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Abstract
In this paper, wepresenta completecomputationalpipelinefor extractinga compactshapedescriptorfor curve
point cloud data. Our shapedescriptor, called a barcode, is basedon a blend of techniquesfrom differential
geometryandalgebraic topology. Wealsoprovidea metricoverthespaceof barcodes,enablingfastcomparisonof
PCDsfor shaperecognitionandclustering. To demonstratethefeasibilityof our approach, wehaveimplemented
it andprovideexperimentalevidencein shapeclassi�cationandparametrization.

1. Intr oduction

In this paper, we presenta completecomputationalpipeline
for extracting a compactshapedescriptorfor curve point
clouddata.Our shapedescriptor, calleda barcode, is based
on a blendof techniquesfrom differentialgeometryandal-
gebraictopology. We alsoprovide a metric over the space
of barcodes,enablingfast comparisonof PCDsfor shape
recognitionand clustering.To demonstratethe feasibility
of our approach,we have implementedour pipeline and
provide experimentalevidencein shapeclassi�cation and
parametrization.

1.1. Prior Work

Shapeanalysisis a well-studied problem in many areas
of computerscience,suchas vision, graphics,and pattern
recognition.Researchersin vision �rst introducedthe idea
of using compactrepresentationsof shapes,or shapede-
scriptors, for two-dimensionaldata or images.They de-
rived descriptorsusing diversemethods,suchas topolog-
ical invariants,momentinvariants,morphologicalmethods
for skeletonsor medialaxes,andelliptic Fourierparameter-
izations[DHS00,GW02, SKK01]. More recently, theavail-
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ability of large setsof digitized three-dimensionalshapes
hasgeneratedinterestin 3D descriptors[Fan90,Fis89],with
techniquessuchasshapedistributions[OFCD01]andmulti-
resolutionReebgraphs[HSKK01]. Ideally, ashapedescrip-
tor shouldbe invariantto rigid transformationsandcoordi-
natizetheshapespacein ameaningfulway.

The idea of using point cloud data or PCD as a dis-
play primitive was introducedearly [LW85], but did not
becomepopular until the recent emergence of massive
datasets.PCDsarenow utilized in rendering[AA03, RL00],
shape representation[ABCO� 01,ZPKG02], and model-
ing [AD03, PKKG03], among other uses. Furthermore,
PCDs are often the only possibleprimitive for exploring
shapesin higherdimensions[DG03,LPM01,TdSL00].

1.2. Our Work

In a previous paper, we initiated a studyof shapedescrip-
tion via the applicationof persistenthomologyto tangen-
tial constructions[CZCG04]. We proposeda robustmethod
thatcombinesthedifferentiatingpowerof geometrywith the
classifyingpower of topology. We alsoshowedtheviability
of ourmethodthroughexplicit calculationsfor one-andtwo-
dimensionalmathematicalobjects(curvesandsurfaces.)In
this paper, we shift our focusfrom theoryto practice,illus-
tratingthefeasibilityof ourmethodin thePCDdomain.We
focusoncurvesin orderto exploretheissuesthatarisein the
applicationof our techniques.Wemustemphasize,however,
that we view curvesasone-dimensionalmanifolds,andin-
sistthatall oursolutionsextendto n-dimensionalmanifolds.
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Therefore,we avoid heuristicsbasedon abusingcharacter-
isticsof curve PCDsandsearchfor generaltechniquesthat
will besuitablein all dimensions.

1.3. Overview

Therestof thepaperis organizedasfollows.In Section2 we
review the theoreticalbackgroundfor our shapedescriptor.
Webelieve thatanintuitiveunderstandingof thismaterialis
suf�cient for appreciatingtheresultsof thispaper. Section3
containsthe algorithmsfor computingbarcodesfor PCDs
sampledfrom closedsmoothcurves.We alsodescribethe
computationof the metric over the spaceof barcodes.We
applyour techniquesto familiesof algebraiccurvesin Sec-
tion 4 to demonstratetheir effectiveness.In Section5, we
extendour systemto generalPCDsthat may includenon-
manifoldpoints,singularities,boundarypoints,or noise.We
thenillustratethepowerof ourmethodsthroughapplications
to shapeclassi�cationandparametrizationin Section6.

2. Background

In this section,we review thetheoreticalbackgroundneces-
saryfor our work. To make thediscussionaccessibleto the
non-specialist,our exposition will have an intuitive �a vor.
However, we refer the interestedreaderto formal descrip-
tionsalongtheway.

2.1. Filter edSimplicial Complex

Let S be a set of points. A k-simplex is a subsetof S of
size k + 1 [Mun84]. A simplex may be realizedgeomet-
rically as the convex hull of k + 1 af�nely independent
pointsin Rd;d � k. A realizationgivesusthefamiliar low-
dimensionalk-simplices:vertices, edges, and triangles. A
simplicial complex is a set K of simpliceson S suchthat
if s 2 K, thent � s impliest 2 K. A subcomplex of K is a
simplicial complex L � K. A �ltr ation of a complex K is a
nestedsequenceof complexes; = K0 � K1 � : : : � Km = K.
We call K a �lter ed complex andshow a small examplein
Figure1.

