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ABSTRACT
Topological persistence has proven to be a key concept for
the study of real-valued functions defined over topological
spaces. Its validity relies on the fundamental property that
the persistence diagrams of nearby functions are close. How-
ever, existing stability results are restricted to the case of
continuous functions defined over triangulable spaces.

In this paper, we present new stability results that do not
suffer from the above restrictions. Furthermore, by working
at an algebraic level directly, we make it possible to compare
the persistence diagrams of functions defined over different
spaces, thus enabling a variety of new applications of the
concept of persistence. Along the way, we extend the defini-
tion of persistence diagram to a larger setting, introduce the
notions of discretization of a persistence module and associ-
ated pixelization map, define a proximity measure between
persistence modules, and show how to interpolate between
persistence modules, thereby lending a more analytic char-
acter to this otherwise algebraic setting. We believe these
new theoretical concepts and tools shed new light on the
theory of persistence, in addition to simplifying proofs and
enabling new applications.

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Non-numerical Al-
gorithms and Problems — Geometrical problems and com-
putations, Computations on discrete structures; G.2.1 [Dis-
crete Mathematics]:Combinatorics — Counting problems.

General Terms: Algorithms, Theory.

Keywords: Topological persistence, Stability, Persistence
diagram, Discretization, Topological Data Analysis.

1. INTRODUCTION
Topological persistence has emerged as a powerful tool

for the study of the qualitative and quantitative behavior of
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real-valued functions. Given a topological space X equipped
with a function f : X→ R, persistence encodes the evolution
of the topology of the sublevel-sets of f , i.e. the sets Xfα =
f−1((−∞, α]) ⊆ X, as parameter α ranges from −∞ to +∞.
Topological changes occur only at critical values of f , which
can be paired in a natural way. The outcome is a set of
intervals, called a persistence barcode [6], where each interval
encodes the birth and death times of a topological feature
in the sublevel-sets of f . An equivalent representation is
by a multiset of points in the extended plane R̄2, called a
persistence diagram [12], where the coordinates of each point
correspond to the endpoints of some interval in the barcode.

Such representations prove to be useful in a variety of con-
texts. For instance, in scalar field analysis, they can be used
to guide the simplification of a real-valued function by it-
erative cancellation of critical pairs, ridding the data of its
inherent topological noise [1, 17, 18]. In topological data
analysis, they can be used to infer the structure of an un-
known space X from a finite point sampling L, through the
construction of an intermediate object, called a filtration,
which consists of an abstract simplicial complex C built on
top of the point cloud L together with a filtering function
f̂ : C → R that encodes the times of appearance of the sim-
plices in the complex — see [7] for a survey. In these contexts
as in many others, the validity of the persistence-based ap-
proach relies on the fundamental property that persistence
diagrams are stable with respect to small perturbations of
the functions. In scalar field analysis for instance, the scalar
field f under study is usually known through some finite
set of measurements, from which a piecewise-linear (PL)

approximation f̂ of f is built. The simplification is then
performed on f̂ , and the whole approach makes sense only
if the persistence diagram of f can be related to the one of
its approximation f̂ . In topological data analysis, the need
for stability stems from the fact that the space X underly-
ing the input data set L remains unknown, which implies
that the filtering function f̂ must be derived solely from the
input data set L and shown to be close to some function
f : X→ R that filters the underlying space X.

The stability of persistence diagrams was first studied by
Cohen-Steiner, Edelsbrunner and Harer in their seminal pa-
per [12]. In particular, they showed that the persistence di-
agrams of two real-valued functions f, g defined over a same
topological space X lie at most ‖f − g‖∞ away from each



other in the bottleneck distance. However, their result re-
quires that three additional conditions be met: (1.) X is
triangulable, (2.) f and g are continuous, and (3.) f and
g are tame in the sense that they only have finitely many
critical values. Despite these restrictions, the stability result
of [12] has found a variety of applications [2, 10, 11, 14, 18].
Interestingly enough, the result has also been applied within
contexts where the above conditions are not met: in topo-
logical data analysis for instance, the real-valued function f̂
used to filter the simplicial complex C is usually taken to be
constant over each simplex, and therefore non-continuous.
However, as explained e.g. in [20], it can be replaced by
some PL function with the same persistence diagram, de-
fined over the first barycentric subdivision of C. Thus, a
reduction from the piecewise-constant setting to some con-
tinuous setting is made. Nevertheless, such reductions may
not always exist, and generally speaking the stability result
of [12] suffers from the following limitations:
• The triangulability condition (1.), although reason-

able in view of practical applications, may not always
be satisfied in theory.
• The continuity condition (2.) is a stringent one. In

the context of scalar field analysis for instance, if the
original function f is not continuous, then its persis-
tence diagram cannot be related to the one of its PL
approximation f̂ , even though ‖f − f̂‖∞ is small. As
mentioned above, although in some specific scenarios
the problem can be easily reduced to some continuous
setting, it is not clear that such reductions exist in
general.
• The tameness condition (3.) requires that persistence

diagrams only have finitely many points off the di-
agonal ∆ = {(x, x), x ∈ R̄}. This is unfortunate
as the zero-dimensional version of persistence, known
as size theory and studied since the early 90’s, does
have a stability result that holds for a class of func-
tions with an infinite number of critical values, albeit
defined only over compact connected manifolds [16,
Thm. 25].
• Finally, the fact that the functions f, g have to be

defined over a same topological space X is a strong
limitation. There indeed exist scenarios requiring to
compare the persistence diagrams of functions defined
over different spaces that are not related to each other
in any obvious way. One such scenario served as the
initial motivation for our work: it has to do with the
analysis of scalar fields over sampled spaces where no
PL approximation f̂ is readily available [9].

This paper presents new stability results that do not suffer
from the above limitations: both continuity and triangula-
bility conditions are removed, and the tameness condition
is relaxed; moreover, functions can be defined over differ-
ent topological spaces. To achieve this result, we drop the
functional setting and work at algebraic level directly. Our
analysis differs from the one of [12] in essential ways, has
a more geometric flavor, and introduces several novel alge-
braic and geometric constructions that shed new light on
the theory of persistence. On the practical side, our results
have led to new algorithms for the analysis of scalar fields
over point cloud data [9], thus enabling a variety of new
applications of the persistence paradigm.

Details of our contributions. In the original persis-
tence paper [17], the persistence diagram of a function f :

X → R was derived from the family of homology groups
of its sublevel sets {Hk(Xfα)}α∈R, enriched with the family
of homomorphisms induced by the canonical inclusion maps
Xfα ↪→ Xfβ for α ≤ β. In [21], the authors showed that
persistence can in fact be defined at algebraic level directly,
without the need for an underlying functional setting. In-
troducing the concept of persistence module FA as the one
of a family {Fα}α∈A of vector spaces (or modules over a
same commutative ring) indexed by A ⊆ R, together with a
family of homomorphisms {fβα : Fα → Fβ}α≤β∈A such that
∀α ≤ β ≤ γ, fγα = fγβ ◦f

β
α and fαα = idFα , they proved that

persistence diagrams can be defined for persistence modules
satisfying some tameness condition similar to (3.). Keeping
persistence modules as our main objects of study, we pro-
pose a weaker tameness condition that allows them to have
infinitely many critical values (Section 2).

