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Abstract

In this paper we presenta completecomputationabipelinefor extractinga compactshapedescriptorfor curve
point cloud data. Our shapedescriptor called a barcode is basedon a blend of techniquesfrom differential
geometryandalgebraic topolagy. We alsoprovidea metricoverthespaceof barcodesgenablingfastcomparisorof
PCDsfor shaperecaynition and clustering To demonstate the feasibility of our appoad, we haveimplemented
it and provide experimentalevidencein shapeclassi cationand parametrization.

1. Intr oduction

In this paper we presenta completecomputationapipeline
for extracting a compactshapedescriptorfor curve point

cloud data.Our shapedescriptor calleda barcode is based
on a blendof techniquedrom differentialgeometryandal-

gebraictopology We also provide a metric over the space
of barcodesgnablingfast comparisonof PCDsfor shape
recognitionand clustering. To demonstratethe feasibility
of our approach,we have implementedour pipeline and
provide experimentalevidencein shapeclassi cation and
parametrization.

1.1. Prior Work

Shapeanalysisis a well-studied problemin mary areas
of computerscience,suchasvision, graphics,and pattern
recognition.Researcherg vision rst introducedthe idea
of using compactrepresentationsf shapespor shapede-
scriptors, for two-dimensionaldata or images.They de-
rived descriptorsusing diverse methods,such as topolog-
ical invariants,momentinvariants,morphologicalmethods
for skeletonsor medialaxes,andelliptic Fourierparameter
izations[DHS00,GW02, SKKO01]. More recently the avail-
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ability of large setsof digitized three-dimensionashapes
hasgeneratedhterestin 3D descriptorgFan90,Fis89],with
techniquesuchasshapdlistributions[OFCDO01]andmulti-
resolutionReebgraphgHSKKO1]. Ideally, a shapedescrip-
tor shouldbe invariantto rigid transformationgnd coordi-
natizethe shapespacen a meaningfulway.

The idea of using point cloud data or PCD as a dis-
play primitive was introducedearly [LW85], but did not
become popular until the recent emegence of massive
datasetsPCDsarenaow utilizedin renderingAA03, RLOO],
shape representationfABCO 01,ZPKG02], and model-
ing [AD03, PKKGO03, among other uses. Furthermore,
PCDs are often the only possibleprimitive for exploring
shapesn higherdimensiongDG03,LPMO01, TdSLOO0].

1.2. Our Work

In a previous paper we initiated a study of shapedescrip-
tion via the applicationof persistenthomologyto tangen-
tial constructiongCZCGO04. We proposeda robustmethod
thatcombineghedifferentiatingoower of geometrywith the
classifyingpower of topology We alsoshavedthe viability
of ourmethodthroughexplicit calculationgor one-andtwo-
dimensionaimathematicabbjects(curvesandsurfaces.)in
this paper we shift our focusfrom theoryto practice,illus-
tratingthefeasibility of our methodin the PCD domain.We
focusoncurvesin orderto exploretheissueghatarisein the
applicationof ourtechniquesWe mustemphasizehowever,
thatwe view curvesasone-dimensionamanifolds,andin-
sistthatall our solutionsextendto n-dimensionamanifolds.
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Therefore we avoid heuristicsbasedon akusing character
istics of curve PCDsandsearchfor generaltechniqueghat
will besuitablein all dimensions.

1.3. Overview

Therestof thepapeiis organizedasfollows. In Section2 we

review the theoreticalbackgroundor our shapedescriptor
We believe thatanintuitive understandingf this materialis

sufcient for appreciatinghe resultsof this paper Section3

containsthe algorithmsfor computingbarcodesfor PCDs
sampledfrom closedsmoothcurves. We also describethe

computationof the metric over the spaceof barcodesWe

apply our techniquego familiesof algebraiccurvesin Sec-
tion 4 to demonstrateheir effectivenessin Section5, we

extend our systemto generalPCDsthat may include non-

manifoldpoints,singularitiespoundarypoints,or noise We

thenillustratethepower of ourmethodghroughapplications
to shapeclassi cationandparametrizatiorin Section6.

2. Background

In this section,we review thetheoreticabackgrouncheces-
saryfor our work. To male the discussioraccessibleo the
non-specialistpur expositionwill have an intuitive avor.

However, we refer the interestedreaderto formal descrip-
tionsalongtheway.

2.1. Filter ed Simplicial Complex

Let S be a setof points. A k-simple is a subsetof S of

sizek+ 1 [Mun84]. A simplex may be realizedgeomet-
rically as the corvex hull of k+ 1 afnely independent
pointsin REGd kA realizationgivesusthe familiar low-

dimensionalk-simplices:vertices edges and triangles A

simplicial complex is a setK of simpliceson S suchthat

if s 2 K,thent s impliest 2 K. A subcomple of K is a

simplicial complec L K. A ltr ation of acomplex K is a

nestedsequencef complees; = KO k! KM= K.

We call K a Iter ed complex and shav a small examplein

Figurel.