2.2. PersistentHomology

Supposewe are given a shapeX that is embeddedin R3.
Homology is analgebraicinvariantthatcountsthe topolog-
ical attributesof this shapein terms of its Betti numbers
bi [Mun84]. Speci�cally, b0 countsthe numberof compo-
nentsof X. b1 is therankof a basisfor the tunnelsthrough
X. Thesetunnelsmay be viewed as forming a graphwith
cycles [CLRS01]. b2 countsthe numberof voids in X, or
spacesthatareenclosedby theshape.In thismanner, homol-
ogy givesa �nite compactdescriptionof theconnectivity of
theshape.Sincehomologyis aninvariant,wemayrepresent
ourshapecombinatoriallywith asimplicialcomplex thathas
thesameconnectivity to getthesameresult.
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Figure 1: A �lter ed complex with newly addedsimplices
highlighted.We showthe persistentinterval set in each di-
mensionbelowthe�ltr ation.Each persistentinterval shown
is the lifetime of a topological attribute, createdand de-
stroyedby the simplicesat the low and high endpoints,re-
spectively.

Supposenow that we are also given a processfor con-
structing our shapefrom scratch.Such a growth process
givesanevolving shapethatundergoestopologicalchanges:
new componentsappearandconnectto theold ones,tunnels
arecreatedandclosedoff, andvoidsareenclosedand�lled
in. Persistenthomology is analgebraicinvariantthat identi-
�es the birth anddeathof eachtopologicalattribute in this
evolution [ELZ02, ZC04]. Eachattributehasa lifetime dur-
ing which it contributesto someBetti number. Wedeemim-
portantthoseattributeswith longerlifetimes,asthey persist
in beingfeaturesof theshape.Wemayrepresentthislifetime
asan interval, asshown in Figure1 for our small example.
A feature,suchasthe�rst componentin any �ltration, may
live forever andthereforehave a half-in�nite interval asits
lifetime. Persistenthomologydescribesthe connectivity of
ourevolving shapevia amultisetof intervalsin eachdimen-
sion. If we representour shapewith a simplicial complex,
wemayalsorepresentits growth with a �ltered complex.

2.3. Filter edTangentComplex

Weexaminethegeometryof ourshapeby lookingatthetan-
gentsat eachpoint of theshape.Althoughour approachex-
tendsto any dimension,we restrictour de�nitions to curves
asthey arethefocusof this paperandsimplify thedescrip-
tion.

Let X bea curve in R2. We de�ne T0(X) � X � S1 to be
thesetof thetangentsatall pointsof X. Thatis,

T0(X) =
�

(x;z) j lim
t! 0

d(x+ tz;X)
t

= 0
�

:

A point (x;z) in T0(X) representsa tangentvectoratapoint
x 2 X in the direction z 2 S1. The tangent complex of X
is the closureof T0, T(X) = T0(X) � R2 � S1. T(X) is
equippedwith a projection p: T(X) ! X that projectsa
point (x;z) 2 T(X) in the tangentcomplex onto its base-
point x 2 X, andp� 1(x) � T(X) is the�ber at x.
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We may�lter the tangentcomplex usingthecurvatureat
eachpoint.Welet T0

k (X) bethesetof points(x;z) 2 T0(X)
where the curvature k(x) at x is less than k, and de�ne
Tk(X) be the closureof T0

k (X) in R2 � S1. We call the k-
parametrizedfamily of spacesf Tk(X)gk� 0 the �lter ed tan-
gentcomplex, denotedby T �lt (X).

2.4. Barcodes

We geta compactdescriptorby applyingpersistenthomol-
ogy to the �ltered tangentcomplex of our shape.That is,
the descriptorexaminesthe connectivity of not the shape
itself, but that of a derived spacethat is enrichedwith ge-
ometric informationaboutthe shape.We de�ne a barcode
to betheresultingsetof persistenceintervals for T �lt (X) in
eachdimension.For curves,the only interestingbarcodeis
usuallytheb0-barcodewhich describesthe lifetimesof the
componentsin thegrowing tangentcomplex. Wealsode�ne
aquasi-metric,ametricthathas1 asapossiblevalue,over
thecollectionof all barcodes.Ourmetricenablesustoutilize
barcodesasshapedescriptors,aswecancompareshapesby
measuringthedifferencebetweentheir barcodes.

Let I ;J beany two intervalsin a barcode.We de�ne their
dissimilarityd(I ;J) to be the lengthof their symmetricdif-
ference:d(I ;J) = jI [ J � I \ Jj. Note that d(I ;J) may be
in�nite. Given a pair of barcodesB1 andB2, a matching is
a setM(B1;B2) � B1 � B2 = f (I ;J) j I 2 B1 andJ 2 B2g,
so that any interval in B1 or B2 occursin at mostonepair
(I ;J). Let M1;M2 betheintervalsfrom B1;B2, respectively,
thatarematchedin M, andlet N be thenon-matchedinter-
vals N = (B1 � M1) [ (B2 � M2). Given a matchingM for
B1 andB2, wede�ne thedistanceof B1 andB2 relativeto M
to bethesum

DM(B1;B2) = å
(I ;J)2 M

d(I ;J) + å
L2 N

jLj: (1)

We now look for the bestpossiblematchingto de�ne the
quasi-metricD(B1;B2) = minM DM(B1;B2).

3. Computing Barcodes

In this section,we presenta completepipeline for com-
puting barcodesfor a PCD. Throughoutthis section,we
assumethat our PCD P containssamplesfrom a smooth
closedcurve X � R2. Beforewe computethe barcode,we
needto constructthe tangentcomplex. Sincewe only have
samplesfrom the original space,we canonly approximate
the tangentcomplex. We begin by computinga new PCD,
p� 1(P) � T(X), that samplesthe tangentcomplex for our
shape.To captureits homology, we�rst approximatetheun-
derlying spaceandthencomputea simplicial complex that
representsits connectivity. We�lter thiscomplex by estimat-
ing thecurvatureat eachpoint of p� 1(P). We concludethis
sectionby describingthebarcodecomputationandgiving an
algorithmfor computingthemetricon thebarcodespace.

