
Load Balanced Short Path Routing
in Wireless Networks

Jie Gao
Department of Computer Science

Stanford University
Stanford, CA 94305

E-mail: jgao@cs.stanford.edu

Li Zhang
Hewlett-Packard Labs
1501 PageMill Road
Palo Alto, CA 94304

E-mail: l.zhang@hp.com

Abstract—In this paper, we study wireless network
routing algorithms that use only short paths, for min-
imizing latency, and achieve good load balance, for
balancing the energy use. We consider the special case
when all the nodes are located in a narrow strip with
width at most

√
3/2 ≈ 0.86 times the communication

radius. We present algorithms that achieve good per-
formance in terms of both measures simultaneously. In
addition, our algorithms only use local information and
can deal with dynamic change and mobility efficiently.

Keywords: wireless network, load-balanced routing,
short path routing

I. Introduction

In a mobile ad-hoc network or a sensor network, devices
communicate to their nearby nodes and form an ad-
hoc multi-hop communication network. Routing in such
a network is challenging due to the lack of central control
and the high dynamicity of the network. The previous
works have focused on discovering and maintaining routes
that enable the connectivity between the nodes and, if
possible, that minimize the number of hops on a path.

One important restriction of a wireless network is that
the nodes are energy constrained as they are normally
powered by batteries. Besides minimizing latency, the
shortest path routing is good for overall energy efficiency
because energy needed to transmit a packet is correlated
to the path length. However, the algorithms that aim
to minimize the path length may ignore “fairness” in
the routing — for example, the shortest path routing is
likely to use the same set of hops to relay packets for
the same source and destination pair. This will heavily
load those nodes on the path even when there exist other
feasible paths. Such an uneven use of the nodes may cause
some nodes die much earlier, thus creating holes in the
network, or worse, leaving the network disconnected. This
problem is critical in emergency networks, for example, to
locate survivors after structure collapse, where depleting
the battery of a node may have tragic results. In addition,
unbalanced use of the nodes may discourage the nodes to
participate in the routing.

Since the biggest energy drain comes from the transmis-
sion of packets, we measure the energy consumption of a

node by the total size of packets relayed by the node. Then
the load-balanced routing can be thought as to minimize
the maximum load on the nodes in the network. The
ideal algorithm would be to minimize both the latency
and the maximum load simultaneously. However, these
two goals are conflicting to some extent: the shortest path
routing restricts the resources that can be used, while load-
balanced routing aims to use all the available resources
to even the load. One can easily construct an example
to show that these two goals are indeed conflicting, i.e.
the shortest path routing algorithm necessarily creates
heavily loaded nodes, and the optimum load-balancing
algorithm necessarily uses long paths. In practice, the
nodes often distribute in special ways such that we may
be able to achieve good, though not necessarily the best,
performance in terms of both measures simultaneously. In
this paper, we consider a special case arising from practice
and present algorithms with performance within a small
constant factor of the optimum solution in terms of both
measures.

The case we consider is when the nodes are located in a
“narrow” strip with width at most

√
3/2 ≈ 0.86 times the

communication radius of each node. This model captures
the situation when the nodes are on highways or along
streets, for examples, when the wireless network is built for
inter-vehicle communication [1] or for people walking on
streets. In such cases, routing can be done in two phases.
In the first phase, the nodes figure out the “meta-path”
needed to route a packet with the aid of the position
information and the underlying transportation network
map, which is normally static and easily available. In the
second phase, the routing is done for the nodes on the
meta-path. The problem then reduces to the routing for
nodes located in a narrow strip.

Compared to the extensive use of the shortest path
routing in wireless networks, load-balanced routing has
received less attention. This probably should not be too
surprising as load-balancing is a much more difficult prob-
lem. For example, it is NP-hard to compute the most
balanced routes, even in a very simple network. There have
been approximate algorithms developed for the problem.
But none of the previous algorithms is local, i.e. they

require global coordination, and the approximation ratio
often has only theoretical interests. We show that when the
nodes are located in a narrow strip, there exists an efficient
algorithm that approximates the optimum solution within
a small constant factor.

What makes routing on a narrow strip easier is that
the greedy forwarding guarantees to find a path, if such a
path exists. This is obvious when the nodes are aligned on
a line. We show that it is also true for a strip with width at
most

√
3/2 times the node communication range. However,

even when the forwarding direction of a packet is obvious,
there is still freedom to choose to which node, among all
the nodes in the neighborhood, to relay the packet. If we
wish to achieve the shortest path routing, it is appropriate
to use the greedy method of sending the packet to the
furthest reachable node in the right direction. However,
this may create heavily loaded nodes. On the other hand,
if we adopt the greedy strategy of forwarding a packet to
the node with the lightest load, it may result in extremely
long path. In this paper, we combine the greedy strategies
for minimizing the path length and for minimizing the load
to achieve constant competitive ratio of both measures.

The basic idea of our methods is that we maintain,
for each node, a set of edges, called bridges, that are
guaranteed to make substantial progress. Then every time
the node chooses the “lightest” bridge to relay a packet.
This way, we show that our algorithm has good perfor-
mance in terms of both path length and maximum load.
In addition, we show that the bridges can be dynamically
maintained by using only local information. Specifically,
we can guarantee the following properties of our algorithm.

1) It uses only short paths: the number of hops of the
path used is at most four times as many as the
number of hops of the shortest path algorithm;

2) It balances the load: the maximum total size of
packets passed on any node is at most three times
as much as the optimum.