2.2. PersistentHomology

Supposewe are given a shapeX that is embeddedn RS
Homolayy is an algebraicinvariantthat countsthe topolog-
ical attributes of this shapein termsof its Betti numbes
b; [Mun84]. Speci cally, bg countsthe numberof compo-
nentsof X. b, is the rank of a basisfor the tunnelsthrough
X. Thesetunnelsmay be viewed as forming a graphwith
cycles[CLRSO01. b, countsthe numberof voidsin X, or
spaceshatareenclosedy theshapeln thismannerhomol-
ogy givesa nite compactdescriptionof the connecwity of
theshapeSincehomologyis aninvariant,we mayrepresent
ourshapecombinatoriallywith asimplicialcomple thathas
the sameconnectiity to getthe sameresult.
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Figure 1: A lter ed comple with newly addedsimplices
highlighted.We showthe persistentinterval setin ead di-
mensiorbelowthe ltr ation. Eac persistentinterval shown
is the lifetime of a topolagical attribute createdand de-
stroyedby the simplicesat the low and high endpointsye-
spectively

Supposenow that we are also given a processfor con-
structing our shapefrom scratch.Such a growth process
givesanevolving shapehatundegoestopologicalchanges:
new componentappeaandconnecto theold onestunnels
arecreatedandclosedoff, andvoidsareenclosedand lled
in. Persistenthomolay is analgebraidnvariantthatidenti-
es the birth anddeathof eachtopologicalattribute in this
evolution [ELZ02, ZC04. Eachattribute hasa lifetime dur
ing whichit contritutesto someBetti numberWe deemim-
portantthoseattributeswith longerlifetimes,asthey persist
in beingfeatureof theshapeWe mayrepresenthislifetime
asaninterval, asshavn in Figurel for our smallexample.
A featuresuchasthe rst componentn ary Itration, may
live forever andthereforehave a half-in nite intenal asits
lifetime. Persistenhomologydescribeshe connectity of
our evolving shapevia a multisetof intenvalsin eachdimen-
sion. If we represenbur shapewith a simplicial comple,
we mayalsorepresentts growvth with a ltered complex.

2.3. Filtered TangentComplex

We examinethegeometryof our shapeby looking atthetan-
gentsat eachpoint of the shape Although our approactex-

tendsto ary dimensionwe restrictour de nitions to curves
asthey arethefocusof this paperandsimplify the descrip-
tion.

Let X beacurein R2. Wede ne T(X) X S'tobe
thesetof thetangentsatall pointsof X. Thatis,

Oisy = (weoy i fim AXHEZIX) O
T°(X) = (x,z)JtlllmOf—O :

A point(x;z) in TO(X) representatangentvectorata point
x 2 X in the directionz 2 St. The tangent complex of X
is the closureof T, T(X) = TO(X) R? St T(X)is
equippedwith a projectionp: T(X) ! X that projectsa
point (x;z) 2 T(X) in the tangentcomple onto its base-
pointx2 X,andp (x) T(X) isthe ber atx.

¢ TheEurographicsAssociation2004.
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We may lter thetangentcomplex usingthe cunatureat
eachpoint. We let Ti2(X) bethesetof points(x;z) 2 T(X)
where the cunature k(x) at x is lessthan k, and de ne
Tk(X) bethe closureof T(X) in R St We call the k-
parametrizedamily of spaced Tk(X)gk o the Iter edtan-
gentcomple, denotedby T " (X).

2.4. Barcodes

We geta compactdescriptorby applying persistenthomol-

ogy to the ltered tangentcomplex of our shape.Thatis,

the descriptorexaminesthe connectvity of not the shape
itself, but that of a derived spacethatis enrichedwith ge-

ometricinformation aboutthe shape We de ne a barcode
to be theresultingsetof persistencéntenalsfor T (X) in

eachdimension For curves,the only interestingbarcodeis

usuallythe bg-barcodewhich describeghe lifetimes of the
componentin thegrowing tangentomple. We alsode ne

aquasi-metricametricthathasl asapossiblevalue,over

thecollectionof all barcodesOurmetricenablesusto utilize

barcodessshapealescriptorsaswe cancompareshapedy

measuringhe differencebetweertheir barcodes.

Letl;J beary two intervalsin abarcodeWe de ne their
dissimilarity d(I;J) to be the lengthof their symmetricdif-
ference:d(l;J) = jI[ J I\ Jj. Notethatd(l;J) may be
in nite. Givena pair of barcodedB; andB,, a matding is
asetM(By;B;) Bi1 By=f(l;J)j1 2 By andJd 2 Byg,
sothatary intenal in By or B, occursin at mostone pair
(1;J). Let M1; M2 betheintervalsfrom By ; By, respectiely,
thatarematchedn M, andlet N be the non-matchednter
valsN= (B Mj)[ (B2 My). GivenamatchingM for
B1 andB,, we de ne thedistanceof B; andB; relativeto M
to bethesum

a diy+ aiju @
(1;3)2M L2N

Dm(By1:B) =

We now look for the bestpossiblematchingto de ne the
quasi-metrid (By; B2) = miny Dm(By;B)).

3. Computing Barcodes

In this section,we presenta completepipeline for com-

puting barcodesfor a PCD. Throughoutthis section,we

assumethat our PCD P containssamplesfrom a smooth
closedcurve X  R2. Beforewe computethe barcodewe

needto constructthe tangentcomplex. Sincewe only have

sampledrom the original spacewe canonly approximate
the tangentcomplex. We begin by computinga nev PCD,

p l(P) T(X), that sampleshe tangentcomple for our

shapeTo capturdts homologywe rst approximateheun-

derlying spaceandthencomputea simplicial comple that
representits connectiity. We Iter thiscomplex by estimat-
ing the curvatureat eachpoint of p l(P). We concludethis

sectionby describinghebarcodecomputatiorandgiving an

algorithmfor computingthe metriconthebarcodespace.