Although this new tameness condition is similar in spirit
to the one used in the 0-dimensional setting of size theory
[15], it makes the standard definition of persistence diagram
inapplicable. We therefore propose a new definition, based
on an approximation strategy (Section 3): first, we discretize
our persistence module FA over arbitrary discrete families
of indices with no accumulation point, and show that the
persistence diagrams of such discretizations are defined in a
similar way as in the classical setting (Section 3.1); second,
we obtain the persistence diagram of FA as a well-defined
limit of the persistence diagrams of its various discretiza-
tions (Section 3.2). This new definition coincides with the
standard one when the tameness condition of [12] is satisfied.

In order to make stability claims, we define a notion of
proximity between persistence modules that is inspired from
the functional setting (Section 4.1). More precisely, when-
ever ‖f − g‖∞ ≤ ε, the sublevel-sets of functions f, g are
ε-interleaved with respect to inclusion, that is: ∀α ∈ R,
Xfα ⊆ Xgα+ε ⊆ Xfα+2ε. Together with the canonical inclu-
sions between sublevel-sets of f (resp. sublevel-sets of g),
the above inclusions induce a commutative diagram at ho-
mology level that ε-interleaves the persistence modules of f
and g. This notion of ε-interleaving of two persistence mod-
ules turns out to be independent of the functional setting,
and defines a notion of distance between persistence mod-
ules. In addition, we show how to interpolate between any
two ε-interleaved persistence modules FR and GR, i.e. how

to build a family { eHsR}s∈[0,ε] of persistence modules, witheH0
R ' FR and eHεR ' GR, such that ∀s, s′ ∈ [0, ε], eHsR and eHs′R

are |s− s′|-interleaved.
Our main results are stated in terms of the above distance:

first, we provide a simple and geometrically-flavored proof
that any tame ε-interleaved persistence modules have 3ε-
close persistence diagrams in the bottleneck distance (Sec-
tion 4.2); then, combining this result with the interpolation
technique described above, we reduce the bound on the bot-
tleneck distance between persistence modules from 3ε down
to ε, which is the best possible bound (Section 4.3).

2. BACKGROUND AND DEFINITIONS

2.1 Multisets of points in the extended plane
Throughout the paper, R̄ = R ∪ {−∞,+∞} denotes the

extended real line, and we use the following rules: ∀x ∈ R,
x + ∞ = +∞ and x − ∞ = −∞. The extended plane
R̄2 = R̄ × R̄ is endowed with the l∞ norm, noted ‖ · ‖∞.



Since |x − y| = +∞ whenever x ∈ R and y ∈ {±∞}, the
topology induced by ‖ · ‖∞ on R̄2 is such that the points
of R2, of {±∞} × R, of R × {±∞}, and of {±∞} × {±∞}
form distinct connected components. Let ∆ = {(x, x), x ∈
R̄} be the diagonal, and ∆+ = {(x, y) ∈ R̄2 : y ≥ x} the
closed half-plane above ∆. More generally, for any δ ≥ 0,
let ∆δ

+ = {(x, y) ∈ R̄2 : y ≥ x+ 2δ} be the closed half-plane
at l∞-distance δ above ∆.

A multiset D in R̄2 is a subset of R̄2 such that each point
p ∈ D is assigned a multiplicity mult(p) ∈ N ∪ {+∞}. The
support of D, noted |D|, is the subset considered without
the multiplicities. Equivalently, D can be represented as a

disjoint union D =
S
p∈|D|

‘mult(p)
i=1 p.

A multi-bijection m between two multisets D,D′ is a bi-

jection m :
S
p∈|D|

‘mult(p)
i=1 p →

S
p′∈|D′|

‘mult(p′)
i=1 p′. Given

two multisets D and D′, we abuse notations and denote by
d∞H (D,D′) the Hausdorff distance (in the l∞ metric) be-
tween their supports. A relevant distance between multisets
is the so-called bottleneck distance d∞B (D,D′), introduced
in [12] and defined as infm supp∈D ‖p − m(p)‖∞, where m

ranges over all multi-bijections D → D′.

2.2 Filtrations and persistence modules
The homology theory used in the paper is singular homol-

ogy with coefficients in a commutative ring R with unity
(see [19] for an introduction to the subject), which will be
assumed to be a field and omitted in our notations.

Given a subset A ⊆ R, a filtration is a family {Xα}α∈A of
topological spaces that are nested with respect to inclusion,
that is: ∀α ≤ α′ ∈ A, Xα ⊆ Xα′ . A special type of filtration
is the one formed by the sublevel-sets Xfα = f−1((−∞, α])
of some real-valued function f : X→ R. Given an arbitrary
filtration {Xα}α∈R, the family of inclusion maps Xα ↪→ Xα′
induces a family of homomorphisms between the kth homol-
ogy groups Hk(Xα), known as the kth persistence module of
the filtration. In fact, persistence modules can be defined at
algebraic level directly, regardless of any underlying topo-
logical or functional setting [21]:

Definition 2.1. Let R be a commutative ring with unity,
and A a subset of R. A persistence module FA is a fam-
ily {Fα}α∈A of R-modules indexed by the elements of A,

together with a family {fα
′

α : Fα → Fα′}α≤α′∈A of homo-

morphisms such that: ∀α ≤ α′ ≤ α′′ ∈ A, fα
′′

α = fα
′′

α′ ◦ fα
′

α

and fαα = idFα .

In our context, the ring R is assumed to be a fixed field,
hence the modules Fα are vector spaces and the homomor-

phisms fα
′

α are linear maps between vector spaces. In par-

ticular, the rank of fα
′

α is a well-defined integer or +∞. FA
is said to be discrete whenever A is discrete with no accu-
mulation point. This includes for instance all cases where
the index set A is finite. Another important case is when
A is a periodic set of the form α0 + εZ, where α0 ∈ R and
ε > 0 are fixed parameters. In this case, FA is said to be
ε-periodic.

2.3 Tameness and topological persistence
In [12], the kth persistence module of a function f : X→ R

is characterized as tame if (a.) all kth homology groups
Hk(Xfα) are finite-dimensional, and (b.) there are only finitely
many homological critical values, i.e. values α ∈ R such
that for all sufficiently small ε > 0 the maps Hk(Xfα−ε) →

Hk(Xfα+ε) induced by inclusions are not isomorphisms. It
turns out that condition (b.) is not necessary for our con-
cepts and stability results to hold. Taking a purely algebraic
point of view, we redefine tameness as follows:

Definition 2.2. A persistence module FA is said to be
tame if ∀α ∈ A, dimFα < +∞.

The fact that dimFα < +∞ implies that rank fα
′

α < +∞
for all α′ ≥ α. From now on, and until the end of the
paper, tameness will be understood as in Definition 2.2. In
Sections 3 and 4 below, we show that this weaker tameness
condition is sufficient for defining the persistence diagram
of a persistence module, and we exhibit stability results for
this class of persistence modules. Modulo some additional
technicalities, we show in the full version of the paper [8]
that persistence diagrams can be defined and their stability
proven under an even weaker condition, called δ-tameness,

which states that rank fα
′

α < +∞ whenever α′ − α > δ.