3) It is localized and scales well to large networks: each
node only needs information in its local neighbor-
hood to make routing decision; and as a consequence,
our algorithm handles dynamic change and mobility
efficiently as only a node’s neighborhood is affected.

4) It is online: the routing decision of a packet depends
only on the previously routed packets, i.e., the cur-
rent state of the network. It doesn’t need to know
the packets in the future.

We also consider an important subcase when all the
nodes are aligned on a line. In this case, we can achieve
an even better approximation factor for path length. In
addition, we show that by distributing a collection of
binary search trees on the nodes, we can reduce both
memory needed on each node and the routing/update cost
even when a node has many nodes in its neighborhood.

While we show rigorously that we can achieve constant
bounds in terms of both latency and load in the case when
the nodes are located in a narrow strip, we should note

that this is not generally true when nodes are in the plane
by a simple example as in Figure 1.

p q

o

Fig. 1. Each white spot contains m nodes, and the black spot o
contains a single node. The packets from spot p to q either go
through node o, thus causing o heavily loaded, or route along
a long path, thus having large latency.

In addition to providing rigorous analysis, we have also
implemented the algorithm and studied the performance
by simulation. The good performance of our algorithm is
supported by the simulation results as well. For example,
even for random traffic pattern, under which we would
expect the shortest path routing works well, the maximum
load created by our algorithm is only about 20% of the
shortest path routing. We also compare the number of
hops in the path produced by our algorithm to that in
the shortest path and show that the path length is only
increased by a small fraction.

A. Related work
Our work for the nodes in a narrow strip is closely

related to the on-line load-balancing problems on related
machine model. Azar’s paper [2] and Borodin and El-
Yaniv’s book [3] contain excellent survey of this subject.
Load-balancing routing in general can be formulated as
the unsplittable flow problem where we aim to minimize
the maximum node congestion. This is a well-known NP-
hard problem that can be approximated to a factor of
O(log n/ loglog n) [4], [5]. In all the previous work, one
either ignores the length of the path or uses only shortest
paths for regular networks such as meshes. Another related
problem is the on-line virtual circuit routing problem,
which has also been studied extensively [6], [2], [3].

There have been extensive study on routing in wireless
networks in recent years. Among various metrics used for
evaluating the routing quality, the most common one is
probably the number of hops on the routing path. The
protocols that use shortest path routing include Dynamic
Source Routing (DSR) [7], Ad-hoc On-demand Distance
Vector routing (AODV) [8] and many others. Please refer
to the surveys [9] and the references therein.

On the other hand, energy-aware routing algorithms,
which try to maximize the network survivability, have at-
tracted a lot of interest [10-24]. The energy aware metrics,
such as “maximize time to partition” and “minimize max-
imum node cost”, were first proposed by Singh et al. [15].
Chang et al. [16], [17] used a flow augmentation algorithm
and a flow redirection algorithm to balance the energy
consumption on different nodes. Their method, however,
requires a full knowledge of traffic demands and does not
handle node insertion and deletion. Extensions along this

approach were addressed in [22], [23]. Li et al. [11] studied
the online power-aware routing which minimizes the earli-
est time when a packet can not be sent. They proved that
any online algorithm has unbounded competitive ratio
and provided algorithms with zone-based heuristics. Yu
et al. [19] proposed a method that uses the geographical
locations of wireless nodes for energy aware routing. Xu
et al. [24] proposed an algorithm GAF which is designed to
reduce the energy consumption by turning off unnecessary
nodes. In [25], [26], the traditional energy-unaware routing
protocols such as DSR [7] or AODV [8] were re-visited
to take into account the energy-aware metric. All of the
energy-aware protocols mentioned above are heuristics and
do not provide any guarantee on the performance.

The paper is organized as follows. In Section II, we
introduce some definitions and notations. In Section III
and IV, we describe the algorithm for the nodes that are
aligned on a line and its efficient implementation. Then, we
show that the similar technique can be extended for nodes
that are inside a narrow strip in Section V. In Section VI,
we show the simulation results of our algorithm.

II. Notations and Definitions

Wireless nodes can be modeled as a set of points S in the
plane. Let n denote the size of S. We assume the communi-
cation range of each node is 1. The communication graph of
S is an unweighted unit-disk graph U(S) = (S, E), where
(p, q) ∈ E if the Euclidean distance between p, q ∈ S is
at most 1. When (p, q) ∈ E, they are also said visible to
each other. The length of a path P , denoted by |P |, is
the number of nodes on the path. For p, q ∈ S, denote by
d(p, q) the length of the shortest path between p and q.
For any path P between p, q, the stretch factor s(P) is
defined to be |P |/d(p, q). If s(P) ≤ α, P is called α-short.

A routing request has the form r = (s, t, `) where
s, t, ` represent the source, destination, and packet size,
respectively. To satisfy a request r, a path Pr between
s and t is allocated to relay the packet. For a set of
requests R, a path set P satisfies R, denote by P |= R,
if P = {Pr | r ∈ R} where Pr satisfies r. Similarly, the
stretch factor of P is defined to be the maximum stretch
factor of the paths in P. P is called α-short if every path
in P is α-short. For example, the shortest path routing
algorithm always produces 1-short paths.

For a set of requests R satisfied by P, the load `(v)
incurred to v ∈ S is the total size of the packets that pass
v, i.e.

`(v) =
∑

v∈Pr

`r .

The maximum load `(P) of P is then defined to be
maxv∈S `(v). Denote by `∗(R) the load of the most bal-
anced routing, i.e. `∗(R) = minP|=R `(P). The load-
balancing ratio of P is then defined to be `(P)/`∗(R). An
algorithm is said β-balanced if for any set of requests R, the
load-balancing ratio is at most β. In this paper, our goal

is to design wireless routing algorithms with both small
stretch factor and small load-balancing ratio.