¢ TheEurographic#ssociation2004.

3.1. Fibers

Supposeve aregivenaPCDP, asshavn in Figure2(a).We
wish to computethe ber at eachpoint to generatea new
PCDp 1(P) thatsampleghetangenttomple T(X). Natu-
rally, we mustestimatethe tangentdirections,aswe do not
have the underlyingshapeX from which P was sampled.
We do so by approximatinghe tangentline to the curve X
at point p 2 P via a total leastsquaes t that minimizes
the sumof the squaref the perpendiculadistance®f the
line to the point's nearesheighborsLet S be the k nearest
neighborsto p, andlet xg = % éik= 1% bethe averageof the
pointin S We assumehatthebestline passeshroughxgp. In
generalthe hyperplaneP (n; xg) in R" whichis normalto n
andpasseshroughthepointxg hasequation(x xg) n= 0.
Theperpendiculadistancefrom ary pointx; 2 Sto this hy-
perplandsj(x; Xp) nj, providedthanjnj= 1.LetM bethe
matrixwhoseith row is (X;  %g)" . ThenMn is thevectorof
perpendiculadistancedrom pointsin S to the hyperplane
P (n;%p), andthetotalleastsquare§TLS) problemis to min-
imizejMnjz. The eigervectorcorrespondingo the smallest
eigermvalue of the covariancematrix MTM is the normalto
thehyperplaneP (n; xg) thatbestapproximateshe neighbor
setS. Therefore for a point p in two dimensionsthe ber
p 1(p) containghe eigervectorcorrespondingo thelarger
eigervalue,aswell asthe vectorpointingin the reversedi-
rection.

We note that it is betterto use TLS herethan ordinary
leastsquaes(OLS), asthe optimalline foundby theformer
methodis independenbf the parametrizatiorof the points.
Also, whenthe underlyingcurve is not smooth we mayuse
TLS to identify points nearthe singularitiesby observing
whenthe eigervaluesareclose.

Choosinga correctneighborhoodsetis a fundamentais-
suein PCD computationandrelatesto the correctrecovery
of thelosttopologyandembeddingf the underlyingshape.
The neighborsetS may containeitherthe k nearesneigh-
borsto p, or all pointswithin a disc of radiuse. The ap-
propriatevalueof k or e dependon local samplingdensity
local featuresize, and noise,and may vary from point to
point. It is standardpracticeto settheseparametergmpir
ically [DG03,PKKGO03 TdSL0(, althoughrecentwork on
automaticestimationof neighborhoodsizesseemspromis-
ing [MNGO4]. In our currentsoftware, we estimatek for
eachdatasetindependentlyWe hopeto incorporateauto-
maticestimationinto our softwarein the nearfuture.

3.2. Approximated T (X)

We now have a samplingp l(P) of the tangentcomple
T(X), asshowvn in Figure2(b) for our example.This setis
discreteandhasnointerestingopology Theusualapproach
is to centeran e-ball Be(p) = fxj d(p;xX) eg, a ball of
radiuse, at eachpoint of p l(P). This approachis based
on the assumptiorthat the underlyingspaceis a manifold
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(a)PCDP

(b) Fibersp 1(P)

(c) Approx. T(X)

(d) Comple (e) bp-barcode

k=0.5

Figure 2: Givena noisyPCD P (a), we computethe bersp 1(P) (b) by tting lineslocally. In the volume the z-axiscorre-
sponddo tangentangle sothetop andthebottomof thevolumeare glued.\We centere-ballswith e= 0:05at the ber pointsto
get a space(c) that appmoximateshetangentcomple. The bers andunionof balls are colored accoding to curvatue using
the hot colormapshown.Thecurvatue estimatesappearnoisybecausef the small variation. We captuie the topolagy of the
unionof balls usingthe simplicial comple (d). We showthe a-comple for the unionof ballsin the gur e (with a = €) asit has
a nicegeometricrealization.In practice we utilize the Ripscomple. Applyingpersistenthomolay, we getthe bg-barcode(e).

or locally at. Our approximationto T(X) is the union of
e-ballsaroundthe ber points:

[
T(X) Be(p):
p2p (P)
Two issuesarise, however: rst, we needa metric d on
R2 sl sothatwe cande ne whatane-ball is, andsecond,
we needto determineanappropriatevaluefor e.

Wede ne aEuclidean-lile metricgeneralljonR" S 1
asds’ = dx?+ w?dz?. Thatis, thesquarediistancebetween
thetangentvectorst = (x;z) andt®= (xo; zo) is givenby

n n
Pt:th= & (v D+w 3 @ D%
i=1 i=1
wherew is a scalingfactor Here,the distancebetweenthe
two directionsz;z°2 S" 1 is the chordlength as opposed
to thearclength.The rst measurepproximateshe second
quite well whenthe distancesare small, andis alsomuch
fastercomputationally

The choiceof the scalingfactorw in our metric depends
onthenatureof thePCDandourgoalsin computingthetan-
gentcomple. A large value of w will spreadthe points of
p 1(P) outin theangulardirections.This is usefulfor seg-
mentingan objectcomposedf straightpieces,suchasthe
letter "V'. However, too muchseparatiorcanleadto errors
for smoothcurveswith high curvatureregions, suchasan
eccentricellipse.In suchregions, the angularseparatiorat
neighboringbasepointehangesapidly, yielding pointsthat
arefurtherapartin p 1(P). In thesecasesasmallervalueof
w maintainsthe connecwity of X, while still separatinghe
directionsenoughto computethebarcodegor T (X). Setting
w = 0 projectsthe bers p 1(P) backto their basepoint®.

