
Lightweight Coloring and Desynchronization for
Networks

Arik Motskin, Tim Roughgarden, Primoz Skraba and Leonidas Guibas
Stanford University, Stanford, CA 94305

Email: {amotskin, primoz}@stanford.edu,{tim, guibas}@cs.stanford.edu

Abstract—We study the distributed desynchronization problem
for graphs with arbitrary topology. Motivated by the severe
computational limitations of sensor networks, we present a
randomized algorithm for network desynchronization that uses
an extremely lightweight model of computation, while being
robust to link volatility and node failure. These techniques
also provide novel, ultra-lightweight randomized algorithms for
quickly computing distributed vertex colorings using an asymp-
totically optimal number of colors.

I. I NTRODUCTION

As inherently distributed computational systems, sensor
networks rely critically on coordination between nodes to
effectively sense, communicate and interpret environmental
data. Individual nodes face severe battery and computational
limitations, so a notion of coordinated task-sharing and duty-
cycling is critical to maintaining the longevity and efficient
operation of the network. In this sense,desynchronizingthe
actions of nodes is desirable. Efficient desynchronizationpro-
tocols can be applied to a variety of sensor network applica-
tions, including periodic resource sharing, coordinated sleep
schedules, and evenly shared sensing burden across nearby
nodes [3].

A. The Problem: Desynchronization

We consider the following desynchronization problem:
given an undirected graphG = (V,E), a target interval length
lv for every nodev ∈ V , and a circle of circumferenceT , we
wish to feasiblyassign to each nodev a contiguous interval
of the circle of lengthlv. The assignment is feasible if for
each (u, v) ∈ E, the assigned intervals ofu and v do not
overlap. Observe that the vertex coloring problem is a special
case of desynchronization, where given a set ofs available
colors, each node has the same target interval lengthT

s and
the set of possible intervals on the circle is restricted tos
non-overlapping intervals of lengthTs .

Our aim is to solve this problem in a decentralized manner:
nodes are modeled as processors that may select intervals
based only on local information. Time proceeds in rounds,
and in each round nodes can interact only with their 1-hop
neighbors. In the vertex coloring context, we think of time
as proceeding insynchronousrounds. For the more general
desynchronization problem we think of time as proceeding
continuously in phases of lengthT , with intervals of the circle
corresponding to intervals of time.

While minimum graph-coloring is NP-hard [6] (and hard to
approximate better thanΩ(|V |1−ε) [4]), it is easy to color any

graph with∆+1 colors – corresponding to target intervals of
length T

∆+1 – in n rounds by the centralized greedy algorithm,
wheren is the total number of nodes and∆ is the maximum
degree of the graph. Our goal is to achieve convergence
time exponentially faster than the sequential greedy algorithm,
while using target intervals of comparable length.

B. Computational Model

The key consideration when designing sensor network pro-
tocols is to keep them lightweight. As nodes are limited
in processing power, simple computations are crucial. More
importantly, communication between nodes is expensive [17],
so all but the most critical message-passing should be avoided.

Motivated by these concerns, we consider an extremely
lightweight, novel computational model. We define a(c,d)-bit
local algorithmon the graphG, such that each node maintains
a legal output (e.g. a color, or an interval),d bits of additional
state, and bases its actions in a given round only on its current
state and somec-bit feedback from previous rounds. In the
distributed vertex coloring context, we define the feedback
as whether or not a node’s color conflicts with any of its
neighbor’s colors. In the sensor network context, the notion
of feedback is adjusted to suit the continuous nature of the
problem. It is defined as whether any of a nodev’s neighbors
are broadcasting whenv is listening.

C. Our Results

We present a randomized(2, 1)-bit local desynchronization
algorithm withlv = T/2(d̂v+1), that converges inO(∆ log n)
periods with high probability. A period has lengthT , so each
node v is feasibly assigned a subinterval of that period of
length lv. Parameterd̂v denotes the maximum degree inv’s
1-hop neighborhood. At convergence, this means that each
node has claimed a subinterval (of lengthT/2(d̂v +1)) of the
repeating period (of lengthT), such that the intervals of any
two neighbors do not overlap. This is achieved with each node
requiring only a single bit of state beyond what is required to
maintain an interval1, and at most two bits of feedback from
the previous period.

The techniques we use are based on a novel lightweight
way to compute a distributed vertex coloring. In particular,
we give a randomized(1, 1)-bit local coloring algorithm that
uses∆ + 1 colors and converges inO(∆ log n) rounds with

1An interval is fully specified by two parameters: the intervallength and
the phase of the repeating period at which the interval begins.

high probability, and a randomized(1, 0)-bit local coloring
algorithm that usesO(∆) colors and converges inO(log n)
rounds with high probability. We also prove a lower bound of
Ω(log n/ log ∆) rounds for(1, β)-bit local algorithms that use
O(∆) colors, for anyβ ≥ 0.

Our general desynchronization solution has several prop-
erties that are particularly appealing in the sensor networks
context:

1) Our algorithm is very robust to network volatility, easily
handling changes in network topology.

2) Nodes need not synchronize to a global clock (assuming
no clock drift).

3) Nodes in sparse neighborhoods ofG are assigned larger
intervals than those in dense neighborhoods.

4) There is a simple trade-off characterization between
convergence time and interval length values.

D. Related Work

To the best of our knowledge, the only past work on
desynchronization is [3] and [14], where the problem is solved
for the complete graph using target values ofT

n . On the
other hand, distributed vertex coloring is a well-studied prob-
lem. The standard model of communication is the powerful
message-passingparadigm [12], where in each round nodes
can trade messages of arbitrary size with their neighbors, and
engage in arbitrary computation. The best upper bound for
arbitrary graphs in this model is given by [12] and [13], which
colors a graph using∆ + 1 colors in expectedO(log n) time,
by means of a reduction to the maximal independent set (MIS)
problem. Linial [12] also gives a deterministic algorithm that
colors an arbitrary graph withO(∆2) colors in O(log∗ n)
rounds. Such bounds do not carry over to our computational
model due to the complexity of the messages traded between
nodes; Luby’s MIS algorithm [13], for instance, requires
neighbors to compare degree values if they discover a conflict
with respect to the independent set property.

