest point.

Lemma 1. The approximate median computed above cannot move faster than the max-
imum speed of the points, if the points do not change flight plans.

Proof. Observe that the approximate median is composed of line segments connecting
two median pointsX andY at different time steps. So if there is a liherossingX'Y’

and going up, there must be another liherossingX'Y” and going down. So the slope

of XY is bounded by the slope éfand!’. If XY is not crossed by any lines, sinéé

andY are both medians, they must be the same point which means that the approximate
median just moves along one point. This proves the lemma.

If the points can change their flight plan, our scheme in Theorem 2 does not guar-
antee that the approximate median moves within the limit restriction. But we can adjust
it as follows. We useX; and X/ to represent the precomputed and exact median re-
spectively. Basically we let the approximate median to move towards the precomputed
median, if we can get there, then everything is fine. Otherwise, we just move towards it
with maximum speed possible. Figure 2 (i) shows the second case. W.l.0.g., we assume

X X// 9
i
X7 Xy X1
i+2
lv lv+l lH»Z

() (ii)

Fig. 2. (i) Speed restricted median; (i) Smooth medians.

Xi41 is aboveX; ;. Assume the approximate median gets to the paifit, at time
t;12. Since the approximate median moves the fastest, the points ahoyewill stay
aboveX7 ,. So only points betweeX;,; and X/, whose number is at moét./3,
can crossX; 1 X;’,, without crossingX;, , X;,». Following the argument in Theo-
rem 2,X;,, X;,2 is crossed by at mo&6n /3 lines. SoX; ., X/ , is ad-approximate
median level. In addition, we can see that therergi2 points belowX;, ; and X,
respectively. So the number of points betwegh , andX; , , can only be less than the
number of points betweel; ,; andX; ;. So we can continue this scheme for the next
time step. By the analysis above, we can get the following theorem.

Theorem 3. The approximate median proposed above preserves all the properties of
Theorem 2. In addition, the approximate median cannot move faster than the maximum
speed of the points.

2.4 Smooth medians

For a set of moving points, the approximate median we computed above, follows a
polygonal line composed of line segments. Although the approximate median moves

continuously, it may have to make sharp turns. In practice, a smooth trajectory is pre-
ferred. A curve is said to hav@” continuity if its k-th derivative is continuous.

Theorem 4. Given an arrangement of lines on the plane, we can compute a curve
with C* continuity which is aj-approximate median level. The curve is determined by
O(k?/62) control points and is computed @(k?n log n/§?) time.

Proof. The idea is to use &ier interpolation. Similarly we partition the plane into
4k? /82 strips, inside each there are at mas§?/(4k?) intersections. We compute the
mediansX; (1 < i < 4k?/6%) along the boundary of the strips. A curvés computed

as a degreé Bézier curve withX; as control pointsc hasC* continuity and passes
through the control points(;,, wherel < i < 4k/§? [22]. The part ofc between
points X;; and X ;1) is completely determined by the control points in between,
see Figure 2 (ii). From the variation diminishing property of thezigr curves, if a
line intersects the polygonal line defined by the control points (called control polygon)
x times, then it intersects theéBier curve at most times. Since each line segment
X,;X,+1 is crossed by at most:/k lines, the control polygon is crossed by at mést
times, so is the Bzier curve betweeA;;, and X, 11)x. This proves the theorem.

3 Pseudokd-tree

3.1 Definition

Overmars [19] proposed the pseulld-tree as a dynamic data structure that admits
efficient insertion and deletion. &pseudd:d-treeis defined to be a binary tree created
by alternately partitioning the points with vertical and horizontal lines, such that for
each node withm points in the subtree, there are at m@st2 + §)m points in one
subtree. Aj-pseudokd-tree is an almost balanced tree with deptf, ;_45) 7. We
denote byd(u) the depth of a node. With the same analysis as the standedietree,

the range search query ingpseudakd-tree can be done i@ (n'/?< + k) time, k is

the number of points in the answer= m —1/2.