3.1. Fibers

SupposewearegivenaPCDP, asshown in Figure2(a).We
wish to computethe �ber at eachpoint to generatea new
PCDp� 1(P) thatsamplesthetangentcomplex T(X). Natu-
rally, we mustestimatethe tangentdirections,aswe do not
have the underlyingshapeX from which P was sampled.
We do so by approximatingthe tangentline to the curve X
at point p 2 P via a total least squares �t that minimizes
thesumof thesquaresof theperpendiculardistancesof the
line to the point's nearestneighbors.Let S be the k nearest
neighborsto p, andlet x0 = 1

k å k
i= 1 xi be theaverageof the

point in S. Weassumethatthebestline passesthroughx0. In
general,thehyperplaneP(n;x0) in Rn which is normalto n
andpassesthroughthepointx0 hasequation(x� x0) � n = 0.
Theperpendiculardistancefrom any point xi 2 Sto this hy-
perplaneis j(xi � x0) � nj, providedthanjnj = 1.Let M bethe
matrixwhoseith row is (xi � x0)T . ThenMn is thevectorof
perpendiculardistancesfrom points in S to the hyperplane
P(n;x0), andthetotal leastsquares(TLS) problemis to min-
imize jMnj2. Theeigenvectorcorrespondingto thesmallest
eigenvalueof the covariancematrix MTM is the normal to
thehyperplaneP(n;x0) thatbestapproximatestheneighbor
setS. Therefore,for a point p in two dimensions,the �ber
p� 1(p) containstheeigenvectorcorrespondingto thelarger
eigenvalue,aswell asthe vectorpointing in the reversedi-
rection.

We note that it is betterto useTLS herethan ordinary
leastsquares(OLS),astheoptimalline foundby theformer
methodis independentof theparametrizationof thepoints.
Also, whentheunderlyingcurve is not smooth,we mayuse
TLS to identify points nearthe singularitiesby observing
whentheeigenvaluesareclose.

Choosinga correctneighborhoodsetis a fundamentalis-
suein PCDcomputationandrelatesto thecorrectrecovery
of thelost topologyandembeddingof theunderlyingshape.
The neighborsetS may containeitherthe k nearestneigh-
bors to p, or all points within a disc of radiuse. The ap-
propriatevalueof k or e dependson local samplingdensity,
local featuresize, and noise,and may vary from point to
point. It is standardpracticeto settheseparametersempir-
ically [DG03,PKKG03, TdSL00], althoughrecentwork on
automaticestimationof neighborhoodsizesseemspromis-
ing [MNG04]. In our currentsoftware, we estimatek for
eachdataset independently. We hopeto incorporateauto-
maticestimationinto oursoftwarein thenearfuture.

3.2. ApproximatedT(X)

We now have a samplingp� 1(P) of the tangentcomplex
T(X), asshown in Figure2(b) for our example.This setis
discreteandhasnointerestingtopology. Theusualapproach
is to centeran e-ball Be(p) = f x j d(p;x) � eg, a ball of
radiuse, at eachpoint of p� 1(P). This approachis based
on the assumptionthat the underlyingspaceis a manifold,
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(a)PCDP (b) Fibersp� 1(P) (c) Approx.T(X) (d) Complex (e)b0-barcode

k = 0.5 4.5

Figure 2: Givena noisyPCD P (a), wecomputethe �bers p� 1(P) (b) by �tting lines locally. In thevolume, thez-axiscorre-
spondsto tangentangle, sothetopandthebottomof thevolumeareglued.Wecentere-ballswith e= 0:05at the�ber pointsto
get a space(c) that approximatesthetangentcomplex. The�bers andunionof balls are coloredaccording to curvature using
thehot colormapshown.Thecurvature estimatesappearnoisybecauseof thesmallvariation.We capture thetopology of the
unionof ballsusingthesimplicialcomplex (d). Weshowthea-complex for theunionof balls in the�gur e (with a = e) asit has
a nicegeometricrealization.In practice, weutilize theRipscomplex. Applyingpersistenthomology, weget theb0-barcode(e).

or locally �at. Our approximationto T(X) is the union of
e-ballsaroundthe�ber points:

T(X) �
[

p2 p� 1(P)

Be(p):

Two issuesarise, however: �rst, we needa metric d on
R2 � S1 sothatwe cande�ne whatane-ball is, andsecond,
weneedto determineanappropriatevaluefor e.

Wede�ne aEuclidean-likemetricgenerallyonRn � Sn� 1

asds2 = dx2 + w2dz2. Thatis, thesquareddistancebetween
thetangentvectorst = (x;z) andt 0= (x0;z0) is givenby

d2(t ; t 0) =
n

å
i= 1

(xi � x0
i )

2 + w2
n

å
i= 1

(zi � z0
i )

2;

wherew is a scalingfactor. Here,the distancebetweenthe
two directionsz;z0 2 Sn� 1 is the chord lengthasopposed
to thearclength.The�rst measureapproximatesthesecond
quite well when the distancesaresmall, and is also much
fastercomputationally.