III. Load-balanced routing on a line

In this section, we focus on the special case when all
the nodes are aligned on a line. Later on, we show how
the similar technique can be extended to the case when
the nodes are in a narrow strip. We first describe an
algorithm that achieves both constant stretch factor and
constant load-balancing ratio without worrying about the
algorithmic issue. We then present an efficient distributed
implementation of the algorithm in the next section.

We start with the case when all the requests have unit
packet size. In this case, we show a 2-short and 2-balanced
routing algorithm. The method for unit packet size fails
for variable packet size. By using a different technique, we
can achieve the same stretch factor but a slightly worse
load-balancing ratio.

A. Hardness of the problem

Before presenting the algorithms, we first show that
the optimum load balancing is difficult even for a simple
network, as shown in Figure 2(i). Suppose that each node
xi wishes to send a packet with size `i to the node yi. They
have to choose, from z1, z2, a node to relay the packet. The
optimum solution is then the most even distribution of the
packets on z1, z2. This is exactly the knapsack problem, a
well-known NP-hard problem.

In fact, if there are m nodes z1, · · · , zm, inside the
intersection of the communication ranges of xi’s and yi’s,
then minimizing the maximum load on the m nodes
becomes the on-line load balancing problem on m identical
machines. Even obtaining an approximation within a ratio
of 1.852 has been proven NP-hard [27].

1

y1 . . .

1

x1 . . . z1 z2

(i)

y1 . . .

11

1x1 . . . z

(ii)

Fig. 2. Load-balanced routing is hard. The problem in (i) is equiva-
lent to the knapsack problem. In (ii), the shortest path from xi to yi

all pass through z, but one can evenly distribute the load by using
the path as shown in the figure.

Next, we show that it is impossible to optimize both the
stretch factor and the load-balancing ratio. In Figure 2(ii),
when xi sends a packet to yi, if we insist to use the shortest
path, then all the packets have to pass the node z while we
may evenly distributed the packets as shown in the figure.

B. Requests with unit packet size

Suppose that all the nodes lie on the real line. For each
node p ∈ S, denote by xp the coordinate of p. Then the
communication range of p is the interval I(p) = [xp −
1, xp + 1]. Define the left (right) communication range of
p as Il(p) = [xp − 1, xp) (Ir(p) = (xp, xp + 1])

The algorithm GREEDY1 works as follows: Each node
pi keeps track of `(pi), the load it has relayed so far, and
also the maximum load in its left and right communication
range (pi exclusive), denoted by `∗l (pi) and `∗r(pi), respec-
tively. Whenever a node pi receives a new request with
destination t, it checks if t is within its communication
range. If it is, then pi simply sends the request to t.
Otherwise, assume t is to the right of pi, it then sends the
request to the furthest node among all the nodes in its
right communication range whose load is strictly smaller
than `∗r(pi). If all the nodes in Ir(pi) have the same load,
then pi simply sends the request to the furthest node in
Ir(pi). In this case, `∗r(pi) is increased by 1.

GREEDY2 is obtained by adding one look-ahead to
GREEDY1: Whenever a receives a request, it finds b = a∗

according to GREEDY1 and then asks b to find c = b∗.
If c is in a’s communication range, then a shortcuts b and
sends the packet to c. Otherwise, a sends the request to b.

Theorem 3.1. GREEDY2 is 2-short and 2-balanced.
Proof: Suppose that Pr is a left to right path pro-

duced by GREEDY1. Take any four adjacent nodes, say
a, b, c, d from left to right, along Pr. We claim that a and
d are not visible to each other.

Suppose otherwise, then a, b, c, d are all mutually visible
to each other. Since c, d are both in Ir(b) and b chooses c
instead of d to be the next node along the path, we must
have that `(c) < `(d) by the greedy forwarding strategy.
Therefore `(c) < `(d) ≤ `∗r(a). That is, a should have
chosen c or a node to the right of c to be the next node,
contradicting with that b is the next neighbor of a in the
path.

A direct consequence of the above fact is that for
any two non-adjacent nodes a, b on a path produced by
GREEDY2, they are not visible to each other. This also
explains why in GREEDY2, one shortcut is sufficient.
Therefore, the stretch factor of GREEDY2 is 2 because
any unit interval can only cover at most two nodes in a
path produced by GREEDY2 while for the shortest path,
there must be at least one node in each unit interval.

As for the load-balancing ratio, we consider the first
time when the maximum load is created. Suppose that it
is on the node i and caused by the request r. That is, right
before i relays the request, no node had more than `(P)−1
load on it, and `(i) = `(P) − 1. Assume the forwarding
direction of r is from left to right.

If there is no node to the right of i, then i must be
the destination of all the requests and therefore the load-
balancing ratio is 1. Otherwise, suppose that j is the node
to the immediate right of i in S, and k the node to the

i juk

Il(j)I ′

(i)

b d ca

I(d)

(ii)

Fig. 3. (i) load-balancing competitive ratio of GREEDY2; (ii)
The bridge bc of d.

left of i on the path Pr(Figure 3 (i)). Denote by I ′ =
Il(i) \ Il(j). Then k must be inside I ′ because k and j
cannot be visible to each other — otherwise k would have
chosen j, instead of i to relay the packet.