For lower bounds, there is a time lower bound of
Ω(∆/ log2 ∆ + log∗ m) rounds when usingO(∆) colors
(m = # of edges) [10]. For the related (and potentially easier)
problem of computing a MIS (there is an easy distributed
way to go from a coloring to a MIS [9]) the best lower
bounds areΩ(

√

log n/ log log n) and Ω(log ∆/ log log ∆)
rounds [8]. Separately, work on thebit complexitymodel [1]
gives lower bounds on the number of communication bits
required to complete various network tasks like leader election.

The plan for the paper is as follows. In Section II we
discuss lightweight procedures for decentralized coloring and
prove the lower bound on convergence time. In Section III we
present the desynchronization algorithm, prove its convergence
time and study several extensions. In Section IV, we present
simulation results for the desynchronization algorithm. We
conclude in Section V.

II. D ECENTRALIZED VERTEX COLORING

For our study of the decentralized vertex coloring problem,
we assume that time proceeds in synchronous rounds, where in

each round a node receives a single bit of feedback – whether
or not it has a conflict with any of its neighbors – and then
can select a new color if it wishes. No message passing of any
kind is permitted. We also assume that each nodev knows its
own degree, denoted bydv.

A. Conflict Detection Model

In the most restrictive model that we study – Conflict
Detection – nodes must select a color for roundt basedonlyon
their color and conflict status from roundt− 1. In particular,
each nodev is endowed with a color selection functionfv

that is either deterministic or randomized, and selectsv’s next
color based on feedback from last round. Formally,

fv : Cv x {conflict, no conflict} → Cv

where Cv is the set of colors available tov. If ci ∈ Cv

is the color selected byv in round i and Ii ∈ {0, 1} the
conflict status in roundi, nodev generates a sequence of colors
{c1, c2, c3, ...} whereci+1 = fv(ci, Ii).

We present a randomized algorithm in the Conflict Detec-
tion Model that converges to a proper coloring inO(log n)
rounds with high probability using onlyO(∆) colors. That
is, each nodev has a set of colorsC from which to choose,
where |C| = k∆ for a constantk ≥ 1. In fact, a stronger
result holds: individual nodes need not know the maximum
degree∆ of the entire graph, but instead only the maximum
degree of its 1-hop neighborhood, denotedd̂v. Each nodev
can instead select only from a potentially much smaller set of
colorsCv ⊂ C, where|Cv| = kd̂v (for the samek as above).
For purposes of technical and notational clarity, we prove only
the result where nodes draw colors from the entire listC, but
the stronger result follows by the same proof with only minor
adjustments to the algebra.

Algorithm 1 (Conflict Detection)
1) Each nodev initializes with an arbitrary colorc drawn

from Cv. t← 1.
2) In roundt, nodev checks whether or not it has a conflict

with any of its neighbors
3) If no neighbor ofv is also coloredc, v selects the same

color c for roundt + 1; otherwise,v selects a color for
roundt + 1 uniformly at random fromCv. In either case,
return to step2. t← t + 1.

It is not immediately clear why the algorithm should achieve
O(log n) round convergence. Since a node that is without a
conflict in some roundt may very well become conflicted in
a later round, it is not sufficient to show only that a constant
fraction of conflicted nodes become unconflicted in any round.
In Section II-C we show that by adding a single bit of memory
– in effect turning nodes into two-state machines – we avoid
the problem of nodes moving back and forth between being
conflicted and being unconflicted. Nevertheless, observe that
onceall nodes in the graph are simultaneously unconflicted,
the graph has converged to a proper coloring and no node
wishes to switch its color; the global solution is verified only
after it passes a local test at every node. Observe also that

the algorithm isself-maintaining, in the sense that adjusting
the coloring for newly formed or dropped edges is handled
on-the-fly by the algorithm at a local level.

Suppose each nodev has a setC of available colors,
common to all nodes in the graph, where|C| = k∆ for
constantk ≥ 1. We say thatv is good in round t if each of
its neighbors is colored differently fromv during that round;
otherwise the node isbad. Let the random variableXt denote
the number of good nodes (out ofn total) at roundt. Since
the algorithm halts at a proper coloring – when all nodes are
good – we wish to characterize the time it takes forXt to
reachn. The following key proposition establishes that in the
course of a round, in expectation at least a constant fraction
of bad nodes become good.

Proposition 1 If Xt is the number of good nodes in roundt,
thenE[Xt+1|Xt] ≥ Xt + 0.1(n−Xt) whenk ≥ 5.

See Appendix A for the proof. The next proposition follows
from a simple application of the law of iterated expectations.

Proposition 2 Let n > 0 be an integer, andXt an integer
random variable in[0, n] for t ∈ {0, 1, 2, . . .}. Define variable
R to be the smallestt such thatXt = n. Suppose there exists
value0 < c < 1 such that∀t, E[Xt+1|Xt] ≥ Xt + c(n−Xt).
Then for any integerm ≥ 0,

P(R ≥ ⌈logb n⌉+ m) ≤ (1− c)
m

whereb = 1
1−c .

We can now establish the convergence time of Algorithm 1.

Theorem 1 Algorithm 1 converges to a proper coloring in
O(log n) rounds with high probability, when using at least
5∆ colors.

Proof: If we let R be the number of rounds until the algo-
rithm converges, then we interpretR as the number of rounds
until all n nodes become good. Therefore by Propositions 1
and 2, for integerm ≥ 0,

P(R ≥ ⌈logb n⌉+ m) ≤ (1− c)
m

where c ≥ 0.1, and sob ≥ 10
9 . Note thatln b > 1

10 , so for
concreteness it follows thatP(R ≥ 11 ln n) = O(1

n).
Note that the large constant is due both to the relatively

loose analysis and the valuek = 5, which can be increased in
order to accelerate convergence time.