Thechoiceof thescalingfactorw in our metricdepends
onthenatureof thePCDandourgoalsin computingthetan-
gentcomplex. A large valueof w will spreadthe pointsof
p� 1(P) out in theangulardirections.This is usefulfor seg-
mentingan objectcomposedof straightpieces,suchasthe
letter `V'. However, too muchseparationcanleadto errors
for smoothcurveswith high curvatureregions,suchasan
eccentricellipse.In suchregions,the angularseparationat
neighboringbasepointschangesrapidly, yieldingpointsthat
arefurtherapartin p� 1(P). In thesecases,asmallervalueof
w maintainstheconnectivity of X, while still separatingthe
directionsenoughto computethebarcodesfor T(X). Setting
w = 0 projectsthe�bers p� 1(P) backto their basepointsP.

Thereis, of course,no perfectchoicefor e, asit depends

notonly on thefactorsdescribedin theprevioussection,but
alsoonthevalueof thescalefactorw in themetric.Weneed
to choosee to beat leastlargeenoughsothatthebasepoints
areproperlyconnectedwhenw = 0. Whenw is small, then
thestartingeis usuallysuf�cient. Whenw is large,theunion
of e-balls is lessconnected,which may be preciselywhat
we want,suchasfor the letter `V'. We have deviseda rule
of thumbfor settinge. Recallthatcurvatureis de�ned to be
k = dj

ds , wherej is thetangentangleandsisarc-lengthalong
X. Then,two pointsthat areDx apartin a region with cur-
vaturek have tangentanglesroughlyDj � kDx apart.Since
the chordlengthDz approximatesthe arc lengthDj on S1

for small values,thesquareddistancebetweenneighboring
pointsin p� 1(P) is approximatelyDx2(1+ (wk)2). So,

e �

p
Dx2(1+ (wk)2)

2
: (2)

3.3. Complex

We now have an approximationto the tangentcomplex as
a unionof balls.To computeits topologyef�ciently , we re-
quirea combinatorialrepresentationof this unionasa sim-
plicial complex. Thissimplicialcomplex T(P) musthavethe
sameconnectivity astheunionof balls,or thesamehomo-
topytype.

A commonlyusedcomplex in algebraictopology is the
�Cech complex. For a setof m pointsM, the �Cechcomplex
looksat theintersectionpatternof theunionof e-balls:

Ce(M) =

(

convT j T � M;
\

t2 T

Be(t) 6= ;

)

:

Clearly, the �Cech complex is homotopic to the union of
balls. Unfortunately, it is also expensive to compute,as
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we needto examineall subsetsof the pointsetfor poten-
tially å m

k= 0
� m

k

�
= 2m+ 1 � 1 simplices.Furthermore,thecom-

plex may have high-dimensionalsimpliceseven for low-
dimensionalpointsets.If four balls have a commoninter-
sectionin two dimensions,the �Cechcomplex for the point
setwill includea four-dimensionalsimplex.

A commonapproximationto the �Cech complex is the
Ripscomplex [Gro87]. Intuitively, this complex only looks
at the intersectionpatternbetweenpairsof balls, andadds
highersimpliceswhenever all of their lower sub-simplices
arepresent:

R e(M) = f convT j T � M; d(s;t) � e; s;t 2 Tg:

NotethatCe=2(M) � R e(M) for all e, andthattheRipscom-
plex mayhavedifferentconnectivity thantheunionof balls.
TheRipscomplex is alsolargeandrequiresO

�� m
k

��
timefor

computingk-simplices.However, it is easierthanthe �Cech
complex to computeandis oftenusedin practice.

Since we are computingb0-barcodesin this paper, we
only requiretheverticesandedgesin T(P). At this level, the
�CechandRips complexesare identical.For higherdimen-
sionalPCD suchaspointsfrom surfaces,however, we will
needtrianglesand,at times, tetrahedra,for computingthe
barcodes.We arethereforeexaminingmethodsfor comput-
ing smallcomplexesthatrepresenttheunionof balls.A po-
tential approachutilizes a-complexes, subcomplexesof the
Delaunaycomplex, the dual to the Voronoïdiagramof the
points [dBvKOS97, Ede95].Thesecomplexes aregeomet-
rically realizable,are small, and their highest-dimensional
simpliceshave thesamedimensionastheembeddingspace.
We may view our metric Rn � Sn� 1 asa Euclideanmetric
by �rst scalingthe tangentson Sn� 1 to lie on a sphereof
radiusw. Then,we may computea-complexeseasily, pro-
vided we connectthe complex correctly in the tangentdi-
mensionacrossthe top/bottomboundary. Figure2 displays
renderingsof our spacewith the correctscalingaswell as
ana-complex with a = e. A fundamentalproblemwith this
approach,however, is thatwe needto �lter a-complexesby
curvature.Currently, we do not know whetherthis is pos-
sible. An alternatebut attractive methodis to computethe
witnesscomplex. Thiscomplex utilizesasubsampleof land-
mark points to computesmall complexesthat approximate
thetopologyof theunderlyingball-set[dSC04].

3.4. Filter edTangentComplex

We next needto �lter the tangentcomplex using the cur-
vatureat the basepoint.Recall that the curvature at a point
x 2 X in directionz is k(x;z) = 1=r (x;z), wherer is the
radiusof the osculatingcircle to X at x in directionz. We
needto estimatethis curvatureat eachpoint of p� 1(P), in
orderto constructthe�ltration onT(P) requiredto compute
barcodes.We thenassignto eachsimplex the maximumof
thecurvaturesat its vertices.