3. DISCRETIZATIONS
Definition 3.1. Let FA be a persistence module, and let

B be a discrete subset of A with no accumulation points.
The discretization of FA over B is the persistence module
FB given by the family {Fα}α∈B of vector spaces together

with the family {fα
′

α }α≤α′∈B of homomorphisms.

To every discrete set B with no accumulation points cor-
responds a pixelization grid ΓB ⊂ R̄2 whose vertices are
the points of type (β, β′) for β, β′ ranging over B̄ = B ∪
{inf B, +∞}. By convention, every grid cell is the Carte-
sian product of two right-closed intervals of R̄. Specifically,
if inf B = −∞, then each grid cell is of one of the following
forms, where βi < βi+1 (resp. βj < βj+1) are consecutive
elements of B: (βi, βi+1]× (βj , βj+1], or (βi, βi+1]× {+∞},
or {−∞}× (βj , βj+1], or {−∞}×{+∞}. If on the contrary
we have inf B > −∞, then each grid cell takes one of the
following forms: (βi, βi+1]×(βj , βj+1], or (βi, βi+1]×{+∞},
or [−∞, βi] × (βj , βj+1], or [−∞, βi] × {+∞}. To the grid
ΓB is associated a B-pixelization map pixB : ∆+ → ΓB ∪∆
that performs the following snapping operations: each point
of ∆+ lying in a cell C of ΓB that does not intersect the diag-
onal ∆ is snapped onto the upper-right corner of C, whereas
each point lying in a grid cell that intersects ∆ is snapped
onto its nearest point of ∆ — in particular, diagonal points
are left unchanged. Figure 1 (left) illustrates the behavior
of pixB when inf B > −∞ .

3.1 Persistence diagrams of discrete tame
persistence modules

Let FB be a discrete tame persistence module. For clarity,
we rewrite B = {βi}i∈I , where I ⊆ Z is such that βi < βj for
all i < j ∈ I. Such a rewriting is possible because B has no
accumulation points. Then, Ī = I ∪ {inf I,+∞} indexes B̄.

By convention, when j = +∞, we let rank f
βj
βi

= rank fβmβi
if I has a maximum element m ∈ Z, and rank f

βj
βi

=

limk→+∞ rank f
βk
βi

otherwise. Such a limit always exists

because the general inequality rank (g ◦ f) ≤ rank f implies

that, for any fixed i, the map k 7→ rank f
βk
βi

is non-increasing
and therefore constant for sufficiently large k, the ranks be-
ing non-negative integers. Similarly, if inf I = −∞, then for

all j ∈ I ∪ {+∞} we let rank f
βj
βinf I

= limk→−∞ rank f
βj
βk

.



Definition 3.2. The persistence diagram of FB is the
multi-subset DFB of R̄2 defined by:

(i) DFB is contained in ΓB ∩∆+,
(ii) each point on the diagonal ∆ has multiplicity +∞,

(iii) each node (βi, βj) with i < j ∈ Ī has multiplicity

mult(βi, βj) = rank f
βj−1
βi

− rank f
βj
βi

if i = inf I, and

mult(βi, βj) = rank f
βj−1
βi

− rank f
βj
βi

+ rank f
βj
βi−1

−
rank f

βj−1
βi−1

if i > inf I.

Condition (iii) is illustrated in Figure 1 (center). It follows
from our tameness condition (Definition 2.2) and from stan-
dard rank arguments that the multiplicity of each point of
DFB \∆ is a finite non-negative integer. Moreover, an ele-
mentary computation shows thatDFB satisfies the following
inclusion-exclusion property illustrated in Figure 1 (right):

Lemma 3.3. For all i1 < i2 ≤ j1 < j2 ∈ Ī, we haveX
i1<i≤i2, j1<j≤j2

mult(βi, βj) = rank f
βj1
βi2
− rank f

βj2
βi2

+ rank f
βj2
βi1
− rank f

βj1
βi1

.

Furthermore, for all j1 < j2 ∈ Ī, we haveX
j1<j≤j2

mult(βinf I , βj) = rank f
βj1
βinf I

− rank f
βj2
βinf I

.

It follows from this lemma that, for any given half-open

upper-left quadrant Qβ
′

β = [−∞, β] × (β′,+∞] with β ≤
β′ ∈ R, the total multiplicity (and therefore the support)

of the points of DFB contained in Qβ
′

β is finite. This does

not mean however that |DFB | \ ∆ is finite. Nevertheless,
since B has no accumulation points in R, the vertices of
the grid ΓB do not accumulate in R2 nor in {±∞} × R nor
in R × {±∞}, and therefore |DFB | \ ∆ has no accumula-
tion points. Moreover, for any β ≤ β′ ∈ R, the points of
DFB ∩ ([β, β′] × R̄) lying above ∆ are covered by a finite
union of half-open upper-left quadrants, which implies that
their total multiplicity is finite. Thus, although |DFB | may
have infinitely many points off the diagonal ∆, it satisfies
some local finiteness properties that will be exploited in the
rest of the paper.

3.2 Persistence diagrams of arbitrary tame
persistence modules

In order to be able to define the persistence diagram of
an arbitrary tame persistence module FA, we first need to
compare the persistence diagrams of its various discretiza-
tions:

Theorem 3.4. For any discretizations FB and FC of FA,
the restriction of the pixelization map pixB (resp. pixC) to
DFB∪C defines a multi-bijection between DFB∪C and DFB
(resp. DFC).

An important special case of this result is when B ⊆ C.
Then, we have B ∪C = C, and the theorem states that the
restriction of pixB to DFC defines a multi-bijection between
DFC and DFB .

Another important special case is when B and C are ε-
periodic families, of the form B = β0 + εZ and C = γ0 + εZ
for fixed parameters β0, γ0, ε. In this case, the pixelization
maps pixB and pixC move the points of DFA by at most
ε in the l∞ norm. Since in addition they only increase the

coordinates of the points, the composition pixC◦pix−1
B (here,

pix−1
B is to be understood as the inverse of the restriction

of pixB to DFB∪C), which by Theorem 3.4 defines a multi-
bijection between DFB and DFC , also moves the points by
at most ε. Therefore,

Corollary 3.5. For any ε-periodic discretizations FB
and FC of FA, we have d∞B (DFB , DFC) ≤ ε.

More generally, in view of the definition of pixelization map
given at the top of Section 3, we have d∞B (DFB , DFC) ≤ ε
whenever B and C form two right ε-covers of A, that is:
supα∈A infβ∈B∩[α,+∞) |α−β| ≤ ε and supα∈A infγ∈C∩[α,+∞)

|α− γ| ≤ ε. Corollary 3.5 suggests that ε can be viewed as
a scale parameter at which the persistence module FA is
considered. In other words, the knowledge of FA at a scale
of ε leads to the knowledge of its persistence diagram (not
yet formally defined) with an uncertainty of ε.

Proof of Theorem 3.4. Consider the discretization of
F over the (discrete) union B ∪ C. Considering FB and
FC as two discretizations of FB∪C , we will show that the
persistence diagram of FB (resp. FC) is the image of the
persistence diagram of FB∪C through the pixelization map
pixB (resp. pixC).