B. Lower Bound

Despite the simplicity of Algorithm 1, it is in a sense the
only effective(1, 0)-bit local coloring algorithm. Moreover, it
turns out that increasing each node’s state size (but keeping
the feedback fixed) does not lead to faster convergence. We
prove a lower bound ofΩ(log n/ log ∆) rounds for all(1, β)-
bit local coloring algorithms usingO(∆) colors, whereβ is
any number of state bits. Recall that for coloring we defined
the single bit of feedback to be whether or not a node has a
conflict with any of its neighbors.

It is a lower bound in the following sense: given a node set
V and a pre-determined degreedv for eachv ∈ V , then for
any (1, β)-bit local algorithm there exists a graph satisfying
these degree constraints for which the algorithm requires
Ω(log n/ log ∆) rounds to converge with high probability. This
means in particular that Algorithm 1 is optimal for small∆.

Theorem 2 For every(1, β)-bit local algorithm usingO(∆)
colors, whereβ ≥ 0, the lower bound on convergence time is
Ω(log n/ log ∆) rounds with high probability.

See Appendix B for the proof.

C. Conflict Detection with Memory

In Section II-A, we achieved an upper bound ofO(log n)
time usingO(∆) colors in the very restrictive Conflict Detec-
tion model, asymptotically matching the best known coloring
algorithm in the message-passing model for arbitrary graphs
[12], [13]. In this section, however, we seek to match the upper
bound of∆ + 1 colors exactlywhile still using a restrictive
model. For this purpose, we consider a more powerful version
of the Conflict Detection Model, where nodes use an extra bit
of memory to act as a switch between two algorithmic modes:
asearchmode and apermanentmode. As a two state machine,
nodes must select a color and a state for roundt based only
on their color in roundt−1, conflict status in roundt−1, and
state in roundt−1. Each nodev uses a color selection function
gv that is either deterministic or randomized, and selectsv’s
next color based on feedback from last round. Formally,

gv : Cv x {conflict, no conflict} x {search, permanent}
→ Cv x {search, permanent}

whereCv is the set of colors available tov.
In this model, we present a randomized algorithm that

converges to a proper coloring inO(∆ log n) rounds with
high probability using only∆ + 1 colors. Note that while the
two-state machine is more frugal with the number of colors,
the convergence time has increased for dense graphs. The
algorithm uses∆+1 colors in total, but as in the last algorithm,
individual nodes need not know the maximum degree∆.
Rather, it is sufficient for a nodev to select only from a subset
of sizedv + 1 from the entire set of possible colors. One can
thus think of colors as the positive integers, such that nodes u
and v have the integers{1, 2, ...,min{du, dv} + 1} common
to both of them. The algorithm proceeds as follows:

Algorithm 2 (Conflict Detection with Memory)
1) Each nodev initializes in search mode, and selects an

arbitrary colorcv from its set ofdv + 1 available colors.
t← 1.

2) In round t, given all color updates from the previous
round, nodev checks whether it has a conflict with any
neighbors.

3) If v has no conflicts, it enterspermanentmode and halts,
having chosencv as its permanent color.

4) Otherwise,v selects a new colorc uniformly at random
from its set ofdv + 1 available colors, remains insearch
mode, and returns to step2. t← t + 1. cv ← c.

We remark that the algorithm ends once each node has entered
permanentmode, and thus has settled on a permanent color.
Moreover, if the algorithm does indeed halt, it does so at a
proper vertex coloring.

Proposition 3 If node v has not halted before roundi, then
P(v halts in roundi) ≥ 1

dv+1 .

Proof: In roundi, at mostdv of nodev’s dv +1 available
colors will be selected byv’s neighbors. So with probability
≥ 1

dv+1 , the nodev will not have a conflict.
This establishes that in the course of a round, in expectation

at least a 1
∆+1 fraction of non-permanent nodes will become

permanent. We use this result to establish the convergence time
of the algorithm.

Theorem 3 Algorithm 2 converges to a proper coloring in
O(∆ log n) rounds with high probability.

Proof: If we let R be the number of rounds until the
algorithm converges, then we interpretR as the number of
rounds until all n nodes have selected a permanent color.
Therefore by Propositions 2 and 3, for an integerm ≥ 0,

P(R ≥ ⌈logb n⌉+ m) ≤ (1− c)
m

wherec ≥ 1
∆+1 , and sob ≥ ∆+1

∆ . We remark thatln b ≥ 1
2∆ ,

so by settingm = ∆ ln n we get that

P(R ≥ 3∆ ln n) = O(1
n).

Algorithm 2 also lends itself well to characterizing the
tradeoff between the number of colors used and the speed
of convergence. Suppose instead that for a fixed parameter
ε > 0, we allow each nodev to select from⌈(dv + 1)(ε + 1)⌉
possible colors (from an entire set of⌈(∆ + 1)(ε + 1)⌉ total
colors). Then the following corollary, whose straightforward
proof we omit, characterizes the convergence time2:

Corollary 4 Algorithm 2 converges to a proper coloring in
O(1

ε log n) rounds with high probability, when each nodev
selects from⌈(dv + 1)(ε + 1)⌉ possible colors, for anyε > 0.

III. D ESYNCHRONIZATION

In this section we present a randomized desynchronization
algorithm for sensor networks with arbitrary topology. We
adapt the ideas of Section II into a continuous analog for
vertex coloring, where rather than selecting between discrete
pre-determined time slots, sensor nodes choose intervals from
a continuous range of possible start times. As in Algorithm
2, nodes behave as two-state machines. In thesearchstate,
nodes attempt to identify a suitable interval during which to
fire. Once such an interval has been identified, nodes enter
the permanentstate, in which they behave as oscillators with
frequencyω = 1

T (we assume that the parameterT is common

2The proof follows exactly that of Theorem 3, except that eachround a
non-permanent node becomes permanent with probability at least ε

ε+1
.

to all nodes in the network). In this state, nodes fire for the
duration of their selected interval in every period of length T .
To keep the protocol as lightweight as possible, nodes store
minimal information while in thesearchstate, instead relying
on randomization to avoid conflicts and select good intervals.