Assume there are m ≥ 1 nodes inside j’s left commu-
nication range Il(j). Then every node u ∈ Il(j), except
for i, must have load exactly `(i) − 1, because otherwise
k would have chosen u instead of i as the next neighbor
on Pr (there is no node between i, j as j is to the right
of i in S.). The total load summed over all the nodes in
Il(j) is therefore (m − 1)(`(i) − 1) + `(i). Since a path
generated by GREEDY2 has at most two nodes inside any
unit interval, the number of requests that pass the interval
Il(j) is at least (m`(i)−m+1)/2. Therefore the optimum
value, `∗(R), is at least (m`(i)−m+1)/(2m). This proves
that `(P) ≤ 2`∗(R) + 1. ¤

The above analysis on the load-balancing ratio is tight
as we can construct examples to achieve the bound.

C. Requests with variable packet sizes

The above greedy algorithm fails for requests with
variable size. For example, with variable sized packets,
we can force GREEDY2 to alternate between two nodes
while it is possible to evenly distribute the loads among
nearby nodes. Here, we show a different greedy strategy
with stretch factor of 2 and the load-balancing ratio of
3. The idea is to define bridges which can be used to
guarantee progress and then choose from the “lightest”
bridge. This idea will also be used for dealing with strips.

For each node d ∈ S, a pair of nodes b and c form
a bridge over d if b ∈ Il(d), c ∈ Ir(d), and b, c are
visible to each other(Figure 3 (ii)). The load of a bridge
`(bc) is defined as max(`(b), `(c)). Then lightest bridge
B(d) is defined to be the lightest bridge among all the
bridges over d. Now, the algorithm GREEDY3 works as
follows. Whenever a node a receives a request from left, we
again check if the destination is within a’s communication
range. If not, a asks the furthest node d in its right
communication range and use B(d) = bc to route the
request. The same process is repeated at the node c.

Similarly, we can show that GREEDY3 has the property
that for any four adjacent nodes a, b, c, d on the path
produced by GREEDY3, a, d are not visible to each other

since they are separated by a bridge. Using the same
technique as in the previous section, we can add one look-
ahead to GREEDY3 to shortcut the path if two non-
adjacent node can see each other in the path. Therefore,
the stretch factor of GREEDY3 is 2. We now argue that

Theorem 3.2. GREEDY3 is 3-balanced, i.e. `(P) ≤
3`∗(R).

Proof: The proof is by induction. Denote by Rt the
set of the first t requests. The claim is clearly true when
t = 1. Suppose that after the t-th request is processed, we
have that `(Rt) ≤ 3`∗(Rt). We now argue that it is still
true for t+1. We prove this by contradiction. Suppose that
it were not true. Consider the first time when the condition
is violated when routing the t+1-th request rt+1. Suppose
that it is when a receives rt+1 and routes it through bc,
the lightest bridge over d.

Let `t+1 denote the size of rt+1. Then, `t(bc) + `t+1 >
3`∗(Rt+1). For every bridge B over d, `t(B) ≥ `t(bc)
since bc is the lightest bridge over d. A node u is heavy
if there exists a bridge B = uv or B = vu over d
such that `t(B) = `t(u). Denote by D the set of heavy
nodes in I(d). Since each bridge has to pass at least one
heavy node and can pass at most two heavy nodes, the
average load on all the nodes in D is at least `t(bc)/2. Any
algorithm has to use one node in D to route those requests.
Therefore `∗(Rt) ≥ `t(bc)/2 > (3`∗(Rt+1)− `t+1)/2. Since
`t+1 ≤ `∗(Rt+1), the above formula implies that `∗(Rt) >
`∗(Rt+1), a contradiction. Thus the result holds for t + 1.

¤

IV. Distributed Implementation

In this section, we present an efficient implementation
of the above algorithms. We assume each node knows its
location by either GPS or some localization methods [28],
[29], [30], [31]. We also assume that the rough location
of the destination is known such that the source node
knows whether it should send the packet to its left or right.
Denote by h1(p) the number of nodes inside the commu-
nication range of p and by h2(p) the number of nodes that
is at most distance two from p. Our implementation has
the following properties:
• A wireless node makes the routing decision by using

only local information.
• Each node only stores O(log h1(p)) bytes.
• A node p makes the routing decision in O(log h1(p))

(O(log2 h2(p))) time, for the case of unit (variable)
packet size.

• Any dynamic update, including changing load on p,
adding or deleting a node p, takes O(log h1(p)) time.

A. Requests with unit packet sizes

When all the requests have unit packet size, each node p
needs to compute p∗, the furthest node in p’s right (or left)
communication range whose load is not maximum over all
the nodes in Ir(p). In the following part of this subsection,

we focus on how to find p∗ by a memory-efficient mecha-
nism. Once p∗ is found, the packet is delivered to p∗. This
process is repeated until the destination is reached.

First, if we build a balanced binary search tree on all
the nodes in Ir(p), we can clearly compute p∗ in time
O(log |Ir(p)|). By this simple implementation the memory
of a node p is O(|Ir(p)|). Here we propose a more efficient
implementation which actually distributes the storage and
computation to each node instead of using a central node.
Then each node only needs poly-logarithmic storage. To
achieve this, we pay some price for extra communication.
A node p finds out the next hop p∗ by asking its neighbors
to do some computation. We assume that in the procedure
of finding the next hop p∗, the size of the control informa-
tion transferred is very small and thus can be omitted.
If this is not the case, i.e., the control information is also
taken into account in loading the wireless nodes, we should
use the first scheme where a node keeps the locations of
all its 1-hop neighbors.