Thereis, of courseno perfectchoicefor e, asit depends

notonly onthefactorsdescribedn theprevioussection but
alsoonthevalueof thescalefactorw in themetric.We need
to choosee to beatleastlarge enoughsothatthe basepoints
areproperlyconnectedvhenw = 0. Whenw is small,then
thestartingeis usuallysufcient. Whenw is large,theunion
of e-balls is lessconnectedwhich may be preciselywhat
we want, suchasfor theletter 'V'. We have deviseda rule
of thumbfor settinge. Recallthatcurvatureis de ned to be
k= %Jg,wherej isthetangentangleandsis arc-lengthalong
X. Then,two pointsthat are Dx apartin a region with cur
vaturek have tangentanglesroughlyDj  kDx apart.Since
the chord length Dz approximateshe arc lengthDj on St
for smallvalues,the squaredistancebetweemeighboring
pointsin p 1(P) is approximatelydx?(1+ (wk)?). So,

P Dx2(1+ (wk)?2)

e @

3.3. Complex

We now have an approximationto the tangentcomple as
aunionof balls. To computeits topologyef ciently, we re-
quire a combinatorialrepresentationf this unionasa sim-
plicial comple. Thissimplicialcomplex T (P) musthavethe
sameconnecwity asthe union of balls, or the samehomo-
topytype

A commonlyusedcomple in algebraictopologyis the
Ced comple. For a setof m pointsM, the Cechcomple
looksattheintersectiorpatternof theunionof e-balls:

C(M)= cowT|T M; Be(t) 6 ;
2T

Clearly, the Cech comple is homotopicto the union of
balls. Unfortunately it is also expensve to compute,as

¢ TheEurographicsAssociation2004.
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we needto examineall subsetsf the pointsetfor poten-
tially 4L, ¥ = 2™?1 1simplicesFurthermorethecom-
plex may have high-dimensionakimplices even for low-
dimensionalpointsets.If four balls have a commoninter
sectionin two dimensionsthe Cechcomplex for the point
setwill includeafour-dimensionakimplex.

A commonapproximationto the Cech comple is the
Ripscomplex [Gro87]. Intuitively, this complex only looks
at the intersectionpatternbetweenpairs of balls, andadds
higher simpliceswheneer all of their lower sub-simplices
arepresent:

Re(M)=fconwT T M;d(st)
NotethatG—,(M) Re(M) for all e andthattheRipscom-
plex mayhave differentconnectvity thantheunionof balls.
TheRipscomplex is alsolargeandrequiresd ' timefor
computingk-simplices.However, it is easierthanthe Cech
complex to computeandis oftenusedin practice.

e st2Tg:

Sincewe are computingbg-barcodesin this paper we
only requiretheverticesandedgesn T(P). At thislevel, the
CechandRips comples areidentical. For higherdimen-
sional PCD suchas pointsfrom surfaces however, we will
needtrianglesand, at times, tetrahedrafor computingthe
barcodesWe arethereforeexaminingmethodsfor comput-
ing smallcompleesthatrepresenthe unionof balls. A po-
tential approachutilizes a-complees subcomplges of the
Delaunaycomple, the dual to the Voronoidiagramof the
points [dBvKOS97 Ede95]. Thesecomplees are geomet-
rically realizable,are small, and their highest-dimensional
simpliceshave the samedimensionastheembeddingpace.
We may view our metricR"  §" ! asa Euclideanmetric
by rst scalingthe tangentson S” Ltolie ona sphereof
radiusw. Then,we may computea-compleeseasily pro-
vided we connectthe complec correctlyin the tangentdi-
mensionacrossthe top/bottomboundary Figure 2 displays
renderingsof our spacewith the correctscalingaswell as
ana-comple with a = e. A fundamentaproblemwith this
approachhowever, is thatwe needto Iter a-complexesby
curvature.Currently we do not know whetherthis is pos-
sible. An alternatebut attractve methodis to computethe
witnesscomplex. Thiscomple utilizesa subsamplef land-
mark pointsto computesmall complexes that approximate
thetopologyof theunderlyingball-set{[dSCO04.

3.4. Filtered TangentComplex

We next needto lter the tangentcomplec using the cur-
vatureat the basepointRecallthat the curvatue at a point
x 2 X in directionz is k(x;z) = 1=r (x;z), wherer is the
radiusof the osculatingcircle to X at x in directionz. We
needto estimatethis cunatureat eachpoint of p (P), in
orderto constructhe ltration onT(P) requiredto compute
barcodesWe thenassignto eachsimplex the maximumof
the curvaturesatits vertices.