Ratherthanestimatingtheosculatingcircle, we estimate

the osculatingparabola as it is computationallymoreef�-
cient.Two curvesy = f (x) andy = g(x) in the planehave
secondordercontactatx0 if f f (x0) = g(x0), f 0(x0) = g0(x0)
and f 00(x0) = g00(x0). So, if X admitsa circle of second-
ordercontact,thenit alsoadmitsaparabolaof second-order
contact.Considerthe coordinateframe centeredat x 2 X
with vertical axis normal to X. Supposethe curvature at
x is k = 1=r , that is, the osculatingcircle has equation
x2 + (y � r )2 = r 2. This circle hasderivatives y0 = 0 and
y00= 1=r at x. Integrating,we �nd that theparabolawhich
hassecond-ordercontactwith this circle,andhencewith X,
hasequationy = x2=2r , asshown in Figure3.

X
x

(0,r)

(0,r/2)

Figure 3: Theosculatingcircle andparabolato X (dashed)
at x. The circle has center (0; r ), the parabola has focus
(0; r =2). Thecurvatureof X at x is k = 1=r .

We again approximatethe shapelocally using a set of
neighborhoodpoints for eachpoint in P. To �nd the best-
�t parabola,we do not utilize the TLS approachasin Sec-
tion 3.1, as the equationsthat minimize the perpendicular
distanceto a parabolaareratherunpleasant.Instead,we use
OLS which minimizestheverticaldistanceto theparabola.
Naturally, the resultingparaboladependsupon the coordi-
nateframe in which the points are expressed.Fortunately,
we have alreadydeterminedtheappropriateframeto usein
computingthe �bers in Section3.1. Oncewe computethe
�ber at p, we move thenearestneighborsS to a coordinate
framewith vertical axis the TLS best-�t normaldirection.
We settheorigin to bex0 in this coordinateframe(theaver-
ageof thepointsin S) althoughwedonot insistthatthever-
tex of theparabolaliespreciselythere.We then�t avertical
parabolaf (x) = c0 + c1x+ c2x2 asfollows.Supposethecol-
lectionSof k neighborpointsis S= f (x1;y1); : : : ; (xk;yk)g.
Let

A =

0

B
B
B
B
@

1 x1 x2
1

1 x2 x2
2

...
...

...
1 xk x2

k

1

C
C
C
C
A

;

C = (c0;c1;c2)T ;

Y = (y1; : : : ;yk)T :
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If all pointsof S lie on f , thenAC = Y; thush = AC� Y is
thevectorof errorsthatmeasuresthedistanceof f from S.
We wish to �nd thevectorC thatminimizesjhj. Settingthe
derivativesof jhj2 to zerowith respectto f cig, we solve for
C to get

C = (ATA)� 1ATY:

Thecurvatureof theparabolaf (x) = c0 + c1x+ c2x2 at its
vertex is 2c2, andthis is our curvatureestimatek at p. We
usethiscurvatureto obtaina�ltration of thesimplicialcom-
plex T(P) thatwe computedin thelastsection.This �ltered
complex approximatesT �lt (X), the�ltered tangentcomplex
describedin Section2.3. For our example,Figure2(b) and
2(c)show the�bers p� 1(P) andunionof e-ballscoloredac-
cordingto curvature,usingthehot colormap.

3.5. Metric Spaceof Barcodes

We now have computeda �ltered simplicial complex that
approximatesT �lt for our PCD. We next computethe b0
barcodesusingan implementationof the persistencealgo-
rithm [ZC04]. Figure 2(e) shows the resultingb0-barcode
for our samplePCD.As expected,thebarcodecontainstwo
long intervals, correspondingto the two persistentcompo-
nentsof the tangentcomplex that representthe two tangent
directionsat eachpoint of a circle. The noisein our PCD
is re�ected in small intervals in the barcode,which we can
discardeasily.

To computethemetric,we modify thealgorithmthatwe
gave in a previous paper[CZCG04] so it is robust numer-
ically. Given two barcodesB1;B2, our algorithmcomputes
themetric in threestages.In the�rst stage,we simply com-
parethenumberof half-in�nite intervalsin thetwo barcodes
andreturn1 in thecaseof inequality. In thesecondstage,
we computethedistancebetweenthehalf-in�nite intervals.
We sort the intervals accordingto their low endpointsand
match them one-to-oneaccordingto their ranks.Given a
matchedpair of half-in�nite intervals I 2 B1;J 2 B2, their
dissimilarity is d(I ;J) = j low(I ) � low(J)j, wherelow(�)
denotesthelow endpointof aninterval.

In the third stage,we compute the distancebetween
�nite intervals using a matching problem. Minimizing
the distanceis equivalent to maximizing the intersection
length[CZCG04]. Weaccomplishthelatterby recastingthe
problemasa graphproblem.GivensetsB1 andB2, we de-
�ne G(V;E) to be a weightedbipartite graph [CLRS01].
We placea vertex in V for eachinterval in B1 [ B2. Af-
ter sorting the intervals, we scan the intervals to com-
pute all intersectingpairs betweenthe two sets [ZE02].
Eachpair (I ;J) 2 B1 � B2 addsan edgewith weight jI \
Jj to E. Maximizing the similarity is equivalent to the
well-known maximumweight bipartite matching problem.
In our software, we solve this problemwith the function
MAX_WEIGHT_BIPARTITE_MATCHINGfrom theLEDA

graphlibrary [Alg04, MN99]. Wethensumthedissimilarity
of eachpairof matchedintervals,aswell asthelengthof the
unmatchedintervals,to getthedistance.