3.2 Maintaining the pseudokd-tree

One way to maintain the pseudd-tree is to maintain the-order andy-order sorted
lists for all the points and update the tree when a point crosses the partition line. Main-
taining the sorted lists will generafe(n?) events. The subtree is rebuilt if the number
of points in one child exceeds fractidif2 + §. Each event has an amortized update
cost of O(logn). Or in another way, we can make use of the dynamic data structure
proposed by Overmars [19]. However, we have to maintain a fordsi-triees instead
of a single tree. Next we will show how to maintain a singlétree with only poly-
logarithmic update cost per event without any rebuilding. In the following part of this
section, we assume the points move with constant velocity.

To maintain a pseudéd-tree, we need to maintain a hierarchical partition of the
points which always supports &pseudokd-tree. Since points are inserted into or
deleted from a subtree, the trajectories of the points stored in a node are actually line

segments. Maintaining the partition line of a node involves finding the approximate me-
dian of a set of line segments. We definé&approximate partition linef depthk to be
ad-approximate median level in the arrangement of the trajectories of points stored in
the subtree of a node with depthUsing Theorem 1, we obtain the following.

Lemma 2. A set ofd-approximate partition lines with total complexi@(%) for
all the nodes in thé-pseudadkd-tree with deptht can be computed iﬁ)(%)

time, wherex = 1/2 — 4.

Proof. A key observation is that the combination of the trajectories of all the points in
nodes of depttk is the arrangement of straight lines. So the total number of inter-
sections of the segments in nodes of depth bounded byD(n?). Assume a node of
depthk hasn,, points associated with iy, > na”, a = 1/2 — 4. Denote bys,, the

total number of line segments in the nodes of ddptbenote byc, the complexity of
thed-approximate partition lines for all the nodes of deptirrom Theorem 1, we have
thatey, = O(%) +O(5%). When a point crosses the partition line at a node of depth
k, it ends the trajectory in the old child and begins a trajectory in the new child. There-
fore we haves; 1 = 2¢; X ony, = 20(5’;1)+ 2s;. By induction we get;, = O(%),

cr = O(£L). The running time is bounded in the same way as in Theorem 1.

52a2k

An event happens when a point crosses a partition line. Updating the pseudo tree
involves moving a point from one subtree to the other, which dogts , _.s5) 7. The
number of events of depth is bounded bys,1/2. So the total number of events
is O((n?/6)logy (124 1). Computing the approximate hierarchy would co§n?)
since that is the cost of computing the arrangementlafes. In summary, we have

Theorem 5. For a set ofn. moving points on the plane, we can find a moving hierarchi-
cal partition of the plane irO(n?) time which supports a-pseuddkd-tree at any time.
The number of eventsd3((n*/d) log, (1 24) in total. Update cost for each event is

0(10g2/(1726) n).

For online maintenance, the ideas in 2.2 work for nodes of degh well. The
difference is, points may come in and out of the range of a node. So inside one strip the
number of intersections, endpoints of the line segments and flight plan changes should
be bounded all at the same time. The endpoints of the line segments can be treated in
the same way as the events of motion plan changes we described before. We omit the
details here.

4 Overlapping kd-tree

4.1 Definition

In the second variant of thiai-tree, the bounding boxes associated with the children of
a node can overlap. Assungv) is the set of points stored in the subtree of a node
B(v) is the minimum bounding box d§(v). Defines(w) = B(u) N B(v) to be the
overlapping regiorof two childrenu andv of nodew. A j-overlappingkd-treeis a

N
|3

[

< on
0]

Fig. 3. (i) 6-overlappingkd-tree; (ii) Only2 grandchildren of: intersect lind.

perfectly balanced tree so that for each nadeith m points in the subtree, there can

be at mostm points in the overlapping regiom(w), 0 < § < 1. Figure 3 (i) shows

the top two levels. The overlappirigi-tree has linear size and depfilogn). (log

refers tolog,, if not specified.) We define a node to bepartitioned {/-partitioned) if

it is partitioned by a vertical (horizontal) line. Rectangular range-search query can be
answered in the similar way as in the standiadetree.

Lemma 3. Let! be a vertical (or horizontal) line, and let, w be two x-partitioned
(y-partitioned) nodes of a-overlappingkd-tree such thatv is a descendant af. If [

A —26

intersects bothr (v) ando(w), thend(w) > d(v) + log~y, wherey = 1532,

Theorem 6. The range search query in &overlappingkd-tree can be answered in

O(n'/?* + k) time, wheres = log,, 2, v = 1522, k is the number of points reported.