Ratherthanestimatingthe osculatingcircle, we estimate

¢ TheEurographic#ssociation2004.

the osculatingparabola asit is computationallymore ef -
cient. Two curnvesy = f(x) andy = g(x) in the planehave
secondrder contactatxg iff f(xg) = g(Xo), fA%0) = g%xo)
and f%xp) = g®{xo). So, if X admitsa circle of second-
ordercontactthenit alsoadmitsa parabolaof second-order
contact.Considerthe coordinateframe centeredat x 2 X
with vertical axis normal to X. Supposethe curvature at
x is k = 1=r, that s, the osculatingcircle has equation
x>+ (y r)?=r?. This circle hasderivativesy’ = 0 and
y%°= 1=r atx. Integrating,we nd thatthe parabolawhich
hassecond-ordecontactwith this circle,andhencewith X,
hasequationy = x?=2r , asshavn in Figure3.

Figure 3: Theosculatingcircle andparabolato X (dashed)
at x. Thecircle has center(0;r), the parabola has focus
(0;r=2). Thecurvatueof X atxisk = 1=r.

We agpin approximatethe shapelocally using a set of
neighborhoodoointsfor eachpointin P. To nd the best-
t parabolawe do not utilize the TLS approachasin Sec-
tion 3.1, asthe equationsthat minimize the perpendicular
distanceto a parabolaareratherunpleasantinsteadwe use
OLS which minimizesthe vertical distanceto the parabola.
Naturally the resulting paraboladependauponthe coordi-
nateframein which the points are expressedFortunately
we have alreadydeterminedhe appropriateframeto usein
computingthe bers in Section3.1. Oncewe computethe
ber at p, we move the nearesheighborsSto a coordinate
frame with vertical axis the TLS best- t normal direction.
We setthe origin to beXg in this coordinatedrame(the aver-
ageof thepointsin §) althoughwe do notinsistthatthever
tex of the paraboldies preciselythere. We then t avertical
parabolaf (X) = cg+ c1x+ coxP asfollows. Supposéhecol-

Let
0

1 x X

1 % %
A=g . . .

1o

C= (coc;c);
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If all pointsof Slie on f, thenAC = Y; thush = AC Yis
the vectorof errorsthatmeasureshe distanceof f from S.
We wishto nd thevectorC thatminimizesjhj. Settingthe
derivativesof j hj2 to zerowith respecto f ¢;g, we solve for
Ctoget

c=(Ap) ATy:

Thecurvatureof theparabolaf (X) = ¢co+ c1x+ X atits
vertex is 2cp, andthis is our curvatureestimatek at p. We
usethis curvatureto obtaina ltration of thesimplicialcom-
plex T(P) thatwe computedn thelastsection.This Itered
complex approximated " (X), the Itered tangenttomple
describedn Section2.3. For our example,Figure 2(b) and
2(c)shav the bers p  *(P) andunionof e-ballscoloredac-
cordingto cunature,usingthe hot colormap.

3.5. Metric Spaceof Barcodes

We now have computeda ltered simplicial comple that
approximatesT " for our PCD. We next computethe bg

barcodesusing an implementationof the persistencealgo-

rithm [ZCO04]. Figure 2(e) shaws the resultingbg-barcode
for our samplePCD. As expectedthe barcodecontainswo

long intenals, correspondingo the two persistenttompo-
nentsof the tangentcomple thatrepresenthe two tangent
directionsat eachpoint of a circle. The noisein our PCD
is re ected in smallintervalsin the barcodewhich we can
discardeasily

To computethe metric, we modify the algorithmthatwe
gave in a previous paper[CZCG04 soit is robust numer
ically. Given two barcodesB;; By, our algorithm computes
themetricin threestagesin the rst stagewe simply com-
parethenumberof half-in nite intervalsin thetwo barcodes
andreturnl in the caseof inequality In the secondstage,
we computethe distancebetweerthe half-in nite intenvals.
We sort the intenvals accordingto their low endpointsand
match them one-to-oneaccordingto their ranks. Given a
matchedpair of half-in nite intervals| 2 By;J 2 By, their
dissimilarityis d(1;J) = jlow(l) low(J)j, wherelow( )
denoteghelow endpointof anintenal.

In the third stage,we computethe distancebetween
nite internvals using a matching problem. Minimizing
the distanceis equivalent to maximizing the intersection
length[CZCG04. We accomplistthelatterby recastinghe
problemasa graphproblem.Given setsB; andB,, we de-
ne G(V;E) to be a weightedbipartite graph [CLRSO0]].
We placea vertex in V for eachintenval in B1[ By. Af-
ter sorting the intenvals, we scan the intenals to com-
pute all intersectingpairs betweenthe two sets[ZE02].
Eachpair (1;J) 2 By B, addsan edgewith weight jlI \
Jj to E. Maximizing the similarity is equialent to the
well-known maximumweight bipartite matcing problem.
In our software, we solve this problemwith the function
MAX_WEIGHT_BIPARTITE_MATCHIN@om the LEDA

graphlibrary [Alg04, MN99]. We thensumthedissimilarity
of eachpair of matchedntenvals,aswell asthelengthof the
unmatchedntervals,to getthedistance.

4. Algebraic Curves

Having describedour methodsfor computingthe metric
spaceof barcodeswe examine our shapedescriptorfor
PCDsof familiesof algebraiccurves. Throughoutthis sec-
tion, we usea neighborhoof k = 20 pointsfor computing
bers andestimatingcurvature.