4. Algebraic Curves

Having describedour methodsfor computing the metric
spaceof barcodes,we examine our shapedescriptorfor
PCDsof familiesof algebraiccurves.Throughoutthis sec-
tion, we usea neighborhoodof k = 20pointsfor computing
�bers andestimatingcurvature.

4.1. Family of Ellipses

Our �rst family of spacesare ellipsesgiven by the equa-

tion x2

a2 + y2

b2 = 1. We computePCDsfor the � ve ellipses
shown in Figure4 with semi-majoraxis a = 0:5 andsemi-
minor axesb equalto 0:5, 0:4, 0:3, 0:2, and0:1, from top
to bottom.To generatethe point sets,we select50 points
per unit lengthspacedevenly alongthe x- andy-axes,and
then project thesesamplesonto the true curve. Therefore,
thepointsareroughlyDx = 0:02 apart.We thenaddGaus-
siannoiseto eachpoint with mean0 andstandarddeviation
equalto half the inter-point distanceor 0:01. For our met-
ric, we usea scalingfactorw = 0:1. To determineanappro-
priatevaluefor e for computingthe Rips complex, we uti-
lize our rule-of-thumb:Equation(2) from Section3.2. The
maximumcurvaturefor theellipsesshown is kmax = 50,so
e� 0:02

p
1+ 52=2� 0:05.Thisvaluesuccessfullyconnects

points with closebasepointsand tangentdirections,while
still keepingantipodalpoints in the individual �bers sepa-
rated.

4.2. Family of Cubics

Oursecondfamily of spacesarecubicsgivenby theequation
y = x3 � ax. The� ve cubicsshown in Figure5 have a equal
to 0, 1, 2, 3, and4, respectively. In this case,theportionof
thegraphsampledis approximatelythreeby three.In order
to have roughly the samenumberof pointsasthe ellipses,
we select15 pointsperunit lengthspacedevenly alongthe
x- andy-axes,andproject themasbefore.The pointsof P
arenow roughly0:06 apart.We addGaussiannoiseto each
pointwith mean0 andstandarddeviationhalf theinter-point
distanceor 0:03. For our metric, we usew = 0:5, primar-
ily for aestheticreasonsasthe �bers arethenmorespread
out.Themaximumcurvatureon thecubicsis kmax � 8, and
our rule-of-thumbsuggeststhatwe neede � 0:4. However,
e= 0:2 is suf�cient in thiscase.

5. Extensions

In Section3, we assumedthat our PCD wassampledfrom
a closedsmoothcurve in the plane.Our PCDsin the last
section,however, violatedour assumptionasboth families
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k = 0 50

Figure 4: Family of ellipses:PCD P, �bers p� 1(P) colored
bycurvature, andb0-barcode.

hadaddednoise,andthe family of cubicsfeaturedbound-
ary points.Our methodperformedquitewell, however, and
naturally, we would like our methodto generalizeto other
misbehaving PCDs.In this section,we characterizeseveral
suchphenomena.Foreachproblem,wedescribepossibleso-
lutionsthatarerestrictionsof methodsthatwork in arbitrary
dimensions.

5.1. Non-manifold points

SupposethatourPCDP is sampledfrom ageometricobject
X that is not a manifold.In otherwords,therearepointsin
the object that arenot containedin any neighborhoodthat
canbe parametrizedby a Euclideanspaceof somedimen-
sion.In thecaseof curves,a non-manifoldpoint appearsat
a crossing, wheretwo arcs intersecttransversally. For ex-
ample,the junctionpoint of the letter `T' is a non-manifold
point. We would like our methodto managenicely in the
presenceof non-manifoldpoints.

k = 0 8

Figure 5: Family of cubics:PCD P, �bers p� 1(P) colored
bycurvature, andb0-barcode.

Ourapproachis to createthetangentcomplex for P asbe-
fore, but remove points for which thereis no well-de�ned
linear approximationdue to proximity to a singularpoint
in X. Suchpoints are identi�ed by a relatively large ratio
betweentheeigenvaluesof theTLS covariancematrix con-
structedfor computing�bers in Section3.1. The point re-
moval effectively segmentsthetangentcomplex into pieces.
With appropriatelylarge valuesof e and w, we can still
connectthe remainingpiecescorrectly. Figure 6 shows a
PCDfor theletter`T'. Nearthenon-manifoldpoint, thetan-
gent direction (height) and curvature(color) estimatesde-
viate from the correctvalues,andthe �ber over the cross-
ing point appearsastwo roguepointsaway from the main
segments.By removing all pointswhoseeigenvalueratio is
greaterthan0:25,we successfullyeliminatebothrogueand
high-curvaturepoints.Thegapintroducedin the�bers over
thecrossbarof the`T' is narrower thanthevertical(angular)
spacingbetweencomponents.With a well-chosenvalueof
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e, thee-ballswill bridgethisgapyet leave four components,
as desired.For the imageshere,we perturbedpoints 0:01
apartby Gaussiannoisewith mean0 andstandarddeviation
0:005– half theinter-pointdistance.Thetangentcomplexes
aredisplayedwith angularscalingfactorw = 2. Balls of ra-
diuse= 0:1 give thecorrectT(P).

5.2. Singularities

Our PCD may be sampledfrom a non-smoothmanifold.
For curves,anon-smoothpoint typically appearasa“kink”,
suchasin theletter`V.' Wesayacorneris asingularpoint in
thePCD.If thegoalis simply to detectthepresenceof asin-
gularpoint, thenour solutionto non-manifoldpointsabove
– to snip out thosepointswith badlinear approximation–
worksquitewell here,asFigure7 displaysfor theletter`V'
andparametersasabove.