In contrast with vertex coloring where time proceeds in syn-
chronous rounds, in this setting time proceeds continuously.
While in the search state, nodes act during phases whose
length is bounded byT , whereas in thepermanentstate nodes
cycle in phases of length exactlyT .

Consider a network onn sensor nodes. For a nodev, let dv

denote its degree, and̂dv denote the maximum degree among
v and its 1-hop neighbors, where a neighbor ofv refers to a
node within communication distance ofv. If nodev fires, then
all of its neighbors who arelisteningcan detect thatsomeone
is transmitting, but cannot identify who it is. Practically, a
sensor node canfire by broadcasting a carrier wave, while a
node canlistenby checking whether the RSSI value is above a
noise threshold. This approach is the predominant indicator of
link and channel quality [5], [15]. Crucially, we assume that
nodes cannot both fire and listen simultaneously, since most
radio transceivers cannot do both actions at the same time. Our
algorithm never requires nodes to synchronize to a global clock
(assuming no clock drift). For clarity, the algorithm will be
described from the perspective of a particular nodev, meaning
all references to time (except for the common parameterT)
are according to the frame of reference ofv’s internal clock.

Algorithm 3 (Desynchronization)
Initalization:

Node v informs each of its neighbors of its degree,dv.
After receiving each neighbor’s degree value, compute
d̂v = max{du| u is a neighbor ofv, or u = v} and compute
the interval lengthbv = T

2(d̂v+1)
. Initialize in thesearchstate,

and select timet to begin search. Set̂t← t.

Main Loop:
1) Select valueα ∈ [0, T] uniformly at random. Set̂tα ←

t̂ + α.
2) Listen whether any neighbor fires at any point during the

interval[t̂α, t̂α + bv].
If so, set̂t← t̂α + bv and return to step 1. Else, continue.

3) Listen whether any neighbor is firing at timêtα + T . If
so, set̂t← t̂α + T and return to step 1. Else, continue.

4) Enter thepermanentstate, and fire for the duration of the
interval[t̂α + kT, t̂α + kT + bv] for all integersk ≥ 1.

In step1, the node selects at random a trial interval, whose
length bv is specified to guarantee the convergence time of
the algorithm. This trial interval must pass two tests in order
to be accepted by the node: first, in step2, no neighbor
can fire at any time during the interval; then, in step3,
after another period has passed, no neighbor can be firing
at the very beginning of the trial interval. Only then does
the node accept the trial interval and enter the permanent
state, in which the interval is claimed for all subsequent

t̂ t̂α t̂α + T t̂α + 2T

node v

neighbor 3

neighbor 2

neighbor 1

FIGURE 1. Nodev proposes a trial interval at timêtα, which passes the
checks of steps2 and3 to become permanent.

periods. The motivation behind step3 is that two searching
neighbors whose trial intervals overlap may both pass the
first test in step2, but we do not want both to claim their
intervals permanently. Eschewing excess communication, step
3 resolves the contention by ensuring that only the node
whose start time isearliest will pass the second test and
thus claim the interval permanently. Observe that neighbors
pick the exact same start time with probability0. We note
that a more complicated chain of overlapping trial intervals
could all potentially pass the first test at the same time, but
step3 ensures that only non-overlapping trial intervals will be
accepted.

Observe that each node maintains a single bit of state that
determines whether it is insearch or permanentmode, in
addition to maintaining a legal output (ie. an interval), which
is given by the start time and length of its trial or permanent
interval. Moreover, in each iteration of the Main Loop, a node
receives at most2 bits of feedback (the listening checks of
steps2 and3) on which it bases its actions. Therefore by our
definition in Section I-B, we have a(2, 1)-bit local algorithm.

A. Convergence Properties

In this section we prove that Algorithm 3 converges after
O(∆ log n) periods of lengthT with high probability.

Proposition 4 If nodesu and v are neighbors that are both
in the permanentstate, then their selected intervals do not
overlap.

Proof: Suppose without loss of generality that nodeu
entered the permanent state before nodev (according to the
global notion of time), and suppose for sake of contradiction
that their selected intervals overlap.Case 1: Nodev’s interval
begins in the middle of nodeu’s interval.Then sinceu entered
the permanent state beforev, v would have heardu firing at the
beginning of its trial interval (in steps2 or 3), so it would not
have accepted this interval.Case 2: Nodeu’s interval begins
in the middle of nodev’s interval. Thenv would have heard
u firing in the middle of its trial interval during step2 of the
algorithm, so it would not have accepted this interval.

Proposition 4 implies that it is sufficient to compute the time
required for alln nodes to enter thepermanentstate.

Proposition 5 Suppose a nodev is at the beginning of the
search state loop, in step1. Then

P(v enterspermanent state within time2T) ≥
1

dv + 1

Proof: Consider a nodev beginning a loop in thesearch
state, at (internal) timêt. When nodev selects the parameter
α ∈ [0, T] for the start of its trial interval, we callα acceptable
if the chosen trial interval (beginning att̂α) does not overlap
with any of v’s neighbors’ intervals. We remark that for any
neighboru of v, d̂u ≥ dv, meaning that the interval length
bu ≤ T/2(dv + 1). Moreover,v’s own interval lengthbv ≤
T/2(dv + 1) since d̂v ≥ dv. Thus, a neighboru causes an
interval (or two disjoint intervals) from[0, T] of total length
(bv + bu) ≤ T/(dv + 1) to not be acceptable.

In the worst case, alldv of v’s neighbors will have already
selected their permanent intervals, blocking off a subset of
[0, T] of measure≤ dvT/(dv + 1) from being acceptable
choices ofα. Therefore,

P(selectedα is acceptable) ≥
1

dv + 1

As the check in step3 of the algorithm occurs by timêt+2T
(and a node enters thepermanentstate if that check is passed),
the result holds. Note that this analysis holds even taking into
account any neighbors ofv that become permanent between
the checks of steps2 and3.