Let C be a cell of the grid ΓB that does not intersect ∆,
and let (βi, βj) be its upper-right corner. Assume without
loss of generality that i > inf I, the case i = inf I being simi-
lar. Denoting by multB(βi, βj) the multiplicity of (βi, βj) in

the diagram DFB , we have: multB(βi, βj) = rank f
βj−1
βi

−
rank f

βj
βi

+ rank f
βj
βi−1

− rank f
βj−1
βi−1

, which by Lemma 3.3

(applied to FB∪C) is equal to
P
q∈|DFB∪C |∩C

multB∪C(q).
As a result, the restriction of pixB to the grid cell C snaps
each point of DFB∪C ∩ C onto (βi, βj) while preserving the
total multiplicity, thus defining a multi-bijection between
DFB∪C ∩ C and DFB ∩ C.

Let now C be a cell of ΓB that intersects ∆. Then, the
restriction of pixB to C projects the points of DFB∪C ∩ C
orthogonally onto ∆ ∩ C = DFB ∩ C, which has infinite
multiplicity. Therefore, it defines a multi-bijection between
DFB∪C ∩ C and DFB ∩ C.

Applying the above arguments independently on every
cell of the grid ΓB , we obtain that the restriction of pixB
to DFB∪C defines a multi-bijection between DFB∪C and
DFB .

We are now ready to define the persistence diagram of FA
using a subdivision procedure. For the sake of simplicity,
we assume from now on that A = R. Arbitrary index sets
A ⊆ R can be handled in a similar way, at the price of a
significant increase in technicality.

We begin our procedure by considering an arbitrary dis-
crete subset B0 ⊂ R with no accumulation points that forms
a right 1-cover of R, that is: supα∈R infβ∈B0∩[α,+∞) |α−β| ≤
1. One example of such a subset is B0 = β0 + Z, for some
fixed parameter β0. Then, inductively, for any integer n > 0
we let Bn be an arbitrary discrete superset of Bn−1 with
no accumulation points that forms a right 2−n-cover of R,
that is: supα∈R infβ∈Bn∩[α,+∞) |α− β| ≤ 2−n. In the above

example, one can take Bn = β0 + 2−nZ.
By construction, for all n ∈ N we have Bn ⊆ Bn+1, thus
FBn is a discretization of FBn+1 and therefore the restriction
of pixBn to DFBn+1 defines a multi-bijection between DFBn
and DFBn+1 , by Theorem 3.4. This multi-bijection moves



β1 β2 β3 β4 ∞

β1

β2

β3

β4

∞

βj

βi−1

βj−1

βi

βj

βj−1

βinf I

−∞

βi1 βi2

βj1

βj2

Figure 1: Left: the pixelization map pixB, where B = {β1, β2, β3, β4}. Center: the multiplicity of a node (βi, βj) is fully

determined by the ranks of the homomorphisms corresponding to the corners of the bottom-left cell incident to (βi, βj).

The number of such corners is two or four, depending on whether i = inf I (top) or i > inf I (bottom). Right: the sum

of the multiplicities of the nodes (red disks) contained in the box (βi1 , βi2 ]× (βj1 , βj2 ] is equal to the alternate sum of

the ranks of the homomorphisms corresponding to the corners (black squares) of the box.

the points by at most 2−n since Bn is a right 2−n-cover of R.
It follows that the sequence {DFBn}n∈N of multisets in ∆+

converges to some limit multiset M ⊂ ∆+ in the bottleneck
distance. By Corollary 3.5, this limit multiset is independent
of the choice of the nested family {Bn}n∈N.

Definition 3.6. The limit multiset M obtained by the
above subdivision process is called the persistence diagram
of the tame filtration FR, denoted DFR.

An important property deriving from the above subdivision
process is that pixelization maps relate the persistence dia-
gram of FR to the ones of its discretizations:

Theorem 3.7. Given a tame persistence module FR, for
any discretization FB of FR the restriction of pixB to DFR
defines a multi-bijection between DFR and DFB. In the
special case where FB is an ε-periodic family, it follows that
d∞B (DFR, DFB) ≤ ε.

Proof. Let B0 = B ∪ (Z ∩ R \ B). Inductively, for all
n > 0, let Bn = Bn−1∪ (Z∩R\Bn−1). The sets Bn are dis-
crete with no accumulation points, and they form a nested
family of subsets of R such that supα∈R infβ∈Bn∩[α,+∞) |α−
β| ≤ 2−n for all n ∈ N. Therefore, according to Defini-
tion 3.6, the sequence {DFBn}n∈N converges to DFR in
the bottleneck distance. Furthermore, since by construc-
tion we have B ⊆ B0 ⊆ B1 ⊆ · · · ⊆ Bn, we deduce that
pixB = pixB◦pixB0

◦pixB1
◦· · ·◦pixBn−1

. Therefore, by The-

orem 3.4, the restriction of pixB to DFBn defines a multi-
bijection between DFBn and DFB . Since this is true for
all n ∈ N, the restriction of pixB to the limit multiset DFR
defines a multi-bijection between DFR and DFB .

In the case where FR is the kth persistence module of the
sublevel-sets filtration of some function f : X → R that is
tame in the sense of [12], its persistence diagram as defined
in [12] coincides with its persistence diagram in the sense of
Definition 3.6. See the full version for more details [8].

4. STABILITY RESULTS
This section provides equivalents to the stability result of

[12] in the general setting of tame persistence modules. We
first introduce a quantitative notion of proximity between
persistence modules in Section 4.1. We propose in fact two
notions of proximity: a weaker one and a stronger one, which
give rise respectively to a weaker and a stronger stability
results, studied in Sections 4.2 and 4.3 respectively. Both
results provide tight upper bounds on the stability of persis-
tence diagrams under their respective notions of proximity.
In addition, the weaker stability result (Theorem 4.3) has a
simple and geometrically-flavored proof, and it is instrumen-
tal in proving the stronger stability result (Theorem 4.4).

4.1 Interleaving persistence modules
To emphasize the intuition underlying our definitions, we

first consider the case of persistence modules associated with
the sublevel sets filtrations of functions. Whenever two func-
tions f, g : X → R satisfy ‖f − g‖∞ ≤ ε, their sublevel sets
filtrations are nested as follows: ∀α ∈ R, Xfα ⊆ Xgα+ε ⊆
Xfα+2ε. This nesting, combined with the canonical inclu-

sions Xfα ⊆ Xfα′ and Xgα ⊆ Xgα′ for all α ≤ α′, induces
the following commutative diagrams at kth homology level,
where Fα = Hk(Xfα) and Gα = Hk(Xgα) denote the kth ho-
mology groups of the sublevel sets, and where the arrows
represent the homomorphisms induced by inclusions at kth
homology level:

Fα−ε

##GGGG
// Fα′+ε

Gα // Gα′

::uuuu

Fα+ε
// Fα′+ε

Gα //

;;wwww
Gα′

99ttttt

Fα // Fα′

$$IIII

Gα−ε

;;wwww
// Gα′+ε

Fα //

##GGGG Fα′

%%KKK
KK

Gα+ε
// Gα′+ε

(1)

The two persistence modules {Fα}α∈R and {Gα}α∈R are
then said to be strongly ε-interleaved. This condition can be
relaxed by assuming that the sublevel sets of f and g are only



interleaved over a certain ε-periodic set of values of α, that
is: ∃α0 ∈ R such that ∀α ∈ α0 + 2εZ, Xfα ⊆ Xgα+ε ⊆ Xfα+2ε.
In this case, the two persistence modules induced at kth
homology level are said to be weakly ε-interleaved, and the
following induced diagram between their 2ε-discretizations
commutes:

· · · // Fα0+2nε

&&MMMMM
// Fα0+(2n+2)ε · · ·

· · · Gα0+(2n−1)ε

88qqqqq
// Gα0+(2n+1)ε

77oooooo
// · · ·

(2)

These properties extend directly to arbitrary persistence
modules:

Definition 4.1. Two persistence modules FA and GB are
weakly ε-interleaved if the following conditions are met:

(i) there exists some α0 ∈ R such that α0 + 2εZ ⊆ A and
α0 + ε+ 2εZ ⊆ B, and

(ii) there exist two families {φα : Fα → Gα+ε}α∈α0+2εZ
and {ψα : Gα → Fα+ε}α∈α0+ε+2εZ of homomorphisms
such that the diagram of Eq. (2) commutes.