Sometimes,however, we would like to study a family
of spacesthat containsingularpoints to understandshape
variability. Sinceour curvatureestimatesat a non-smooth
pointarelarge,they areincludedin the�ltered tangentcom-
plex relatively late, breakingthe complex into many com-
ponentsearly on. Moreover, the curvatureestimatescorre-
latewell with the“kinkiness” of thesingularity, andenable
a parametrizationof the family, asanexampleillustratesin
the next section.This methodextendseasily to higher di-
mensionswith higher-dimensionalbarcodes.

5.3. Boundary points

We may have a PCD sampledfrom a spacewith bound-
ary. Counting boundarypoints of curves could be an ef-
fective tool for differentiatingbetweenthem.Currently, our
methoddoesnotdistinguishboundarypoints,but simplyal-
lows themto getcurvatureestimatessimilar to their neigh-
boring points in the PCD, as seenfor the shapesin Fig-
ures5, 6, and7. We proposea method,however, that dis-
tinguishesboundarypointsvia one-dimensionalrelativeho-
mology. Aroundeachpoint p, we mayconstructBe(p) with
its boundarySe(p). For a manifold point, the relative ho-
mology group H1(Be(p);Se(p)) has rank 1. Around non-
manifold points, the group has rank greaterthan 1. At a
boundarypoint, the grouphasrank 0. This strategy would

Figure 6: PCD for the letter `T,' all �bers in p� 1(P), and
�berswith eigenvalueratio lessthan0:25.

Figure 7: PCD for the letter `V,' all �bers in p� 1(P), and
�berswith eigenvalueratio lessthan0:25.

empower our method,for example,to distinguishbetween
the letters`I' and`J' with serifs.We planto implementthis
strategy in thenearfuture.

5.4. Noise

Finally, our PCDsamplesmaycontainnoise,which affects
ourmethodin two differentways:

1. Noise may effectively thicken a curve so that it is no
longera one-dimensionalobject.Oncethecurve is thick
enough,it becomessigni�cantly dif�cult to computere-
liable tangentandcurvatureestimates.

2. Noisemayalsocreateoutliersthatdisrupthomologycal-
culationsby introducingspuriouscomponentsthatresult
in long barcodeintervals thatareindistinguishablefrom
genuinepersistentintervals.

We resolve the �rst problemin part by averagingthe esti-
matedcurvaturevaluesover neighborhoodsof eachpoint.
This hastheeffect of smoothingthecurvaturecalculations.
However, thisdoesnot �x incorrecttangentestimateswhich
can result in a mis-connectedtangentcomplex. For some
real-world datasets,for examplethescanned-innumbersin
theMNIST databaseof handwrittendigits [LeC], our tech-
niquesometimeshastroublewith thetangentestimates.See
Figure8 for anexampleof how thisaffectsthetangentcom-
plex.

We may resolve the secondproblemby consideringthe
densityof points in the point cloud, andpreprocessingthe
PCD by removing pointswith low densityvalues.Another

Figure 8: Two examplesof hand-writtenscanned-indig-
its `0' fromtheMNISTDatabase. We successfullyconstruct
T(P) on the left, but themisshapenleft sideof theright `0'
is too thick, resultingin tangent estimateerrors and an in-
correctT(P).
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strategy which shows promiseis to postponeincluding a
point in the �ltration of T(P) until it is part of a compo-
nent with at leastk points, for somethresholdsize k. Not
only doesthisomit singletonoutliers,but it alsoreducesthe
numberandsizeof thenoisyshortintervalsweseefor small
k in ourbarcodes.

6. Applications

In this section,we discussthe applicationof our work to
shapeclassi�cation and parametrization.We have imple-
menteda completesystemfor computingand visualizing
�ltered tangentcomplexes,and for computing,displaying,
andcomparingbarcodes.

6.1. ClassifyingShapes

To demonstratethepowerof ourtechniquefor shapeclassi�-
cation,weapplyit to acollectionof hand-writtenscanned-in
lettersof thealphabet.Ouraim is not to outperformexisting
OCR techniques,but presentan illuminating example.We
may partition the alphabetinto threeclassesbasedon the
numberof holes.Theletter`B' hastwo holes,̀ A', `D', `O',
`P', `Q', and `R' have one hole, and the remainingletters
have none.This topologicalclassi�cation is clearly unable
to distinguishbetweentheletters.However, whenwelook at
the topologyof the tangentcomplex, we gleanmoreinfor-
mation.For example,the letters`U' and`V' arehomotopy
equivalent,but `U' is smoothwhile `V' hasakink. Thissin-
gularity splits the tangentcomplex for `V' into four pieces
asin Figure7, comparedto two piecesfor thetangentcom-
plex for `U'. In turn, the componentsbecomehalf-in�nite
intervals in the b0-barcodesof for the letters:four for `V',
andtwo for `U'. Similarly, while `O' and`D' have thesame
topology, they are distinguishableby the numberof half-
in�nite intervals in their barcodes,with the singularitiesin
`D' generatingtwo additional intervals. Although `D' and
`V' have similar tangentspaces,recall that we may distin-
guishthemeasilythroughtheir topology. Evenwhenthelet-
tersarebothsmooth,we mayusethecurvatureinformation
to distinguishbetweenthem.For example,thedifferencein
curvaturebetweenthe letters`C' and`I' resultsin different
low endpointsfor thehalf-in�nite intervalsin theirbarcodes.
Finally, the letters`A' and`R' have tangentcomplexesthat
split into six components.But again, the curved portion of
`R' resultsin a differentlow endpointfor a pair of intervals,
andhenceadifferentbarcodethanfor `A'.