As a consequence of this result, sincebv ≤
T
4 , a node that

is in the searchstate (not just at the beginning of the loop)
enters the permanent state within time9T/4 with probability
≥ 1

dv+1 . This directly implies the following proposition:

Proposition 6 Suppose at (global) timet that Yt of the nodes
are permanent. ThenE[Yt+9T/4|Yt] ≥ Yt + n−Yt

∆+1 .

Finally, we establish the number of periods (of lengthT)
required for the algorithm to converge.

Theorem 5 The Desynchronization Algorithm converges in
O(∆ log n) periods with high probability.

Proof: Defining a round as an interval of length9T/4,
this theorem follows directly from Proposition 6, as well as
Proposition 2 and Theorem 3, where parametersb and c are
as in Theorem 3.

B. Algorithm Speed-Up

The interval lengthbv = T/2(d̂v +1) was chosen just large
enough so as to ensure convergence in a reasonable amount
of time, and to give a continuous analog to∆ + 1 coloring of
graphs. Here we consider how the convergence time may be
improved if nodes claim shorter interval lengths.

Consider a parameterε > 0, common to all nodes, such
that a nodev selects its interval length according tobε

v =
T/2(d̂v + 1)(1 + ε). Following the proof of Proposition 5,
when a nodev is selecting the parameterα in the search loop,

P(selectedα is acceptable) ≥
ε

ε + 1

By the proof steps of Theorem 3, this establishes the
following counterpart to Theorem 5:

Theorem 6 The Desynchronization Algorithm, where nodes
select interval lengths according tobε

v = T/2(d̂v+1)(1+ε) for
ε > 0, converges inO(1

ε log n) periods with high probability.

C. Self-Maintenance Subroutine

In this section, we discuss a simple way to manage the
desynchronized solution in the context of link volatility and
changes in network topology, a critical consideration when
modeling wireless sensor networks as wireless connectionsare
volatile over time [2].

Changes in network topology may create several problems.
If a new communication link is suddenly formed between two
permanent nodes, an overlap between the two claimed intervals
may be created; even if the new link appears a hop away from
a permanent nodev but causesv’s one-hop max degreêdv

to increase, there may no longer be enough bandwidth (ie.
intervals of the periodT) to accommodate the nodes still in
search mode. If instead a link is destroyed, we want nodes
to take advantage of the newly available bandwidth to claim
larger intervals.

A natural solution is for nodes to store the degree values of
all of their neighbors, requiring total storage ofO(dv log d̂v)
at each node3. If a nodev detects that its degree has changed,
it reports its new degree to each of its neighbors. Each such
neighboru in turn recomputes the valuêdu; if this value has
changed,u recomputes its new interval lengthbu, reverts to
thesearchstate (if it had already been in thepermanentstate),
selects a timêt to begin the search, and returns to step1 of
Algorithm 3. Nodes outsidev’s neighborhood are unaffected.
Following the convergence results of Section III-A, any local
network change causingm nodes to restart takesO(∆ log m)
rounds to repair with high probability.

IV. SIMULATION

To confirm the correctness of the desynchronization al-
gorithm and examine its performance under the stress of
network effects, we simulated the algorithm in the TOSSIM
environment. As TOSSIM runs the same code as sensor motes,
we show that the algorithm not only has strong theoretical
bounds, but is also practically implementable.

A. Setup

We implemented the algorithm on a network topology de-
rived from the communication graph of a 54-node deployment
of sensors in the Intel Berkeley Research Lab [16]. For the
purposes of this simulation, we included an edge between two
nodes in our topology if and only if the aggregate connectivity
data in [16] showed> 40% probability of successful transmis-
sion inbothdirections, resulting in a 54-node undirected graph
with a wide variety of node degreesdv and maximum one-
hop neighborhood degreeŝdv. Note that three nodes remain
disconnected due to weak connectivity data.

3While it requires less memory to store only the largest neighborhood
degreed̂v , in a network with volatile links, only knowing the current value
d̂v is not sufficient to knowingfuture values ofd̂v .

Degree Distribution

dv 0 1 2 3 4 5 6 7 8 9
No. of Nodes 3 1 6 8 13 12 7 2 1 1

Max 1-hop Neighborhood Degree Distribution

d̂v 0 1 2 3 4 5 6 7 8 9
No. of Nodes 3 0 0 0 9 18 5 0 9 10

We implemented thefiring of a node by having it broadcast
noise for the appropriate interval. For concreteness, we speci-
fied the transmission power to be0dBm and each link to have a
gain of−54dBm. Listeningwas implemented by having nodes
check whether the RSSI values were above a threshold relative
to the noise floor. There was therefore no need to consider
issues of packet loss, as no message reception is required. The
most important network effects we had to consider are the false
alarm rate – the probability that a node hears a signal above
the threshold even though no neighbor is actually broadcasting
– and the miss probability – the chance that no signal above
the threshold is recorded even though a neighbor is indeed
broadcasting. A high false alarm rate would have the effect
of scaling up the convergence time of the algorithm, since a
node insearchmode that hears a signal above the threshold
during its trial interval must reset and start again, irrespective
of whether the signal is due to a neighbor’s firing or a spike in
ambient noise. The higher the false alarm rate, the more times
the node must reset. We measured this effect by simulating
the algorithm over a range of thresholds, from−84dBm (many
false positives) to−72dBm (virtually no false positives)4.

On the other hand, a large miss probability is problematic
since it causes a node to fail to hear a neighbor firing during
the listening checks, which can lead the desynchronization
algorithm to converge to a state where neighbors’ intervals
overlap. However, while signal strength drop-offs can and do
occur in practice, the desynchronization algorithm is extremely
robust to such signal strength fluctuations, since it will only
register a false negative if the drop-off is steep (below thenoise
threshold) and lasts for a node’s entire listening period. In
reasonable physical settings, this probability is negligible and
can be further reduced by scaling up the period and interval
lengths, so it is ignored for the purposes of this simulation[7].