For the strong notion of proximity, we require that the index
sets satisfy A = B = R:

Definition 4.2. Two persistence modules FR and GR are
strongly ε-interleaved if there exist two families of homomor-
phisms {φα : Fα → Gα+ε}α∈R and {ψα : Gα → Fα+ε}α∈R
such that the diagrams of Eq. (1) commute ∀α ≤ α′ ∈ R.

Clearly, if FR and GR are strongly ε-interleaved, then they
are also weakly ε-interleaved. Conversely, if FA and GB
are weakly ε-interleaved, with A = B = R, then they are
strongly 3ε-interleaved, and this bound is tight — see the
full version [8]. Nevertheless, FA and GB cannot be strongly
interleaved when A,B ( R.

4.2 Persistence diagrams of weakly
interleaved persistence modules

Theorem 4.3 (Weak Stability Theorem).
Let FA and GB be tame persistence modules. If FA and GB
are weakly ε-interleaved, then d∞B (DFA, DGB) ≤ 3ε, and
this bound is tight.

Proof. Let α0 ∈ R be as in Definition 4.1 (i). Consider
the persistence module Hα0+εZ defined by: ∀n ∈ Z,

Hα0+2nε = Fa+2nε and Hα0+(2n+1)ε = Gα0+(2n+1),

h
α0+(2n+1)ε
α0+2nε = φα0+2nε and h

α0+(2n+2)ε

α0+(2n+1)ε = ψα0+(2n+1)ε.

By commutativity of the diagram of Eq. (2), Fα0+2εZ and
Gα0+ε+2εZ are two discretizations ofHα0+εZ over 2ε-periodic
sets. Since Hα0+εZ itself is discrete, Corollary 3.5 implies
that d∞B (DFα0+2εZ, DGα0+ε+2εZ) ≤ 2ε. In addition, Fα0+2εZ
and Gα0+ε+2εZ are discretizations of FA and GB respectively,
therefore Theorem 3.7 implies that d∞B (DFA, DFα0+2εZ) ≤
2ε and d∞B (DGB , DGα0+ε+2εZ) ≤ 2ε. It follows then, by the
triangle inequality, that d∞B (DFA, DGB) ≤ 6ε.

In order to reduce the bound from 6ε to 3ε, we need to
study how the points of the above diagrams are moved by the
multi-bijections induced by the pixelization maps. Let m1

(resp. m2) denote the multi-bijection induced by pixα0+2εZ
between the diagrams DFA and DFα0+2εZ (resp. between
DHα0+εZ and DFα0+2εZ). Similarly, let m3 (resp. m4) de-
note the multi-bijection induced by pixα0+ε+2εZ between the

diagrams DHα0+εZ and DGα0+ε+2εZ (resp. between DGB
and DGα0+ε+2εZ). The map m = m−1

4 ◦m3 ◦m−1
2 ◦m1 is

then a multi-bijection between DFA and DGB . Let us track
the various possible images of a point p ∈ DFA through this
multi-bijection — please refer to Figure 2:
• m1(p) is at a vertex (u, v) of the grid Γα0+2εZ, marked

by a blue disc in the figure;
• m−1

2 ◦m1(p) lies among the four corners of the cell of
the grid Γα0+εZ that contains m1(p), namely: (u, v),
(u, v− ε), (u− ε, v), and (u− ε, v− ε), marked by red
crosses in the figure;
• the images of these four corners throughm3 are among

the four points (u−ε, v−ε), (u−ε, v+ε), (u+ε, v−ε)
and (u+ε, v+ε), marked by blue squares in the figure;
• since m4 is the restriction of pixα0+ε+2εZ to DGB , the

possible pre-images of m3 ◦m−1
2 ◦m1(p) are contained

in the union of the bottom left cells of (u− ε, v − ε),
(u − ε, v + ε), (u + ε, v − ε) and (u + ε, v + ε) in the
grid Γα0+ε+2εZ (the gray area in the figure).

All in all, m(p) belongs to the box (u − 3ε, u + ε] × (v −
3ε, v+ε]. Since p ∈ (u−2ε, u]× (v−2ε, v], we conclude that
‖p−m(p)‖∞ < 3ε. The tightness of this bound is proven in
the full version of the paper [8].

ε

ε

p

(u, v)

Figure 2: For the proof of Theorem 4.3.

4.3 Persistence diagrams of strongly
interleaved persistence modules

Theorem 4.4 (Strong Stability Theorem).
Let FR and GR be tame persistence modules. If FR and GR
are strongly ε-interleaved, then d∞B (DFR, DGR) ≤ ε.

The entire Section 4.3 is devoted to the proof of this result.
At a high level, our analysis follows the same scheme as in
[12]. First, we bound the Hausdorff distance between the
persistence diagrams of strongly ε-interleaved persistence
modules (Section 4.3.1). The key ingredient for this stage
is the so-called Box Lemma from [12], stated as Lemma 4.5
below, to which we provide a new proof based solely on pix-
elization arguments. Second, we move from Hausdorff to
bottleneck distance by means of an interpolation argument
(Section 4.3.2). However, differently from [12], we do not
interpolate at functional level, but rather at algebraic level
directly (Lemma 4.6), since in our context persistence mod-
ules are the only available data. In addition to being more
general, our strategy is interesting from a technical point
of view since it produces tame families of interpolating per-
sistence modules, which a naive function interpolation does
not always do.



4.3.1 Bound on the Hausdorff distance

Lemma 4.5 (Box Lemma).
Let FR and GR be tame, strongly ε-interleaved persistence
modules. Given α < β < γ < δ, let 2 denote the box (α, β]×
(γ, δ], and 2ε the box (α− ε, β + ε]× (γ − ε, δ + ε] obtained
by inflating 2 by ε. Then, the sum of the multiplicities of
the points of DFR contained in 2 is at most the sum of the
multiplicities of the points of DGR contained in 2ε.