We construct a virtual forest F in which every Ir(p) is
a union of a constant number of subtrees of F . To build
F , we imagine a binary grouping process where every two
mutually visible nodes are grouped. Pick one of two nodes
as a (first-level) leader. We then group first-level leaders
to create second-level leaders and so on. If a node cannot
find a same level leader within its communication range to
group, the process simply stops for that node (Figure 4).
At the end of the process, each node has a rank which is
the highest level it is on.

I(p)

p

Fig. 4. Algorithm for requests with unit packet size.

The construction of F can be done by using leader
election algorithms such as the randomized algorithm used
in [32]. The virtual forest F is stored distributedly on the
nodes in S. If a node u is grouped with a node v on level
i−1 and u is selected as the level i leader, we call the node v
the child of u. The virtual forest F is stored implicitly such
that each node stores the ID’s of its parent and children.
Now, we consider the communication range I(p) of a node
p. By the process F is created. There are at most three
trees in F that contain nodes in I(p), which are denoted
by a set T (p). We store at p the set V (p) that contains
the highest rank node inside I(p), for each tree T ∈ T (p).
On each tree T ∈ F , we also construct a binary search
tree structure on the loads on each node distributedly. The
storage at each node is O(log h1) in total.

To compute p∗ for p, p asks the nodes in V (p) which
node should be p∗. Each of the node in V (p) does a

binary search top-down and recursively asks its children to
compute p∗. The p∗, once found, is returned to the node p
and the packet is delivered from p to p∗. Since each tree in
F is balanced, the computation and any dynamic change
of load can be done in time O(log h1) as well.

B. Requests with variable packet sizes

The algorithm for requests with variable packet size
is more complicated. The major task is to find the
lightest bridge over a node p. For each node p, define
a function fp(x) = minxp≤xu≤xp+x `(u) and gp(x) =
minxp+x−1≤xu≤xp

`(u). Clearly, both fp(x), gp(x) are stair-
case functions, where f is decreasing, and g is increasing.
Since fp(0) = gp(1) = `(p), there must exist an x∗ so that
fp(x) and gp(x) intersect. We take b∗ and c∗ to be the
nodes such that fp(x∗) = `(c∗) and gp(x∗) = `(b∗), see
Figure 5. Then we claim that,

x∗
x

fp(x)

gp(x)

10

`(p)

`(c∗)

`(b∗)

(i)

`(c∗)

x

fp(x)

gp(x)

10 x∗

`(p)

`(b∗)

(ii)

Fig. 5. (i) gp(x∗) = `(b∗) ≤ fp(x∗) = `(c∗); (ii) gp(x∗) =
`(b∗) > fp(x∗) = `(c∗).

Lemma 4.1. b∗c∗ is the lightest bridge over p.
Proof: First since gp(x∗) = `(b∗), fp(x∗) = `(c∗), then

b∗ ∈ [xp + x∗ − 1, xp], c∗ ∈ [xp, xp + x∗]. So b∗c∗ is a valid
bridge.

Now we assume that there is another bridge bc with
weight smaller than b∗c∗. If `(b∗) ≤ `(c∗), as shown in
Figure 5 (i), then we know that `(c) < `(c∗). For the
location of c we must have xc is greater than xp + x∗.
Then b’s location xb is inside interval [xc − 1, xp]. So b ≥
xc− 1 > xp + x∗− 1. The stair-case property of fp(x) and

gp(x) implies that for all x > x∗, gp(x) > fp(x∗) = `(c∗).
So `(b) > `(c∗). Then the weight of bc is greater than the
weight of b∗c∗. This causes contradiction. The case when
`(b∗) > `(c∗) can be proved in a similar way. ¤

Computing x∗ can be done by using binary search.
Again, we can use the method for unit packet size to solve
the problem but with one more log factor due to the binary
search in the computation and update time.

C. Handling dynamic changes

There are two types of events that may cause the dy-
namic change. One is when two nodes start or stop to be-
come visible to each other due to either insertion/deletion
of nodes or mobility. The other is when the load on a
node changes. In both cases, such an event only affects a
constant number of trees in the forest. If we use a dynamic
balanced binary tree, then each dynamic change can be
done in O(log h1(p)) time.

In the previous section, we describe our algorithms in a
per-packet basis. Its main purpose is to provide a rigorous
analysis. In practice, the control overhead can be high if
we try balance load on a per-packet basis. Instead, we
maintain for each node the level of its energy use and
ran our algorithm on the levels. This way, a route can be
cached, and a load update is only needed when the energy
level of a node changes.

V. Load-balanced routing for nodes in a
narrow strip

The load-balanced routing algorithm can be extended
to a strip with width w ≤ √

3/2 ≈ 0.86(recall that the
communication radius of each node is 1). In what follows,
we assume that a strip is bounded by two horizontal
parallel lines where the width is the vertical distance
between the two lines. The restriction on the width will
become clear later.

We say a node b is to the left (right) of a, if the x-
coordinate of b is smaller (larger) than that of a. Then,
for each vertex p, bc is a right (left) bridge if b is inside
the communication range of p, c is outside and to the right
(left) of p, and b, c are visible to each other(Figure 6(i)).
The load of a bridge is then defined as max(`(b), `(c)), and
the right (left) lightest bridge is the bridge with the small-
est load among all the right (left) bridges. The algorithm
GREEDY4 works in a way similar to GREEDY3: when
p receives a packet, it first checks if the destination of
the packet inside its communication range. If it is, then
the packet is forwarded to the destination. Otherwise,
according to which side the destination lies, p chooses the
right or left lightest bridge, say bc, sends the packet on
the path pb and bc. When the packet arrives on b, it again
checks if the destination is in b’s communication range,
and if it is, forwards the packet to the destination. Then,
repeat the above process at the node c until the destination
is reached.