Finally, we mention that the algorithm implemented in this
simulation is a slightly sped-up version of Algorithm 3 – in
step2, after hearing a neighbor, instead of waiting for the end
of the trial interval to reset, we have nodes immediately return
back to step 1. It is trivial to show that the convergence results
of Section III still hold for this version.

B. Results and Discussion

Figure 2 shows the average simulation time, in periods,
that the desynchronization algorithm takes before all nodes
in the sensor deployment reach the permanent state, with the
sensors’ noise threshold varying between−84dBm (frequent

4Noise was modeled in TOSSIM with themeyer-light noise trace [11].

−84 −82 −80 −78 −76 −74 −72

6

8

10

12

14

16

18

20

Noise Threshold (in dBm)

N
um

be
r

of
 P

er
io

ds
Desynchronization Algorithm
Upgraded Desynchronization Algorithm

FIGURE 2. Average time, in periods, before all nodes reach thepermanent
state. Each data point an average over 200 simulation runs. The period T was
set to be5.04s, with interval lengths ranging from252ms (for nodes with
d̂v = 9), to 504ms (for nodes withd̂v = 4).

22

25
26

20
21

19

24

28

[492,772]

[1097,1377]

[1297,1577]

[1722,2002]

[2331,2611]

[3290,3650]

[4298,4578]

[4318,4738]

[4886,126] 23

FIGURE 3. A local view of the 54-node communication network after
convergence in a simulation run. Numbers inside the circles indicate node
ID, while edges between pairs of nodes indicate that the pairis within
communication distance. The numbers[x, y] denote the node’s claimed
interval: the period has phaseT = 5040ms, so x andy denote (in terms of
phase) the start and end times respectively (inms) of the repeating interval.
All phases are according to a global clock, so a phase of0ms indicates the
beginning of the global period of lengthT . Node23’s interval begins at the
end of a global period and ends just after the start of the nextglobal period.

false positives) and−72dBm (virtually no false positives).
Observe that, as expected, the average time to convergence
is reduced as the noise threshold is raised and the algorithm
becomes less sensitive to spikes in the noise power.

We also simulated an upgraded version of the desynchro-
nization algorithm to improve convergence time in noisy
environments: in the first listening check of Step2, instead
of having nodes reset afterany RSSI reading above the noise
threshold during the trial interval, we required two distinct
high readings. As seen in Figure 2, this greatly improves
robustness to noise by avoiding spurious false positives caused
by isolated spikes in ambient noise, while still correctly detect-

ing the broadcasts of neighbors. Note that convergence timeby
this technique is significantly reduced when the noise threshold
is low. This technique can be generalized by requiringk high
readings for anyk > 1, though it increases the number of bits
used in the algorithm’s (c,d)-bit characterization.

Each simulation run produced a correct solution at conver-
gence, in that each node’s permanent interval did not overlap
with its neighbors’ intervals. The only exception occurredin
cases where an overlap of length≤ 1ms between neighbors’
intervals could exist. This was caused by our implementation
in TOSSIM of Step3 of the algorithm: instead of having nodes
send a continuous broadcast signal, we had nodes send rapid-
fire packets for the duration of their chosen interval (TOSSIM
is better geared towards packet-level broadcast, a limitation
in simulating the underlying hardware). As a result, to avoid
false negatives, we extended the instantaneous listening check
of Step 3 (which might have the misfortune of listeningin
betweenpackets) to a1ms-long check. The tradeoff is that the
tail 1ms end of a node’s interval might overlap with the leading
1ms end of another node’s interval. However, this problem can
be mitigated by scaling up the period and interval lengths.

V. CONCLUSION

We show that even when placing severe limits on allowable
computation and communication on nodes in a network, a
global desynchronization or proper vertex coloring solution
can still be reached quickly. Our algorithms succeed in these
problems because a globally feasible desynchronization can
be confirmed by checking local feasibility at every node. We
expect that variants of our algorithms’ randomized approach
that minimizes feedback and state may find success in other
important network problems such as the design of efficient
communication protocols – where nodes within two hops of
one another should not have overlapping intervals – as well
as graph problems such as distributed Minimum Dominating
Set or Maximum Independent Set where confirming local
feasibility at every node is sufficient.
Acknowledgment: Arik Motskin, Primoz Skraba and Leonidas
Guibas gratefully acknowledge the support of Army AHPCRC grant
W911NF-07-2-0027-1 and NSF grants CNS-0626151, CCF-0634803.
Tim Roughgarden is supported in part by NSF CAREER Award
CCF-0448664, an AFOSR MURI grant, an ONR Young Investigator
Award, and an Alfred P. Sloan Fellowship.

REFERENCES

[1] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Sim-
ulations and Advanced Topics (2nd edition). John Wiley Interscience,
March 2004.

[2] A. Cerpa, J. L. Wong, L. Kuang, M. Potkonjak, and D. Estrin. Statistical
model of lossy links in wireless sensor networks. InProc. 4th int. symp.
on Information processing in sensor networks (IPSN), page 11, 2005.

[3] J. Degesys, I. Rose, A. Patel, and R. Nagpal. Desync: self-organizing
desynchronization and tdma on wireless sensor networks. InProc. 6th
int. conf. on Information processing in sensor networks (IPSN), pages
11–20, 2007.

[4] U. Feige and J. Kilian. Zero knowledge and the chromatic number.
Journal of Computer and System Sciences, 57:187:199, 1998.

[5] K. Jamieson, B. Hull, A. Miu, and H. Balakrishnan. Understanding the
real-world performance of carrier sense. InACM E-WIND, pages 52–57,
2005.

[6] R. Karp. Reducibility among combinatorial problems. InComplexity of
Computer Computations, pages 85–103. Plenum Press, 1972.

[7] S. M. Kay. Fundamentals of Statistical Signal Processing, Volume 2:
Detection Theory. Prentice Hall PTR, January 1998.

[8] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot becomputed
locally! In Proc. 23rd annual ACM symp. on Principles of Distributed
Computing (PODC), pages 300–309, 2004.