Proof. If β + ε > γ − ε, then 2ε intersects the diag-
onal ∆, hence the total multiplicity of DGR ∩ 2ε is infi-
nite and thus at least the total multiplicity of DFR ∩ 2.
Assume now that β + ε ≤ γ − ε. Let A = {α, β, γ, δ}
and B = {α − ε, β + ε, γ − ε, δ + ε}. Consider the A-
discretization of FR and the B-discretization of GR. Since
FR and GR are strongly interleaved, the following diagram
commutes (where diagonal arrows stand for the homomor-
phisms φα, ψα introduced in Definition 4.2):

Fα // Fβ

""EE
EE

// Fγ // Fδ

""EE
EE

Gα−ε

<<xxxx
// Gβ+ε

// Gγ−ε

<<yyyy
// Gδ+ε

Consider the mixed persistence module HA∪B defined by
the path Gα−ε → Fα → Fβ → Gβ+ε → Gγ−ε → Fγ →
Fδ → Gδ+ε in the above diagram. By commutativity of
the diagram, FA and GB are two discretizations of HA∪B .
The same tracking strategy as in the proof of Theorem 4.3
shows then that the pixelization maps send the points of
DFR∩2 injectively onto a subset of the points of DGR∩2ε,
thus concluding the proof of the lemma. The tracking is
illustrated in Figure 3 and detailed in the full version of the
paper [8].

p

α− ε α β β + ε

γ − ε

γ

δ

δ + ε

Figure 3: For the proof of Lemma 4.5.

Applying the Box Lemma in the vicinity of every point of
DFR∪DGR separately, we conclude that d∞H (DFR, DGR) ≤ ε
whenever FR and GR are tame and strongly ε-interleaved.

4.3.2 Bound on the bottleneck distance

Lemma 4.6. Let FR and GR be two strongly ε-interleaved
persistence modules. Then, for all s ∈ [0, ε], there exists a

persistence module eHsR that is strongly s-interleaved with FR
and strongly (ε − s)-interleaved with GR. Furthermore, this
persistence module is tame whenever FR and GR are.

Proof. We present here an intuitive version of the con-

struction of eHsR; a detailed proof is available in Appendix A.

For clarity, we let ε1 = s and ε2 = ε − s. Denote by
φF,Gα : Fα → Gα+ε and φG,Fα : Gα → Fα+ε the homo-
morphisms provided by Definition 4.2. We want to define
a persistence module HR that is close to both FR and GR.
The first idea is to consider their sum. However, we do not
define Ha as Fa ⊕ Ga because, although there is a natural
application from Fa−ε1 to Fa ⊕ Ga (using faa−ε1), there is
no natural way to define an application from Fa ⊕ Ga to
Fa+ε1 . Instead, we let HR be a translated sum of FR and
GR: Ha = Fa−ε1 ⊕ Ga−ε2 . There is an obvious injection

Fa−ε1 ↪→ Ha, while fa+ε1a−ε1 ⊕φ
G,F
a−ε2 provides a natural homo-

morphism Ha → Fa+ε1 . The situation with G is symmetric.

Fa−ε1−2ε2 Fa−ε1 Fa+ε1

Ha

Ga−2ε1−ε2 Ga−ε2 Ga+ε2

The persistence module HR has the features of both FR and
GR. However, the features that FR and GR have in common
appear twice in HR, and we want to identify them. Consider
an element of Fa−ε1−2ε2 . There are two ways of sending this
element into Ha: either through Fa−ε1 with fa−ε1a−ε1−2ε2

, or

through Ga−ε2 with φF,Ga−ε1−2ε2
. We want to identify these

two images. Similarly, we want to identify the two images
of an element of Ga−2ε1−ε2 through Fa−ε1 with φG,Fa−2ε1−ε2
or through Ga−ε2 with ga−ε2a−2ε1−ε2 . These two sets of identi-
fications are required for the diagrams to commute. On the
other hand, it only makes sense to identify two elements of
Ha if they have the same image in both Fa+ε1 and Ga+ε2 .
A key property is that pairs that we are allowed to identify
include all pairs that we want to identify to make the dia-
grams commute. We can therefore define a quotient persis-

tence module eHR, where eHa is the quotient of Ha by either
the minimum set of identifications (defined by the images
of Fa−ε1−2ε2 and Ga−2ε1−ε2) or the maximal set of iden-
tifications (defined by the kernels of the homomorphisms

Ha → Fa+ε1 and Ha → Ga+ε2). By construction, eHR is
strongly ε1-interleaved with FR and strongly ε2-interleaved
with GR.

The family ( eHsR)s∈[0,ε] of persistence modules interpolates

between FR and GR in the following sense1:

Lemma 4.7. eH0
R ' FR, eHεR ' GR, and ∀s, s′ ∈ [0, ε], eHsR

and eHs′R are strongly |s− s′|-interleaved.

Lemmas 4.6 and 4.7 provide the necessary ingredients for
the interpolation argument of [12] to apply, thus concluding
the proof of Theorem 4.4.

In the special case where persistence diagrams only have
finitely many points off the diagonal ∆, the argument of [12]
applies directly and proceeds as follows: to each interpolat-

ing module eHsR corresponds the following positive quantity:

δ(s) =
1

2
min

n
‖p− q‖∞, p ∈ D eHsR \∆, q ∈ D eHsR \ {p}o .

For any s, s′ ∈ [0, ε], eHs′R is said to be very close to eHsR if

|s−s′| < δ(s). In such a case, since eHsR and eHs′R are strongly
|s − s′|-interleaved, the Box Lemma 4.5 ensures that every

1We refer the reader to Appendix B for a purely technical
proof of this otherwise intuitive result.



point of D eHsR lying off the diagonal ∆ admits exactly one

point of D eHs′R within l∞-distance |s − s′|, which implies

that d∞B (D eHsR, D eHs′R ) ≤ |s − s′|. This is the so-called Easy
Bijection Lemma from [12].

Now, by a compactness argument, there is a sequence of
values 0 = s0 < s1 < · · · < sn < sn+1 = ε such that, for

each i = 0, · · · , n, either eHsiR is very close to eHsi+1
R or the

other way around. The conclusion follows then from the
Easy Bijection Lemma and from the triangle inequality:

d∞B (DFR, DGR) = d∞B (D eHs0R , D
eHsn+1

R )

≤
Pn
i=0 d∞B (D eHsiR , D

eHsi+1
R )

≤
Pn
i=0 |si − si+1| = ε.

In the general case where persistence diagrams may have
infinitely many points off the diagonal, additional technical-
ities must be taken care of. This can be done by means
of the Weak Stability Theorem 4.3, as detailed in the full
version of the paper [8].

5. CONCLUSION
We have shown that the notion of persistence diagram can

be extended, and its stability proven, beyond the framework
of [12]. Working at algebraic level directly, we have provided
a mean of comparing the persistence diagrams of functions
defined over different spaces, thus giving a positive answer to
an open question from [13]. To achieve our goals, we have in-
troduced several novel concepts and constructions that could
become useful theoretical tools. On the practical side, we
believe our results may enable new applications of the con-
cept of persistence, as they have already done in the context
of scalar field analysis [9].

An important question arising from our work is whether
the structure theorem of [21] still holds under our weaker
tameness condition (Definition 2.2): is it true that persis-
tence modules with identical persistence diagrams are iso-
morphic, even if the diagrams have infinitely (yet countably)
many points off the diagonal?