Proof. Like the standard:d-tree, the only non-trivial part is to bound the number of
nodes intersected by a vertical liheAssume the point set is cut by a vertical line at
the top levell intersects the roat. Only when! intersects the overlapping region do
we need to traverse both childrenandv. However, ifé is not too large, of the four
grandchildren of node, at most two of them intersect linle see Figure 3 (ii). This
property remains true when we go down the tree until we meepartitioned nodev
such that intersectss(w). From Lemma 3, node has depth at least = log~. We
then bound the number of intersected nodes from root to debtice that the number
of intersected nodes of deph+ 1 is the same with that of depth, and they are both
bounded by2i+!, for 1 < i < h/2 — 1. The total number of intersected nodes from
depthl to depthh is no more thar2 x -7 2¢F! = 2/%3 = 8, /5. Assume the total
number of nodes intersected big C'(n, 0). We haveC'(n, 0) < 2,/7C(n/7,d)+8,/7.

By induction,C(n, §) = O(n'/**¢), wheres = log., 2.

4.2 Maintaining the overlapping kd-tree

Maintaining thed-overlappingkd-tree mainly involves tracking the number of points in
the overlapping region. Consider the root of thitree, assume points are divided
into n/2 red points andh/2 blue points by a vertical line at the beginning. W.l.0.g,

assume red points have bigger coordinates. Consider the time-space plane, the goal is
to track the depth of the lower envelope of red lines in the arrangement of blue lines,
similarly the depth of the upper envelope of blue lines in the arrangement of red lines.
An event happens when those two numbers add umtdSo at leastn/2 points in
the overlapping region have the same color, suppose they are red. Then the highest
blue point must be abovén/2 red points. We define a red-blue inversion to be the
intersection of a red trajectory and a blue trajectory. So there must be atl&ast
red-blue inversions since the last recoloring. The total recoloring events in the root of
the kd-tree is bounded b@(n/¢), if the points follow pseudo-algebraic motion.

Since the combination of the trajectories of points in all nodes of dejpdgcomes
the arrangement of the trajectoriesropoints, we can prove that the total recoloring
events in the nodes of depthof the 5-overlappingkd-tree is bounded by (n2"/6).
Therefore the total number of events is boundedigy?/5). When an event happens
at a node: with m points stored in the subtree, we first recolor dhepoints so that red
points and blue points do not overlap, which casis This may invoke the recoloring
events at the children af. So the total update cost is no more th@tm logm). A
recoloring event at depth costsO(n logn/2*). So for all the recoloring events, the
total update cost sum up @(n?log n/§). The amortized cost for one event is therefore
O(logn). Putting everything together, we obtain the following.

Theorem 7. The total number of recoloring events foreoverlappingkd-tree forn
points with pseudo-algebraic motion¥(n?/5). Each event has an amortized cost of
O(logn).

Acknowledgements:The authors wish to thank John Hershberger and An Zhu for numerous dis-
cussions and for their contribution to the arguments in this paper. Research by all three authors is
partially supported by NSF under grant CCR-00-86013. Research by P. Agarwal is also supported
by NSF grants EIA-98-70724, EIA-01-31905, and CCR-97-32787, and by a grant from the U.S.—
Israel Binational Science Foundation. Research by J. Gao and L. Guibas is also supported by
NSF grant CCR-9910633.

References

1. P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. Pioc. Annu. ACM
Sympos. Principles Database Sy&000. 175-186.

2. P. K. Agarwal, L. Arge, and J. Vahrenhold. Time responsive external data structures for
moving points. InWorkshop on Algorithms and Data Structurpages 50-61, 2001.

3. P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In B. Chazelle,
J. E. Goodman, and R. Pollack, editokslvances in Discrete and Computational Geometry
volume 223 ofContemporary Mathematicpages 1-56. American Mathematical Society,
Providence, RI, 1999.