[9] F. Kuhn, T. Moscibroda, and R. Wattenhofer. On the locality of bounded
growth. In Proc. 24th annual ACM symp. on Principles of Distributed
Computing (PODC), pages 60–68, 2005.

[10] F. Kuhn and R. Wattenhofer. On the complexity of distributed graph
coloring. InProc. 25th annual ACM symp. on Principles of Distributed
Computing (PODC), pages 7–15, 2006.

[11] H. Lee, A. Cerpa, and P. Levis. Improving wireless simulation through
noise modeling. InProc. 6th int. conf. on Information processing in
sensor networks (IPSN), pages 21–30, 2007.

[12] N. Linial. Locality in distributed graph algorithms.SIAM Journal on
Computing, 21(1):193–201, 1992.

[13] M. Luby. A simple parallel algorithm for the maximal independent set
problem. SIAM Journal on Computing, 15(4):1036–1055, 1986.

[14] A. Patel, J. Degesys, and R. Nagpal. Desynchronization: The theory
of self-organizing algorithms for round-robin scheduling.In Proc. 1st
int. conf. on Self-Adaptive and Self-Organizing Systems (SASO), pages
87–96, 2007.

[15] K. Srinivasan and P. Levis. Rssi is under-appreciated.In Proc. 3rd
Workshop on Embedded Networked Sensors (EmNets), 2006.

[16] http://db.csail.mit.edu:80/labdata/labdata.html.
Intel lab data. accessed 07/2008.

[17] F. Zhao and L. Guibas.Wireless Sensor Networks: An Information
Processing Approach. Elsevier/Morgan-Kaufmann, 2004.

APPENDIX A
PROOF OFPROPOSITION1

We prove this proposition by establishing a lower bound on
the probability that a good noderemainsgood from round to
round. The key is to show that this probability converges to
1 as the number of good nodes approachesn. Fix a round
t. Suppose that good nodev, currently coloredc, has∆ bad
neighbors.

P(nodev remains good next round)

= P(none ofv’s neighbors switch toc)

≥

[

1−

(

1

k∆

)]∆

≥

[

e−1

(

1−
1

k∆

)]
1

k

= p∗

(1)

Clearly, nodes that have fewer than∆ bad neighbors also
remain good with probability at leastp∗. By choosingk high
enough, we can makep∗ as close to 1 as we wish, say
p∗ > 0.78 if k ≥ 5. We now lower bound the probability
that a nodeu that is currentlybad will become good next
round. Asu is bad, it will select a new color next round:

P(nodeu becomes good next round)

≥ P(u switches to a color that is currently unclaimed, and

which no neighboring node will also claim next round)

≥

(

k∆−∆

k∆

)

P(no neighbor ofu switches tou’s color)

≥

(

k − 1

k

)

p∗ = q∗

(2)

By settingk ≥ 5, we get thatq∗ > 0.6.

Lemma 1 If Xt ≤
2n
3 , thenE[Xt+1|Xt] ≥ Xt +0.1(n−Xt).

Proof: By Equations 1 and 2,E[Xt+1|Xt] > 0.78Xt +
0.6(n−Xt) > (0.75Xt + 0.5(n−Xt)) + 0.1(n−Xt). Since
Xt ≤

2n
3 , we have thatXt ≤ 2(n − Xt). Therefore,

E[Xt+1|Xt] > (0.75Xt + 0.25Xt) + 0.1(n − Xt) = Xt +
0.1(n−Xt).

Next we will prove a similar result forn(∆−1)
∆ ≥ Xt > 2n

3 .
Suppose that there are currentlyn∆−1

∆ ≥ Xt = n w
w+1 good

nodes, forw > 2. Since each bad node can be a neighbor to
at most∆ good nodes (in fact, to at most∆ − 1), there are
at mostn ∆

w+1 bad neighbors, distributed amongn w
w+1 good

nodes. Therefore, the average number of bad neighbors each
good node has is at most∆

w . Since we wish to lower bound in
expectation the number of good nodes that will remain good
next round, we note that by the convexity of Equation 1 (with
respect to number of bad neighbors), in the worst case all
good nodes have the same number of bad neighbors as each
other. That is, in the worst case, each good node has

⌈

∆
w

⌉

bad
neighbors:

P(good node remains good next round)

= P(none ofv’s ⌈∆/w⌉ bad neighbors switch tov’s color)

≥

[

1−

(

1

k∆

)]⌈∆

w ⌉

≥ (p∗)
⌈∆

w ⌉
∆ ≥ (p∗)

2

w

(3)

since we know that2w ≥
⌈∆

w ⌉
∆ when∆ > w, as it is here.

Lemma 2 If n∆−1
∆ ≥ Xt > 2n

3 , then E[Xt+1|Xt] ≥ Xt +
0.1(n−Xt).

Proof: SupposeXt = n w
w+1 where (∆ − 1) ≥ w > 2.

Then by Equations 2 and 3,

E[Xt+1|Xt]

≥ (0.78)
2

w

(

w

w + 1

)

n + (0.6)

(

1

w + 1

)

n

≥

(

1 +
2 ln .78

w

)(

w

w + 1

)

n + (0.6)

(

1

w + 1

)

n

=

(

w

w + 1

)

n +
(2 ln .78) + 0.6

w + 1
n

> Xt + 0.1(n−Xt)

Finally, we prove a similar result forn ≥ Xt > n(∆−1)
∆ .

Lemma 3 If n ≥ Xt > n∆−1
∆ , then E[Xt+1|Xt] ≥ Xt +

0.1(n−Xt).

Proof: We recall that a bad node can be a neighbor to
at most∆ − 1 good nodes, and that in the worst case each

good node has an equal number of bad neighbors. Therefore
if Xt > n∆−1

∆ , then in the worst case(∆− 1)(n−Xt) good
nodes have a single bad neighbor, while the remaining good
nodes have no bad neighbors.