To show that the above algorithm works correctly, we
make the following observation, which also explains the
restriction on the strip width.

Lemma 5.1. Suppose that u, v, w, from left to right, are
three nodes in a strip with width at most

√
3/2 and u,w

are mutually visible. Then either u or w is visible to v.
Proof: If neither u nor w is visible to v, then

both nodes are outside the communication range of v. In
addition, u is to the left of v, and w to the right. It is easy
to see that if the width is at most

√
3/2, then u and w

cannot be visible to each other (Figure 6(ii)). ¤

c

w ≤ √
3/2

p
b

(i)

√
3/2w

v

u

1

(ii)

Fig. 6. (i) bc is a right bridge of p. (ii) u, w cannot see each
other if they are on different sides of v and outside of v’s
communication range.

We now claim that

Theorem 5.2. The stretch factor of GREEDY4 is 4, and
the load-balancing ratio is 3.

Proof: We first show that the algorithm always
succeeds. Suppose that there is a path from a node s to
t where t is to the right of s. We argue that GREEDY4
cannot stop at a node that is to the left of t. Otherwise,
assume that the algorithm is stuck at a node p, i.e. p
does not have a right bridge and does not see t. Since
s is to the left of t, any path from s to t has to cross
the right boundary of p’s communication range. The edge
that crosses the boundary then must be a right bridge of
p, contradicting the assumption(Figure 7). Now, suppose
that p is to the right of t. Consider the pair of adjacent
nodes, say a, b, on the path from s to p that sandwich t. By
Lemma 5.1, t is visible to either a or b. Thus, the packet
must have been delivered to t by either a or b. Therefore,
the algorithm always delivers a packet if there is a path.

Now, we bound the stretch factor of the algorithm. For
a right bridge bc of p, since c is outside the communication
range of p, we have that xc ≥ xp+1/2. Clearly, for a packet
from s to t, it has to take at least xt − xs hops, while

w ≤ √
3/2

p

t
s

Fig. 7. The path from s to t has to cross the right boundary of
p’s communication range. The thickened edge is a right bridge
of p.

GREEDY4 takes at most 2(xt − xs)/(1/2) = 4(xt − xs)
hops. Thus, the stretch factor is at most 4.

To bound the load-balancing ratio we use the same tech-
niques as in Theorem 3.2. For a node p that GREEDY4
picked, every path from the source to the destination has
to use one right bridge of p, and therefore at least one and
at most two heavy nodes. So by the same argument the
load-balancing ratio for GREEDY4 is at most 3. ¤

Furthermore we show that the upper bound
√

3/2 on the
width of the strip is indeed necessary. If otherwise, then
there could be two paths P1, P2 from the source s such that
they are not visible to each other except at the source or
destination, see Figure 8. So any algorithm based on local
information will not be able to find out at the source node
whether P1 or P2 is more heavily loaded.

P2

w >
√

3/2
s

P1

Fig. 8. A strip of width w >
√

3/2, P1, P2 are two paths from
s.

Clearly, the above algorithm can be implemented such
that the cost for both routing decision and update is
linear to the number of nodes in the 2-hop neighborhood.
The reason that it does not admit an efficient algorithm
like in the line case is that the two dimensional dynamic
disk range search is much more difficult than the one
dimensional case, which can be done by binary search.
There are techniques in Computational Geometry which
yield better theoretical bounds. But the number of nodes
in a neighborhood is typically small, it is unnecessary to
use those heavy machinery.

VI. Simulations

We evaluate the load-balanced routing algorithm under
various wireless nodes distributions and traffic patterns.
The shortest path routing algorithm minimizes the to-
tal energy the network consumed but does not balance
the loads on different nodes. So a node could easily be

overloaded under the shortest path routing. We compare
GREEDY3 with the shortest path routing algorithm.

In our experiments, the wireless nodes are distributed
randomly along a line. Specifically, we distribute 1000
nodes randomly in the interval [0, 100]. We vary the radius
of the communication range of the wireless nodes from 1
to 10. In one set of experiments, we assume that the nodes
can handle as many traffic as possible, and we evaluate the
maximum packets that one node relays. In the other set,
we put a limit on the number of packets a node is able
to relay and evaluate the number of packets the network
delivers before any node dies.

For the traffic patterns, we consider two cases: random
traffic pattern and aligned traffic pattern. In the random
traffic pattern, a packet is generated by choosing the
source and destination of a packet uniformly randomly
among all the nodes. In the aligned traffic pattern, a packet
is originated from the left end and destined to the right
end, i.e. each packet has to be relayed from the left to
the right. In both cases, our experimental results suggest
that the load-balanced routing works much better than
the shortest path routing in terms of balancing the load.
In addition, we measure the length of the paths produced
by our algorithm and compare it with the shortest path
routing. From time to time, our algorithm produces path
noticeably longer than the shortest path. However, on
average, the path length is only slightly longer. This
indicates that the load-balancing is achieved at the price
of increasing the path length but only by a small fraction.

a) Unlimited energy and random traffic: We generate
1000 random packets, each with size randomly chosen
between 1 and 10. In Figure 9, we plot, for both the
load balancing routing and the shortest path routing,
the maximum load in terms of the number of packets
delivered by the network, if the communication range
has radius 5. According to the data, the ratio of the
maximum load of the shortest path routing to that of
the load-balanced routing is about 5. We also compare
the length (the number of hops) of the paths produced
by our algorithm to the shortest path length, both in the
worst case and on average. Figure 10 shows the worst case
and average ratio of the length of the paths produced by
our algorithm to the shortest path length, as well as the
ratio of the maximum load under shortest path routing
and load-balanced routing under different communication
ranges. The observation from Figure 10 is that we achieve
substantially in terms of the maximum load ratio by
paying a little higher price on the maximum and average
delay.