4.1. Family of Ellipses

Our rst family of spacesare ellipsesgiven by the equa-

tion § + é = 1. We computePCDsfor the ve ellipses
shavn in Figure4 with semi-majoraxisa= 0.5 andsemi-
minor axesb equalto 0.5, 0:4, 0:3, 0:2, and 0:1, from top
to bottom. To generatethe point sets,we select50 points
per unit length spacedevenly alongthe x- andy-axes,and
then projectthesesamplesonto the true curve. Therefore,
the pointsareroughly Dx = 0:02 apart.We thenadd Gaus-
siannoiseto eachpointwith mean0 andstandardieviation
equalto half the inter-point distanceor 0:01. For our met-
ric, we usea scalingfactorw = 0:1. To determineanappro-
priate valuefor e for computingthe Rips comple, we uti-
lize our rule-of-thumb:Equation(2) from Section3.2. The
maximt@cur\aturefor the ellipsesshavn is Kmax= 50, SO
e 0:02 1+52=2 0:05.Thisvaluesuccessfullgonnects
points with close basepointsand tangentdirections,while
still keepingantipodalpointsin the individual bers sepa-
rated.

4.2. Family of Cubics

Oursecondamily of spacesrecubicsgivenby theequation
y= x3  ax The vecubicsshavnin Figure5 have a equal
to 0, 1, 2, 3, and4, respectiely. In this case the portion of

the graphsampleds approximatelythreeby three.Iln order
to have roughly the samenumberof pointsasthe ellipses,
we selectl5 pointsper unit lengthspacedvenly alongthe
x- andy-axes, and projectthem as before.The pointsof P

arenow roughly 0:06 apart.We add Gaussiamoiseto each
pointwith mean0 andstandaraieviation half theinter-point
distanceor 0:03. For our metric, we usew = 0:5, primar

ily for aesthetiaeasonsasthe bers arethenmore spread
out. Themaximumcurvatureon the cubicsis kmax 8, and
our rule-of-thumbsuggestshatwe neede  0:4. However,

e= 0:2is sufcient in thiscase.

5. Extensions

In Section3, we assumedhat our PCD was sampledfrom
a closedsmoothcurwe in the plane.Our PCDsin the last
section,however, violated our assumptioras both families

¢ TheEurographicsAssociation2004.
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Figure 4: Family of ellipses:PCDP, bersp *(P) colored
by curvatue, andbg-barcode

hadaddednoise,andthe family of cubicsfeaturedbound-
ary points.Our methodperformedquite well, however, and
naturally we would like our methodto generalizeto other
misbehaing PCDs.In this section,we characterizeseveral
suchphenomend-or eachproblem wedescribgossibleso-
lutionsthatarerestrictionsof methodghatwork in arbitrary
dimensions.

5.1. Non-manifold points

Supposehatour PCDP is sampledrom ageometricobject
X thatis not a manifold. In otherwords,therearepointsin

the objectthat are not containedin ary neighborhoodhat
canbe parametrizedy a Euclideanspaceof somedimen-
sion. In the caseof curves,a non-manifoldpoint appearsat
a crossing wheretwo arcsintersecttrans\ersally For ex-

ample,thejunctionpoint of theletter 'T' is a non-manifold
point. We would like our methodto managenicely in the
presencef non-manifoldpoints.

¢ TheEurographic#Association2004.
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Figure 5: Family of cubics:PCD P, bersp *(P) colored
by curvature, andbg-barcode

Ourapproachs to createthetangentomple for P asbe-
fore, but remove pointsfor which thereis no well-de ned
linear approximationdue to proximity to a singularpoint
in X. Suchpointsareidenti ed by a relatively large ratio
betweenthe eigervaluesof the TLS covariancematrix con-
structedfor computing bers in Section3.1. The point re-
moval effectively sgmentsthetangentcomple into pieces.
With appropriatelylarge valuesof e and w, we can still
connectthe remainingpiecescorrectly Figure 6 shavs a
PCDfor theletter T'. Nearthenon-manifoldpoint, thetan-
gentdirection (height) and curvature (color) estimatesde-
viate from the correctvalues,andthe ber over the cross-
ing point appearsastwo rogue points away from the main
sgments.By removing all pointswhoseeigervalueratio is
greaterthan0:25, we successfullyeliminatebothrogueand
high-cunaturepoints.The gapintroducedin the bers over
thecrossbanof the T' is narraver thanthevertical (angular)
spacingbetweencomponentsWith a well-chosenvalue of
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e, thee-ballswill bridgethis gapyetleavefour components,
as desired.For the imageshere,we perturbedpoints 0:01
apartby Gaussiamoisewith mean0 andstandardieviation
0:005- half theinter-pointdistance Thetangentcomplexes
aredisplayedwith angularscalingfactorw = 2. Balls of ra-
diuse= 0:1 givethecorrectT (P).

5.2. Singularities

Our PCD may be sampledfrom a non-smoothmanifold.
For curves,anon-smoothpointtypically appeamasa “kink”,

suchasin theletter’V." We sayacorneris asingularpointin
thePCD.If thegoalis simplyto detectthe presencef asin-
gular point, thenour solutionto non-manifoldpointsabove
— to snip out thosepointswith bad linear approximation—
works quitewell here,asFigure?7 displaysfor theletter V'

andparameterasabove.