E[Xt+1|Xt]

≥ [(∆− 1)(n−Xt)]

(

1−
1

∆k

)

+

[Xt − (∆− 1)(n−Xt)] + 0.6(n−Xt)

= (∆− 1)(n−Xt)

(

−
1

∆k

)

+ Xt + 0.6(n−Xt)

= [Xt + 0.1(n−Xt)] + (n−Xt)

(

1

∆k
−

1

k
+ 0.5

)

≥ Xt + 0.1(n−Xt) (as long ask ≥ 2)

Lemmas 1, 2 and 3 imply the desired proposition.

APPENDIX B
PROOF OFTHEOREM 2

In this paper, we prove the theorem for∆ = 1 and give
intuition as to why it extends to larger∆.

Consider two random processes on a set ofm nodes,
m
k of which are colored red for some fixedk > 2, with
the rest colored blue. In process1, m nodes are sampled
uniformly at random with replacement, with two successively
sampled nodes defining an edge. In process2, m nodes
are sampled uniformly at randomwithout replacement, with
two successively sampled nodes defining an edge. Note that
process2 selects a matching on the node set uniformly at
random. Observe that in expectation these processes place the
same number of edges between two red nodes. LetP1(s) and
P2(s) denote the probabilities thats edges between two red
nodes are selected by processes1 and2 respectively.

Lemma 4 For large enoughm, we have that for anys < m
k4 ,

P2(s) < P1(s).

We omit the proof of this lemma for brevity. Returning to
coloring algorithms, assume for the remainder of the proof
that each node selects fromk∆ colors for a constantk ≥ 2.

Lemma 5 Consider a node setV such that |V | = m =
Ω(log n). Suppose the input graphG = (V,E) to these
nodes is a random matching, and each nodev picks a color
according to some color selection function. Then there exists
a monochromatic submatchingG′ = (V ′, E′), whereG′ ⊂ G,
such thatE|V ′| ≥ m/α, for a constantα > 1. Moreover,
P(|V ′| < 4m

αk2) = O(1
n).

Proof: By the pigeonhole principle, there is some colorc
selected by at leastm/k nodes. Any such node is matched to
another node coloredc with probability≥ (m

k −1)/m > 1/2k.
Set α = 2k2. By linearity of expectation there is ac-
colored submatchingG′ = (V ′, E′), where G′ ⊂ G, with
E|V ′| ≥ m/α. Observe that|V ′| is the number ofc-colored
nodes matched to anotherc-colored node by Process1 of

Lemma 4. Therefore, using Chernoff bounds on Process2
(where all c-colored node’s probabilities of being connected
to anotherc-colored node are independent), and combining
with Lemma 4, we have that whenk > 2, P(|V ′| < 4m

αk2) <
exp(−mδ2/2α) = O(1

n) sincem = Ω(log n) andδ = 1− 4
k2 .

For k = 2, note that the probability of having ans-sized
monochromatic submatching is only higher than fork = 3,
so that we also haveP(|V ′| < m

αd) = O(1
n) for some constant

d > 1.
Proof of Theorem: Consider a setV0 of n nodes. For

each v ∈ V0, fix its color selection function. Suppose the
input graphG0 = (V0, E0) is a random matching. Consider
what happens in the first round: by Lemma 5, there is a
monochromatic submatchingG1 = (V1, E1) with E|V1| ≥
n/α, andP(|V1| < n/dα) = O(1

n) (sincen = Ω(log n)), for
some constantd > 1 (which depends onk as in Lemma 5).
Conditioning on this large deviation not occuring (ie. assuming
|V1| ≥ n/dα), we proceed to the next round and consider only
the nodes in subgraphG1.

Notice that since each nodev ∈ V1 knows only that it
had a conflict in the previous round (not the identity of the
node to whom it was matched), we can assume for the next
round that by the principle of deferred decision,G1 is itself
a random matching on the node setV1. Therefore we can
recursively apply the above argument to subgraphG1. In
particular, for i > 1, given a random matching on the node
set Vi−1 where |Vi−1| ≥ n/(dα)i−1, by Lemma 5, as long
as |Vi−1| = Ω(log n), after roundi there is a monochromatic
submatchingGi = (Vi, Ei) with E|Vi| ≥ n/α(dα)i−1, and
P(|Vi| < n/(dα)i) = O(1

n). Conditioning on this large
deviation not occuring (ie. assuming|Vi| ≥ n/(dα)i), proceed
to the next round, treating subgraphGi as a random matching
on the nodesVi.

Observe that as long as there is still a nonempty monochro-
matic submatching, the coloring algorithm has not yet con-
verged. We run the above procedure forj total rounds;
we can choosej = Ω(log n) such that afterj rounds
(conditioning after each round on the large deviation not
occurring), we have|Vj | ≥ n/(dα)j = Ω(log n). By the union
bound,P(large deviation never occurs in thej rounds)≥ 1−
jO(1/n) = 1−O(log n/n).

Therefore, with high probability afterΩ(log n) rounds there
is still a monochromatic submatching (of sizeΩ(log n)), so the
coloring algorithm has not yet converged.

If ∆ > 1, then we consider the input graph to be a set of
∆ random matchingsM1,M2, ...,M∆ on n nodes (allowing
parallel edges). After the first round, we consider the largest
monochromatic submatching involvingonly edges from the
first matchingM1, leaving a subgraphG1 = (V1, E1) with
|V1| ≥ n/d∆α with high probability. Thereafter, the argument
reduces to that for∆ = 1, except that instead, in each round
the cardinality of the monochromatic submatching reduces by
a1/(k∆)2 factor, since each node can choose from a larger set
of k∆ colors. This results in a lower bound ofΩ(log n/ log ∆)
rounds to convergence with high probability.

	Introduction
	The Problem: Desynchronization
	Computational Model
	Our Results
	Related Work

	Decentralized Vertex Coloring
	Conflict Detection Model
	Lower Bound
	Conflict Detection with Memory

	Desynchronization
	Convergence Properties
	Algorithm Speed-Up
	Self-Maintenance Subroutine

	Simulation
	Setup
	Results and Discussion

	Conclusion
	References
	Appendix A: Proof of Proposition 1
	Appendix B: Proof of Theorem 2