b) Unlimited energy and aligned traffic: Under the
aligned traffic pattern, a packet is originated from a ran-
dom node in the interval [0, 10] and destined to a random
node in [90, 100]. Figure 11 shows the experimental result.
The data shows that the ratio of the maximum load of the
shortest path routing to that of the load-balanced routing
is about 10.3, much higher than the random traffic pattern,

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

400

450

Number of packets

M
ax

im
um

 lo
ad

Shortest path routing
Load balanced routing

Fig. 9. The maximum node load in terms of the number of
packets delivered under the random traffic pattern. The dashed
line curve is for the shortest path routing, and the solid line
curve for the load-balanced routing. The communication range
has radius 5.

1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Radius of communication range

R
at

io

max hop, LBR/SPR
avg hop, LBR/SPR
max load, SPR/LBR

Fig. 10. The worst case and average ratio of the length of the
paths produced by our algorithm to the shortest path length
under different communication ranges, under the random traffic
pattern. We also show the ratio of the maximum load under the
shortest path routing to that under the load-balanced routing
for different communication ranges.

if the communication range has radius 5.
c) Limited energy and random traffic: In this case

we assume the nodes have a maximum energy, measured
by the maximum number of packets it is able to relay. A
node dies if the packets it relays exceed the given limit. We
vary the maximum energy from 0 to 90. Correspondingly
we show the number of packets delivered before any node
dies in Figure 13. Compared to the shortest path routing,
the load-balanced routing algorithm delivers about twice
as many packets before any node dies for all the energy
levels.

d) Limited energy and aligned traffic: We also try
aligned traffic under the constrained energy model. We
vary the maximum energy from 0 to 150. As shown in
Figure 14, the result for load-balanced routing is better
than the case for random traffic.

0 200 400 600 800 1000
0

200

400

600

800

1000

1200

1400

1600

Number of packets

M
ax

im
um

 lo
ad

Shortest path routing
Load balanced routing

Fig. 11. The maximum node load in terms of the number
of packets delivered under the aligned traffic pattern. The
communication range has radius 5.

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

Radius of communication range

R
at

io

max hop, LBR/SPR
avg hop, LBR/SPR
max load, LBR/SPR

Fig. 12. The worst case and average ratio of the length of the
paths produced by our algorithm to the shortest path length
under different communication ranges, under the aligned traffic
pattern. We also show the ratio of the maximum load under the
shortest path routing to that under the load-balanced routing
for different communication ranges.

0 5 10 15 20
0

100

200

300

400

500

600

700

800

900

1000

Maximum energy per node (X5)

P
ac

ke
ts

 d
el

iv
er

ed
 b

ef
or

e
th

e
fir

st
 n

od
e

di
es

shortest path routing
Load balanced routing

Fig. 13. The number of packets delivered when the first node
dies in terms of the maximum energy of each node under the
random traffic pattern. Again, dashed line curve is the shortest
path routing, and sold line curve the load-balanced routing.

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

700

800

900

1000

Maximum energy per node (X5)

P
ac

ke
ts

 d
el

iv
er

ed
 b

ef
or

e
th

e
fir

st
 n

od
e

di
es

Shortest path routing
Load balanced routing

Fig. 14. The number of packets delivered when the first node
dies in terms of the maximum energy of each node under the
aligned traffic pattern.

In summary, we find through simulation that our load-
balanced routing algorithms perform consistently better
than the shortest path routing in terms of the maximum
node load and only slightly worse in terms of the path
length. Furthermore, the implementation of the load-
balanced routing is fairly simple. We would expect the
algorithm to find practical use in real applications.

VII. Conclusion

In this paper, we initiate the study of wireless network
routing with the aim of achieving good performance in
terms of both stretch factor and load-balancing ratio. We
present algorithms which can achieve constant competitive
factors for both measures when all the nodes are located in
a narrow strip. In addition, our algorithm is local and deals
with dynamic change efficiently. One interesting problem
is to extend the study to the other node distribution. For
such an extension, we may have to make assumption on the
traffic patterns too as the load-balanced routing is difficult
even for nodes that form a regular grid.

References

[1] Hannes Hartenstein, Bernd Bochow, André Ebner, Matthias
Lott, Markus Radimirsch, and Dieter Vollmer, “Position-aware
ad hoc wireless networks for inter-vehicle communications: the
fleetnet project,” in Proceedings of the 2nd ACM Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc 01’),
2001, pp. 259–262.

[2] Yossi Azar, “On-line load balancing,” in On-line Algorithms:
The State of the Art, A. Fiat and G. Woeginger, Eds., pp. 178–
195. LNCS 1442, Springer, 1998.

[3] Allan Borodin and Ran El-Yaniv, Online Computation and
Competitive Analysis, Cambrdige University Press, 1998.

[4] P. Raghavan and C. D. Thompson, “Provably good routing in
graphs: regular arrays,” in Proceedings of the 17th annual ACM
Symposium on Theory of Computing, 1985, pp. 79–87.

[5] P. Raghavan, “Probabilistic construction of deterministic al-
gorithms: approximating packing integer programs,” J. Comp.
and System Sciences, pp. 130–143, 1988.