Sometimeshowever, we would like to study a family
of spaceghat containsingularpointsto understandshape
variability. Since our curvature estimatesat a non-smooth
pointarelarge,they areincludedin the Iltered tangentom-
plex relatively late, breakingthe complex into mary com-
ponentsearly on. Moreover, the curvatureestimatescorre-
late well with the “kinkiness” of the singularity andenable
a parametrizatiorof the family, asan exampleillustratesin
the next section.This methodextendseasily to higher di-
mensionswith higherdimensionabarcodes.

5.3. Boundary points

We may have a PCD sampledfrom a spacewith bound-
ary. Counting boundarypoints of cures could be an ef-
fective tool for differentiatingbetweenthem.Currently our
methoddoesnot distinguishboundarypoints,but simply al-
lows themto get curvatureestimatessimilar to their neigh-
boring pointsin the PCD, as seenfor the shapesin Fig-
ures5, 6, and 7. We proposea method,however, that dis-
tinguishesboundarypointsvia one-dimensionalelativeho-
molagy. Around eachpoint p, we may constructBe(p) with
its boundarySe(p). For a manifold point, the relative ho-
mology group Hi(Be(p); Se(p)) hasrank 1. Around non-
manifold points, the group hasrank greaterthan 1. At a
boundarypoint, the group hasrank 0. This stratgy would

SRR PRI 3
3
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Figure 6: PCD for theletter T, all bersin p 1(P), and
ber s with eigenvalueratio lessthan0:25.

Figure 7: PCD for the letter V. all bersin p *(P), and
ber s with eigervalueratio lessthan0:25.

empaver our method,for example,to distinguishbetween
theletters™I' and’J' with serifs.We planto implementthis
stratgy in thenearfuture.

5.4. Noise

Finally, our PCD samplesnay containnoise,which affects
our methodin two differentways:

1. Noise may effectively thicken a curve so that it is no
longera one-dimensionabbject.Oncethe curwve is thick
enough|t becomessigni cantly dif cult to computere-
liable tangentandcunatureestimates.

2. Noisemayalsocreateoutliersthatdisrupthomologycal-
culationsby introducingspuriouscomponentshatresult
in long barcodentervals thatareindistinguishabldrom
genuinepersistentntervals.

We resole the rst problemin part by averagingthe esti-
matedcunaturevaluesover neighborhood®f eachpoint.

This hasthe effect of smoothingthe curvaturecalculations.
However, thisdoesnot x incorrecttangentestimatesvhich

canresultin a mis-connectedangentcomple. For some
real-world datasets for examplethe scanned-imumbersn

the MNIST databasef handwrittendigits [LeC], our tech-
niquesometimesastroublewith thetangentestimatesSee
Figure8 for anexampleof how this affectsthetangentcom-
plex.

We may resohe the secondproblemby consideringthe
densityof pointsin the point cloud, and preprocessinghe
PCD by removing pointswith low densityvalues.Another

Figure 8: Two examplesof hand-written scanned-indig-

its 0" fromthe MNISTDatabaseWe successfullgonstruct
T(P) ontheleft, but the misshaperteft sideof theright "0’

is too thick, resultingin tangent estimateerrors and an in-

correctT(P).
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stratgy which shavs promiseis to postponeincluding a
point in the Itration of T(P) until it is part of a compo-
nentwith at leastk points,for somethresholdsize k. Not
only doesthis omit singletonoutliers,but it alsoreduceghe
numberandsizeof thenoisyshortintervalswe seefor small
k in ourbarcodes.

6. Applications

In this section,we discussthe applicationof our work to
shapeclassi cation and parametrization\We have imple-
menteda completesystemfor computingand visualizing
ltered tangentcomplexes, andfor computing,displaying,
andcomparingbarcodes.

6.1. Classifying Shapes

To demonstratéhepower of ourtechniqudor shapeclassi -
cation,we applyit to acollectionof hand-writterscanned-in
lettersof thealphabetOuraimis notto outperformexisting
OCR techniqueshut presentan illuminating example.We
may partition the alphabetinto three classesbasedon the
numberof holes.Theletter 'B' hastwo holes,’A', "D, "O',
P, "Q’', and'R' have one hole, and the remainingletters
have none.This topologicalclassi cationis clearly unable
to distinguishbetweertheletters.However, whenwe look at
the topology of the tangentcomple, we gleanmore infor-
mation. For example,the letters’U' and V' arehomotory
equialent,but "U' is smoothwhile "V' hasakink. This sin-
gularity splits the tangentcomplex for V' into four pieces
asin Figure7, comparedo two piecesfor thetangentcom-
plex for “U'. In turn, the componentdecomehalf-in nite
intenalsin the bg-barcodesf for the letters:four for "V,
andtwo for “U'. Similarly, while "O" and’D' have thesame
topology they are distinguishableby the numberof half-
in nite intervals in their barcodesith the singularitiesin
‘D' generatingwo additionalintervals. Although 'D' and
V' have similar tangentspacesrecall that we may distin-
guishthemeasilythroughtheirtopology Evenwhenthelet-
tersareboth smooth we may usethe cunatureinformation
to distinguishbetweernthem.For example,the differencein
cunaturebetweerthe letters’C' and’I' resultsin different
low endpointdor thehalf-in nite intervalsin theirbarcodes.
Finally, theletters’A" and'R' have tangentcomplexesthat
split into six componentsBut again, the curved portion of
"R’ resultsin adifferentlow endpointfor a pair of intenvals,
andhenceadifferentbarcodethanfor "A'.