Our notion of proximity between persistence modules (Def-
inition 4.2) satisfies the axioms of a metric. In particular,
two persistence modules FR and GR are strongly 0-interleaved
if and only if (iff) they are isomorphic. Combined with the
correspondence and structure theorems of [21], this fact im-
plies that FR and GR have identical persistence diagrams iff
they are strongly 0-interleaved. An approximate version of
this result would be that FR and GR have ε-close persistence
diagrams in the bottleneck distance iff they are strongly ε-
interleaved. Theorem 4.4 proves one direction; the other
direction seems to be true as well, at least in cases where
the persistence modules considered are tame in the sense of
[12]. Its proof will be the subject of further developments.

Another possible extension of this work would be to multi-
dimensional persistence, where generalizations of the con-
cept of persistence diagram have been proposed, most no-
tably the rank invariant of [5]. Stability results for this
descriptor exist in several restricted contexts [3, 4], and it
would be interesting to see whether they can be extended to
a larger setting similar to the one of this paper.
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Appendix A — Proof of Lemma 4.6
For clarity, we let ε1 = s and ε2 = ε − s. Denote by φF,Gα :
Fα → Gα+ε and φG,Fα : Gα → Fα+ε the homomorphisms
provided by Definition 4.2.

We first define the translated sum HR by Hα = Fα−ε1 ⊕
Gα−ε2 . The applications hβα : Hα → Hβ defined for all x ∈
Fα−ε1 and y ∈ Fβ−ε2 by hβα((x, y)) = (fβ−ε1α−ε1 (x), gβ−ε2α−ε2(y))
make H a persistence module.

Define φF,Hα : Fα → Hα+ε1 by φF,Hα (x) = (x, 0) and
φG,Hα : Gα → Hα+ε2 by φG,Hα (y) = (0, y). Define also φH,Fα :

Hα → Fα+ε1 by φH,Fα (x, y) = fα+ε1
α−ε1 (x) + φG,Fα−ε2(y) and

φH,Gα : Hα → Gα+ε2 by φH,Gα ((x, y)) = φF,Gα−ε1(x) + gα+ε2
α−ε2 (y).

These homomorphisms satisfy some easy properties. In par-
ticular, φH,Fα+ε1

◦ φF,Hα = fα+2ε1
α , φH,Gα+ε2

◦ φG,Hα = gα+2ε2
α ,

φH,Gα+ε1
◦ φF,Hα = φF,Gα and φH,Fα+ε2

◦ φG,Hα = φG,Fα . Also notice

that hβ+ε1
α+ε1

◦φF,Hα = φF,Hβ ◦fβα and hβ+ε2
α+ε2

◦φG,Hα = φG,Hβ ◦gβα.

We can also prove that fβ+ε1
α+ε1

◦ φH,Fα = φH,Fβ ◦ hβα. For this,

we first verify the relation on the image of φF,Hα−ε1 :

fβ+ε1
α+ε1

◦ φH,Fα ◦ φF,Hα−ε1 = fβ+ε1
α+ε1

◦ fα+ε1
α−ε1 = fβ+ε1

α−ε1

= fβ+ε1
β−ε1 ◦ f

β−ε1
α−ε1

= φH,Fβ ◦ φF,Hβ−ε1 ◦ f
β−ε1
α−ε1

= φH,Fβ ◦ hβα ◦ φF,Hα−ε1 .

We then also check it on the image of φG,Hα−ε2 :

fβ+ε1
α+ε1

◦ φH,Fα ◦ φG,Hα−ε2 = fβ+ε1
α+ε1

◦ φG,Fα−ε2 = φG,Fβ−ε2 ◦ g
β−ε2
α−ε2

= φH,Fβ ◦ φG,Hβ−ε2 ◦ g
β−ε2
α−ε2

= φH,Fβ ◦ hβα ◦ φG,Hα−ε2 .

Since by definition Hα is generated by the images of φF,Hα−ε1
and φG,Hα−ε2 , the above equalities prove that fβ+ε1

α+ε1
◦ φH,Fα =

φH,Fβ ◦ hβα. Similarly, gβ+ε2
α+ε2

◦ φH,Gα = φH,Gβ ◦ hβα.

Fα−ε1−2ε2 Fα−ε1 Fα+ε1

Hα−2ε2 Hα−2ε1 Hα Hα+2ε1

Gα−2ε1−ε2 Gα−ε2 Gα+2ε1−ε2

The only property that is missing for H to be strongly ε1-
interleaved with F is that φF,Hα+ε1

◦ φH,Fα = hα+2ε1
α . And

indeed, this equality is usually not satisfied. However, we
still try to prove it to identify the obstruction.

As was done previously, we can study this relation sepa-
rately on the images of φF,Hα−ε1 and φG,Hα−ε2 . On the image of

φF,Hα−ε1 : φF,Hα+ε1
◦ φH,Fα ◦ φF,Hα−ε1 = φF,Hα+ε1

◦ fα+ε1
α−ε1 = hα+2ε1

α ◦
φF,Hα−ε1 , the relation is satisfied. On the image of φG,Hα−ε2 :

(φF,Hα+ε1
◦ φH,Fα − hα+2ε1

α ) ◦ φG,Hα−ε2 = φF,Hα+ε1
◦ φH,Fα ◦ φG,Hα−ε2 −

hα+2ε1
α ◦φG,Hα−ε2 = φF,Hα+ε1

◦φG,Fα−ε2 −φ
G,H
α+2ε1−ε2 ◦ g

α+2ε1−ε2
α−ε2 , so

(φF,Hα+ε1
◦φH,Fα −hα+2ε1

α )(x, y) = (φG,Fα−ε2(y),−gα+2ε1−ε2
α−ε2 (y)),

which is not necessarily zero. We therefore consider the fol-
lowing subspaces of Hα:

Fα =
n

(fα−ε1α−ε1−2ε2
(x), −φF,Gα−ε1−2ε2

(x)), x ∈ Fα−ε1−2ε2

o
,

Gα =
n

(φG,Fα−2ε1−ε2(y), −gα−ε2α−2ε1−ε2(y)), y ∈ Gα−2ε1−ε2

o
,

and we let eH be the persistence module defined by eHα =

Hα/(Fα + Gα). Call πα : Hα → eHα the quotient map.
Let z ∈ Fα, and let x ∈ Fα−ε1−2ε2 be such that z =

(fα−ε1α−ε1−2ε2
(x),−φF,Gα−ε1−2ε2

(x)). We have:

hβα(z) = (fβ−ε1α−ε1 (fα−ε1α−ε1−2ε2
(x)), gβ−ε2α−ε2(−φF,Gα−ε1−2ε2

(x)))

= (fβ−ε1β−ε1−2ε2
(x′), −φF,Gβ−ε1−2ε2

(x′)),

where x′ = fβ−ε1−2ε2
α−ε1−2ε2

(x) ∈ Fβ−ε1−2ε2 . In other words,

hβα(z) ∈ Fβ . Thus, hβα(Fα) ⊆ Fβ and hβα(Gα) ⊆ Gβ (same

proof), therefore hβα induces a homomorphism ehβα : eHα →eHβ such that ehβα ◦ πα = πβ ◦ hβα and the ehβα satisfy the

persistence module property: ehγβ ◦ ehβα ◦ πα = ehγβ ◦ πβ ◦ hβα =

πγ ◦ hγβ ◦ h
β
α = πγ ◦ hγα = ehγα ◦ πα, so ehγβ ◦ ehβα = ehγα.