[6] Serge A. Plotkin, “Competitive routing of virtual circuits in
ATM networks,” IEEE Journal of Selected Areas in Communi-
cations, vol. 13, no. 6, pp. 1128–1136, 1995.

[7] David B Johnson and David A Maltz, “Dynamic source routing
in ad hoc wireless networks,” in Mobile Computing, Imielin-
ski and Korth, Eds., vol. 353, pp. 153–181. Kluwer Academic
Publishers, 1996.

[8] Charles E. Perkins and Elizabeth M. Royer, “Ad hoc on-demand
distance vector routing,” in Proc. of the 2nd IEEE Workshop on
Mobile Computing Systems and Applications, 1999, pp. 90–100.

[9] S. Ramanathan and Martha Steenstrup, “A survey of routing
techniques for mobile communications networks,” Mobile Net-
works and Applications, vol. 1, no. 2, pp. 89–104, 1996.

[10] N. Bambos, “Toward power–sensitive network architectures in
wireless communications: Concepts, issues, and design aspects,”
IEEE Personal Communications, vol. 5, pp. 50–59, 1998.

[11] Qun Li, Javed Aslam, and Daniela Rus, “Online power-aware
routing in wireless ad-hoc networks,” in Proc. ACM MobiCom,
2001, pp. 97–107.

[12] A. Goldsmith and S.B. Wicker, Eds., Special Issue: Energy-
aware ad hoc wireless networks, vol. 9, IEEE Wireless Comm.,
Auguest 2002.

[13] Christine E. Jones, Krishna M. Sivalingam, Prathima Agrawal,
and Jyh-Cheng Chen, “A survey of energy efficient network
protocols for wireless networks,” Wireless Networks, vol. 7, no.
4, pp. 343–358, 2001.

[14] C. Petrioli, R.R. Rao, and J. Redi, Eds., Special Issue: Energy
Conserving Protocols, vol. 6, Mobile Networks and Applications,
June 2001.

[15] Suresh Singh, Mike Woo, and C. S. Raghavendra, “Power-
aware routing in mobile ad hoc networks,” in Proc. ACM/IEEE
MobiCom, 1998, pp. 181–190.

[16] Jae-Hwan Chang and Leandros Tassiulas, “Energy conserving
routing in wireless ad-hoc networks,” in Proc. INFOCOM, 2000,
pp. 22–31.

[17] Jae-Hwan Chang and Leandros Tassiulas, “Fast approximation
algorithms for maximum lifetime routing in wireless ad-hoc
networks,” in Networking, LNCS 1815, 2000, pp. 702–713.

[18] Javier Gomez, Andrew T. Campbell, Mahmoud Naghshineh,
and Chatschik Bisdikian, “PARO: Power-aware routing in
wireless packet networks,” in Proc. 6th IEEE International
Workshop on Mobile Multimedia Communications, November
1999.

[19] Yan Yu, Ramesh Govindan, and Deborah Estrin, “Geographical
and energy aware routing: A recursive data dissemination proto-
col for wireless sensor net-works,” Technical report tr-01-0023,
University of California, Los Angeles, Department of Computer
Science, 2001.

[20] C.-K. Toh, “Maximum battery life routing to support ubiq-
uitous mobile computing in wireless ad hoc networks,” IEEE
Communications Magazine, pp. 138–147, June 2001.

[21] R. C. Shah and J. M. Rabaey, “Energy aware routing for low
energy ad hoc sensor networks,” in Proc. IEEE WCNC’02,
March 2002.

[22] Vikram Srinivasan, Carla F. Chiasserini, Pavan Nuggehalli, and
Ramesh R. Rao, “Optimal rate allocation and traffic splits
for energy efficient routing in ad hoc networks,” in IEEE
INFOCOM, 2002.

[23] Gil Zussman and Adrian Segall, “Energy efficient routing in ad
hoc disaster recovery networks,” in IEEE INFOCOM, 2003.

[24] Ya Xu, John S. Heidemann, and Deborah Estrin, “Geography-
informed energy conservation for ad hoc routing,” in Proc. ACM
MOBICOM, 2001, pp. 70–84.

[25] Wei Yu and Jangwon Lee, “DSR-based energy-aware routing
protocols in ad hoc networks,” in Proc. of the 2002 International
Conference on Wireless Networks, 2002.

[26] Nishant Gupta and Samir Ranjan Das, “Energy-aware on-
demand routing for mobile ad hoc networks,” in Proc. IWDC,
2002, pp. 164–173.

[27] Susanne Albers, “Better bounds for online scheduling,” in
Proceedings of the ACM Symposium on Theory of Computing,
1997, pp. 130–139.

[28] Jeffrey Hightower and Gaetano Borriello, “Location systems
for ubiquitous computing,” IEEE Computer, vol. 34, no. 8, pp.
57–667, August 2001.

[29] Andreas Savvides, Chih-Chieh Han, and Mani B. Strivastava,
“Dynamic fine-grained localization in ad-hoc networks of sen-
sors,” in Proc. MobiCom, 2001, pp. 166–179.

[30] Andreas Savvides and Mani B. Strivastava, “Distributed fine-
grained localization in ad-hoc networks,” IEEE Transactions of
Mobile Computing, 2003.

[31] A. Ward, A. Jones, and A. Hopper, “A new location technique
for the active office,” IEEE Personnel Communications, vol. 4,
no. 5, pp. 42–47, October 1997.

[32] Jie Gao, Leonidas J. Guibas, John Hershberger, Li Zhang, and
An Zhu, “Discrete mobile centers,” Discrete and Computational
Geometry, vol. 30, no. 1, pp. 45–65, 2003.