We scantenhand-writtencopiesof eachof theeight let-
tersdiscussedandcomputethe distancebetweenthemus-
ing thebarcodemetricof Section3.5.Figure9 displaysthe
resultingdistancematrix, whereblack correspondsto zero
distance.Thelettersaregroupedaccordingto thenumberof
componentsin T(P). Thedistancebetweenlettersfrom dif-
ferentgroupsis in�nite, re�ected in the largewhite regions
of thematrix.

Figure 9: Distancematrix for the letters `A', `R', `D', `V',
`U', `I', `C', and`O'. Wescanin tenhand-writteninstances
of each of theseeight letters. We mapthedistancebetween
each pair to gray-scale, with black indicatingzero distance.
Theletters are groupedaccording to thenumberof compo-
nentsin T(P). The distancebetweenletters from different
groupsis in�nite , re�ectedin the large white regionsof the
matrix.

6.2. Parameterizing a Family of Shapes

The two families of shapeswe saw in Section 4 may
be easily parametrizedvia barcodes.For a family of el-

lipses x2

a2 + y2

b2 = 1 with parametersa � b > 0, we can
show mathematicallythat the b0-barcodeconsistsof two

half-in�nite intervals
�

b
a2 ;1

�
andtwo long �nite intervals

�
b
a2 ; a

b2

�
[CZCG04]. For �x ed a anddecreasingb, the in-

tervals shouldgrow longer, andthis is preciselythe behav-
ior of the barcodesin Figure 4. Similarly, for a family of
cubics with equationy = x3 � ax parametrizedby a, the
barcodeshouldcontaintwo half-in�nite intervals and four
long �nite ones,with theexactequationsbeingrathercom-
plex [CZCG04]. As the parametera grows in value, the
lengthof the�nite intervalsshouldincrease.Onceagain,the
barcodecapturesthis behavior in practiceas seenin Fig-
ure5.

An interestingapplicationof shapeparametrizationis to
recover the motion of a two-link articulatedarm,shown in
Figure 10. Supposewe have PCDs for the arm at angles
from 0 to 90 degreesin 15 degreeintervals, and we wish
to recover the sequencethat describesthe bendingmotion
of this arm. As the �gure illustrates,sorting the PCDsby
the lengthof the longest�nite interval in their b0-barcodes
recoversthemotionsequence.Thenoisein thedatacreates
many small intervals.The intrinsic shapeof the arm,how-
ever, is describedby the two in�nite intervals andthe two
long �nite ones.To illustratethe robustnessof our barcode
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Figure10: A bendingtwo-linkarticulatedarm.Theb0-barcodesenabletherecoveryof thesequence, andhencethemotion.

Figure 11: Distancematrix for thetwo-linkarticulatedarm
in Figure 10. We havetencopiesof each of thesevenartic-
ulationsof thearm.We mapthedistancebetweeneach pair
to gray-scale, with black indicatingzero distance.

metric,we computetenrandomcopiesof eachof theseven
articulationsandcomputethe distancebetweenthem.Fig-
ure11displaystheresultingdistancematrix,wheredistance
is mappedas before.Pairs whosematrix entry is nearthe
diagonalof thematrix areclosein thesequence,andconse-
quentlyhaveclosearticulationangles.They arealsoclosein
thebarcodemetric,makingthediagonalof thematrix dark.
We generateeacharm placing 100 points 0:02 apart,and
perturbingeachby Gaussiannoisewith mean0 and stan-
darddeviation 0:01. We usew = 0:1 ande = 0:005 asfor
theellipsesin Figure4. In addition,we utilize thecurvature
averagingstrategy of Section5.4 using the twenty nearest
neighborsto copewith thenoise.

7. Conclusion

In this paperwe apply ideasof our earlier paperto pro-
videnovel methodsfor studyingthequalitativepropertiesof
onedimensionalspacesin theplane[CZCG04]. Ourmethod
is basedon studyingthe connectedcomponentsof a com-

plex constructedfrom a curve using its tangentialinfor-
mation.Our methodgeneratesa compactshapedescriptor
called a barcodefor a given PCD. We illustrate the feasi-
bility of our methodsby applying them for classi�cation
andparametrizationof several familiesof shapePCDswith
noise.We also provide an effective metric for comparing
shapebarcodesfor classi�cation and parametrization.Fi-
nally, we discussthe limitations of our methodsandpossi-
bleextensions.An importantpropertyof ourmethodsis that
they areapplicableto any curve PCD without any needfor
specializedknowledgeaboutthe curve. The salientfeature
of our work is its relianceon theory, allowing us to extend
our methodsto shapesin higherdimensions,suchas fam-
ilies of surfacesembeddedin R3, wherewe utilize higher-
dimensionalbarcodes.

Our work suggestsa numberof enticingresearchdirec-
tions:

� Implementingdensity estimationtechniquesto remove
spuriouscomponentsarisingfrom noise,

� A systematicstudyof the thicknessproblemof scanned
curves,

� Implementing the strategy for identifying boundary
points,furtherstrengtheningourmethod,

� Applying ourmethodsto surfacepoint clouddata.
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