Define now eφF,Hα : Fα → eHα+ε1 as πα+ε1 ◦ φF,Hα , andeφG,Hα : Gα → eHα+ε2 as πα+ε2 ◦ φG,Hα . To define eφH,Fα andeφH,Gα , we observe that Fα ⊆ kerφH,Fα and Gα ⊆ kerφH,Gα :
indeed, ∀(x, y) ∈ Fα−ε1−2ε2 ⊕Gα−2ε1−ε2 ,

φH,Fα ((fα−ε1α−ε1−2ε2
(x), −φF,Gα−ε1−2ε2

(x)))

= fα+ε1
α−ε1 ◦ f

α−ε1
α−ε1−2ε2

(x)− φG,Fα−ε2 ◦ φ
F,G
α−ε1−2ε2

(x)

= (fα+ε1
α−ε1−2ε2

− φG,Fα−ε2 ◦ φ
F,G
α−ε1−2ε2

)(x)

= 0

= fα+ε1
α−ε1 ◦ φ

G,F
α−2ε1−ε2(y)− φG,Fα−ε2 ◦ g

α−ε2
α−2ε1−ε2(y)

= φH,Fα ((φG,Fα−2ε1−ε2(y), −gα−ε2α−2ε1−ε2(y))),

and the proof is identical for φH,Gα . It follows that φH,Fα

and φH,Gα induce homomorphisms eφH,Fα : eHα → Fα+ε1 andeφH,Gα : eHα → Gα+ε2 such that φH,Fα = eφH,Fα ◦πα and φH,Gα =eφH,Gα ◦ πα.



It is easy to check that all the diagrams that commute for

H also commute when H is replaced by eH. For instance,eφH,Fα+ε1
◦ eφF,Hα = eφH,Fα+ε1

◦ πα+ε1 ◦ φF,Hα = φH,Fα+ε1
◦ φF,Hα =

fα+2ε1
α . The only thing left to prove, for F and eH to be

strongly ε1-interleaved, is that eφF,Hα+ε1
◦ eφH,Fα = ehα+2ε1

α . As
shown above, this is equivalent to the nullity of all the ele-

ments of Gα, which is obviously the case in eHα. We have

thus proved that eH is strongly ε1-interleaved with F and
(similarly) strongly ε2-interleaved with G. Note also that if

F and G are tame, then so is H and therefore so is eH.

Appendix B — Proof of Lemma 4.7
To avoid confusion, for all ε1 + ε2 = ε we denote by
F ⊗ε1,ε2 G the interpolating persistence module. We shall
prove here that the various interpolating modules are re-
lated by: (F ⊗ε1,ε2+ε3 G) ⊗ε2,ε3 G ' F ⊗ε1+ε2,ε3 G when
ε1 + ε2 + ε3 = ε.

Let H, J and K be the persistence modules defined
by Hα = Fα−ε1 ⊕ Gα−ε2−ε3 , Jα = Hα−ε2 ⊕ Gα−ε3 =
(Fα−ε1−ε2 ⊕ Gα−2ε2−ε3) ⊕ Gα−ε3 , and Kα = Fα−ε1−ε2 ⊕
Gα−ε3 . Consider the following subspaces of Hα:

FHα =

( “
fα−ε1α−ε1−2ε2−2ε3

(x), −φF,Gα−ε1−2ε2−2ε3
(x)
”
,

x ∈ Fα−ε1−2ε2−2ε3

)
,

GH
α =

( “
φG,Fα−2ε1−ε2−ε3(x), −gα−ε2−ε3α−2ε1−ε2−ε3(x)

”
,

x ∈ Gα−2ε1−ε2−ε3

)
.

Consider also the following subspaces of Jα:

HJ
α =

( “
hα−ε2α−ε2−2ε3

(x), −φH,Gα−ε2−2ε3
(x)
”
,

x ∈ Hα−ε2−2ε3

)
,

GJ
α =

( “
φG,Hα−2ε2−ε3(x), gα−ε3α−2ε2−ε3(x)

”
,

x ∈ Gα−2ε2−ε3

)
.

Consider finally the following subspaces of Kα:

FKα =

( “
fα−ε1−ε2α−ε1−ε2−2ε3

(x), −φF,Gα−ε1−ε2−2ε3
(x)
”
,

x ∈ Fα−ε1−ε2−2ε3

)
,

GK
α =

( “
φG,Fα−2ε1−2ε2−ε3(x), −gα−ε3α−2ε1−2ε2−ε3(x)

”
,

x ∈ Gα−2ε1−2ε2−ε3

)
.

The interpolating persistence modules are eH = F ⊗ε1,ε2+ε3

G = ( eHα = Hα/(FHα + GH
α )), eJ = eH ⊗ε2,ε3 G = ( eJα =

Jα/(FHα−ε2×0+GH
α−ε2×0+HJ

α+GJ
α)), and eK = F⊗ε1+ε2,ε3

G = ( eKα = Kα/(FKα + GK
α )). Now, our goal is to prove

that the map ψα : Jα → Kα defined by ψα(((x, y), z)) =

(x, gα−ε3α−2ε2−ε3(y) + z) induces an isomorphism between eJα
and eKα. HJ

α can be rewritten as FJα + GJ,2
α , where

FJα =

( “`
fα−ε1−ε2α−ε1−ε2−2ε3

(x), 0
´
, −φF,Gα−ε1−ε2−2ε3

(x)
”
,

x ∈ Fα−ε1−ε2−2ε3

)
,

GJ,2
α =

( ``
0, gα−2ε2−ε3

α−2ε2−3ε3
(x)
´
, −gα−ε3α−2ε2−3ε3

(x)
´
,

x ∈ Gα−2ε2−3ε3

)
.

Since GJ,2
α ⊆ GJ

α, we have eJα = Jα/(FHα−ε2 × 0 + GH
α−ε2 ×

0 + FJα + GJ
α). Now, GJ

α is the kernel of ψα. Besides,
ψα(Jα) = Kα, ψα(FJα) = FKα , ψα(GH

α−ε2 × 0) = GK
α and

ψα(FHα−ε2 × 0) = FK,2α where FK,2α ⊆ FKα . This proves that

ψα does induce an isomorphism eψα between eJα and eKα. It is
easy to check that the persistence homomorphisms Jα → Jβ
and Kα → Kβ are the same (through ψα and ψβ). We have
thus proved that (F ⊗ε1,ε2+ε3 G)⊗ε2,ε3 G ' F ⊗ε1+ε2,ε3 G.

This implies that F ⊗ε1,ε−ε1 G and F ⊗ε1′,ε−ε1′ G are
strongly |ε1−ε1′|-interleaved. To conclude the proof, we just

need to notice that FR and eH0
R are strongly 0-interleaved,

which means that eφF,H defines an isomorphism between FR

and eH0
R with inverse eφH,F . The same holds for GR and eHεR.

Fα−ε1−ε2−2ε3 Fα−ε1−ε2

Hα−ε2−2ε3 Hα−ε2

Jα ' Kα

Gα−2ε2−3ε3 Gα−2ε1−2ε2−ε3 Gα−2ε2−ε3 Gα−ε3