4. P. K. Agarwal and M. Sharir. Arrangements and their applications. In J.-R. Sack and J. Ur-
rutia, editorsHandbook of Computational Geometpages 49-119. Elsevier Science Pub-
lishers B.V. North-Holland, Amsterdam, 2000.

5. J. Basch, L. Guibas, and J. Hershberger. Data structures for mobileJdAtg, 31(1):1-28,
1999.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. J. Basch, L. J. Guibas, and G. D. Ramkumar. Reporting red-blue intersections between two
sets of connected line segments.Pc. 4th Annu. European Sympos. Algorithmaume
1136 ofLecture Notes Comput. Sghages 302—319. Springer-Verlag, 1996.
. J. L. Bentley. Multidimensional binary search trees used for associative sear€ingnu-
nications of the ACM18(9):509-517, 1975.
. R. Cole, J. Salowe, W. Steiger, and E. Szerder An optimal-time algorithm for slope
selection.SIAM J. Compu}.18(4):792-810, 1989.
. W. Cunto, G. Lau, and P. Flajolet. Analysis of kdt-trees: kd-trees improved by local reorgan-
isations.Workshop on Algorithms and Data Structures (WADS'88p:24—-38, 1989.
M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzk@imputational Geometry:
Algorithms and ApplicationsSpringer-Verlag, Berlin, 1997.
T. K. Dey. Improved bounds on planar k-sets and k-leveldEEBE Symposium on Founda-
tions of Computer Sciencpages 165-161, 1997.
H. Edelsbrunner and L. J. Guibas. Topologically sweeping an arrangedh&@amput. Syst.
Sci, 38:165-194, 1989. Corrigendum in 42 (1991), 249-251.
H. Edelsbrunner and E. Welzl. Constructing belts in two-dimensional arrangements with
applications.SIAM J. Comput.15:271-284, 1986.
L. J. Guibas. Kinetic data structures — a state of the art report. In P. K. Agarwal, L. E.
Kavraki, and M. Mason, editor$roc. Workshop Algorithmic Found. Rohopages 191—
209. A. K. Peters, Wellesley, MA, 1998.
R. H. Giting, M. H. Bdhlen, M. Erwig, C. S. Jensen, N. A. Lorentzos, M. Schneider, and
M. Vazirgiannis. A foundation for representing and querying moving objed@M Trans.
Database System85(1):1-42, 2000.
G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile object®rdr. Annu.
ACM Sympos. Principles Database Sysages 261-272, 1999.
J. Matosek. Construction of-nets.Discrete Comput. Geonb:427-448, 1990.
J. Nievergelt and P. Widmayer. Spatial data structures: Concepts and design choices. In
J.-R. Sack and J. Urrutia, editotdandbook of Computational Geometpages 725-764.
Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.
M. H. Overmars. The Design of Dynamic Data Structuramlume 156 ofLecture Notes
Comput. SciSpringer-Verlag, Heidelberg, West Germany, 1983.
D. Pfoser, C. J. Jensen, and Y. Theodoridis. Novel approaches to the indexing of moving
object trajectories. IProc. 26th Intl. Conf. Very Large Databasgmges 395-406, 2000.
C. M. Procopiuc, P. K. Agarwal, and S. Har-Peled. Star-tree: An efficent self-adjusting index
for moving points. InProc. 4th Workshop on Algorithm Engineering and Experime262.
A. Rockwood and P. Chambermteractive Curves and Surfaces: A Multimedia Tutorial on
CAGD. Morgan Kaufmann Publishers, Inc., 1996.
A. P. Sistla and O. Wolfson. Temporal conditions and integrity constraints in active database
systems. IrProceedings of the 1995 ACM SIGMOD International Conference on Manage-
ment of Datapages 269—-280, 1995.
A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and querying moving ob-
jects. InProc. Intl Conf. Data Engineeringpages 422—-432, 1997.
G. Toth. Point sets with many k-setBiscrete & Computational Geometr26(2):187-194,
2001.
S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the positions of
continuously moving objects. IRroc. ACM SIGMOD International Conference on Man-
agement of Datgpages 331-342, 2000.
O. Wolfson, A. P. Sistla, S. Chamberlain, and Y. Yesha. Updating and querying databases
that track mobile unitsDistributed and Parallel Databasepages 257—287, 1999.