We scanten hand-writtencopiesof eachof the eightlet-
tersdiscussedind computethe distancebetweenthem us-
ing the barcodemetric of Section3.5. Figure9 displaysthe
resultingdistancematrix, whereblack correspondgo zero
distanceThelettersaregroupedaccordingto the numberof
componentén T(P). Thedistancebetweerlettersfrom dif-
ferentgroupsis in nite, re ectedin thelarge white regions
of the matrix.
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Figure 9: Distancematrix for the letters “A, 'R’, "D', V',
‘U, I, C, andTO'. We scanin tenhand-writteninstances
of eadh of theseeightletters. We mapthe distancebetween
ead pair to gray-scale with bladk indicatingzewo distance
Theletters are groupedaccoding to the numberof compo-
nentsin T(P). The distancebetweerletters from different
groupsis in nite, re ectedin the large white regionsof the
matrix.

6.2. Parameterizing a Family of Shapes

The two families of shapeswe sawv in Section4 may
be easily parametrizedvia barcodesFor a family of el-

. 2 .
lipses % + é = 1 with parametera b > 0, we can
shav mathematicallythat the bp-barcodeconsistsof two

half-in nite intervals a—bz;l andtwo long nite intenals

a%; b% [CZCGO4. For x ed a anddecreasind, the in-
tervals shouldgrow longer andthis is preciselythe beha-
ior of the barcodesn Figure 4. Similarly, for a family of
cubicswith equationy = X3 ax parametrizedoy a, the
barcodeshouldcontaintwo half-in nite intervals and four
long nite oneswith the exactequationsbeingrathercom-
plex [CZCG04. As the parametera grows in value, the
lengthof the nite intervalsshouldincreaseOnceagain,the
barcodecapturesthis behaior in practiceas seenin Fig-
ure5.

An interestingapplicationof shapeparametrizatioris to
recover the motion of a two-link articulatedarm, shavn in
Figure 10. Supposewe have PCDsfor the arm at angles
from 0 to 90 degreesin 15 degreeintervals, and we wish
to recover the sequencehat describeshe bendingmotion
of this arm. As the gure illustrates,sortingthe PCDs by
the lengthof the longest nite interval in their bg-barcodes
recoversthe motion sequenceThe noisein the datacreates
mary smallintenals. The intrinsic shapeof the arm, how-
ever, is describedby the two in nite intenals andthe two
long nite ones.To illustratethe robustnesof our barcode
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Figure 10: A bendingtwo-link articulatedarm. Thebg-barcodesenabletherecorery of the sequenceand hencethe motion.

N

L

Figure 11: Distancematrix for thetwo-link articulatedarm
in Figure 10. We haveten copiesof ead of the sevenartic-
ulationsof thearm. We mapthe distancebetweeread pair
to gray-scale with bladk indicatingzeo distance

metric, we computetenrandomcopiesof eachof the seven
articulationsand computethe distancebetweenthem. Fig-
ure1lldisplaystheresultingdistancematrix, wheredistance
is mappedas before.Pairs whosematrix entry is nearthe
diagonalof the matrix areclosein the sequenceandconse-
guentlyhave closearticulationangles They arealsoclosein
the barcodemetric, makingthe diagonalof the matrix dark.
We generateesacharm placing 100 points 0:02 apart,and
perturbingeachby Gaussiamoisewith mean0Q and stan-
darddeviation 0:01. We usew = 0:1 ande = 0:005 asfor
theellipsesin Figure4. In addition,we utilize the curvature
averagingstrat@y of Section5.4 usingthe twenty nearest
neighbordo copewith thenoise.

7. Conclusion

In this paperwe apply ideasof our earlier paperto pro-
vide novel methoddor studyingthequalitative propertiesof
onedimensionakpacesn theplane[CZCG04. Our method
is basedon studyingthe connecteccomponentof a com-

plex constructedfrom a curve using its tangentialinfor-

mation. Our methodgenerates compactshapedescriptor
called a barcodefor a given PCD. We illustrate the feasi-
bility of our methodsby applying them for classi cation
andparametrizatiorof severalfamiliesof shapePCDswith

noise. We also provide an effective metric for comparing
shapebarcodesfor classi cation and parametrizationFi-

nally, we discussthe limitations of our methodsand possi-
ble extensionsAn importantpropertyof our methodss that
they areapplicableto ary curve PCD without ary needfor

specializecknowledgeaboutthe curve. The salientfeature
of our work is its relianceon theory allowing usto extend
our methodsto shapesn higherdimensionssuchasfam-
ilies of surfacesembeddedn R3, wherewe utilize higher

dimensionabarcodes.

Our work suggestss numberof enticing researchdirec-
tions:

Implementingdensity estimationtechniquesto remove
spuriouscomponentgrisingfrom noise,

A systematicstudy of the thicknessproblemof scanned
cunes,

Implementing the stratgy for identifying boundary
points,furtherstrengtheningur method,

Applying our methoddgo surfacepoint clouddata.
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