
Controlled Module Density Helps
Reconfiguration Planning

An Nguyen, SCCM Program, Stanford University, Stanford, CA 94305
Leonidas J. Guibas, Department of Computer Science, Stanford University, Stanford, CA 94305
Mark Yim, Xerox Palo Alto Research Center, Palo Alto, CA 94304

In modular reconfigurable systems, individual modules
are capable of limited motion due to blocking and con-
nectivity constraints, yet the entire system has a large
number of degrees of freedom. The combination of these
two facts makes motion planning for such systems ex-
ceptionally challenging. In this paper we present two
results that shed some light on this problem. First we
show that, for a robotic system consisting of hexagonal
2D modules, the absence of a single excluded config-
uration is sufficient to guarantee the feasibility of the
motion planning problem (for any two connected con-
figurations with the same number of modules). We also
provide an analysis of the number of steps in which the
reconfiguration can be accomplished. Second, we ar-
gue that skeletal metamodules, which are scaffolding-
like structures in 2D built out of normal modules, of-
fer an interesting alternative. General shapes can be
built out of these metamodules and, unlike the case for
shapes built directly out of modules, a metamodule can
collapse and pass through the interior of its neighboring
metamodules, thus eliminating all blocking constraints.
This tunneling capability makes the motion planning
problem easier and allows faster reconfiguration as well,
by providing a higher bandwidth conduit, the interior
of the shape, through which the modules can flow. The
conclusion of our work is that it is worthwhile to study
subclasses of shapes that (1) approximate closely arbi-
trary shapes, while also (2) simplifying significantly the
motion planning problem.

1 Introduction

A modular reconfigurable robot, sometimes known as
a metamorphic robot consists of many identical mod-
ules, each with limited ability to connect, disconnect,
and move around its neighbors. Originally proposed
by Yim [Yi93], Chirikjian [Ch94], and Murata [Mu94],
these robots have since been further studied by these
and several other authors [Yi94, Yi97, Ca99, Ch96,

Ko98, Ko98, Mu98, Pa96, Pa97, Ru99, Zh99]. A mod-
ular reconfigurable robot offers many advantages over
conventional robots [Mu94]. Such a robot has high
fault tolerance, since each module can be replaced by
any other module in the robot; the homogeneity of the
modules allows low cost mass production; finally, the
robot can assume a wide variety of conformations or
shapes, and thus can be easily adapted to performing
numerous tasks.

A reconfigurable robot changes its shape by mov-
ing one or more of its modules locally. The motion of
each individual module in the configuration must sat-
isfy certain constraints, as illustrated in Figure 1. In
general, there are two types of constraints: the connec-
tivity constraint requires all modules to stay connected
at all times to a fixed base (for power distribution,
inter-module communication, etc), and the blocking
constraint requires a module not to collide with other
modules during its motion. A module may also need
to support itself on its neighboring modules in order to
move.

Though each module can have very limited motion,
or none at all, the large number of modules present
means that the system has many degrees of freedom —
in general, roughly proportional to the number of mod-
ules present. The homogeneity of the modules further
complicates the reconfiguration problem, as it is not
clear which module in the original configuration should
go to which location in the final configuration. Thus
motion planning for modular reconfigurable robots is
a challenging combinatorial task; in fact, under several
scenarios, the local blocking constraints can make the
task infeasible.

In this paper we propose to address this problem by
focusing on selected subsets of the allowed module con-
figurations. By imposing certain constraints that limit
how locally packed the modules can be, we demonstrate
that the reconfiguration problem can become always



2

Figure 1: This figure shows a reconfigurable robot com-

posed of rigid hexagonal modules. Each module can move

to a nearby empty space by rotating itself around a corner

it shares with some other supporting module. The allowable

motions of a module are restricted. The base, always shown

in black in this and all subsequent figures, can never move.

The module at D cannot move anywhere since such motion

would leave the configuration disconnected. The module at

A cannot move to B around supporting module E because

such motion is blocked by F. The module at A cannot move

to C either, because there is no module supporting the move.

feasible, or a least significantly easier. We give two
results, both for modular reconfigurable robots whose
modules are rigid and correspond to a regular tiling of
space. First, we show that for robots composed of 2D
rigid hexagonal modules on a planar lattice, the recon-
figuration problem is always solvable if both the initial
and final configurations do not contain the excluded
pattern (occupied, empty, occupied) parallel to any of
the three axis of the lattice. We also analyze the com-
plexity of our morphing algorithm in this case. Second,
we propose the use of a metamodule structure for a 2D
hexagonal lattice. A metamodule is effectively a scaled
copy of the original module, built out of the original
modules but with free space in its interior. Structures
built entirely out of these metamodules are easier to
reconfigure, as a metamodule has the ability to fold
up and tunnel through any of its neighbors, thus re-
moving the troublesome blocking constraints for the
original modules.

In both cases there is still a very rich space of al-
lowed robot configurations. Our intuition is that the
shapes the robot needs to assume so as to perform var-
ious functions can be constructed or, at least, well-
approximated by configurations satisfying the stated
packing constraints. Thus by restricting ourselves to
such less dense structures we gain simplicity in motion
planning without any significant sacrifice in function-

ality.

2 Related Work

Here we survey briefly earlier related work on reconfig-
urable robots. Murata et al. built a “self assembling
machine” [Mu94]. This machine is a robot constructed
out of 2D fractum modules. The reconfiguration of
such a robot is done with random local motions to im-
prove the ‘fitness’ of a configuration with respect to
the final configuration. Due to the randomness of the
planning, the convergence is slow, and not practical for
large problems [Mu94]. Pamecha et al. [Pa96] built a
robot from regular hexagonal modules. The hexago-
nal module is designed so that it has no blocking con-
straints. They, too, solved the reconfiguration prob-
lem using simulated annealing to improve the match-
ing distance to the final configuration. Upper and lower
bounds on the optimal number of moves required were
also given [Pa97, ChP]. Murata and Kotay et al. in-
dependently built 3D modular robots using 3D units
[Mu98] and 3D molecules [Ko98] and discussed motion
planning for their robots. Rus and Vona [Ru99] pro-
posed building a system out of cubic compressible mod-
ules called Crystalline. They gave a melt and grow algo-
rithm to do the motion planning between any two con-
figurations. Another way to build 3D modular robots
was proposed by Yim et al. [Yi97], using a 3D rhombic
dodecahedron as the key element. Zhang et al. [Zh99]
gave several heuristic algorithms for distributed paral-
lel motion planning of such an robot.

The extant literature has not addressed the issue of
the feasibility of the motion planning problem. Sev-
eral of the proposed robots including Murata’s frac-
tum modules [Mu98] and Yim’s rhombic dodecahe-
dron [Yi97] (with 3, 5, or 7 sided constraints), admit of
infeasible reconfiguration problems. Though in some
cases the feasibility can be restored by building flex-
ible modules to overcome the neighbor blocking con-
straints, this adds mechanical and control complexity,
and therefore cost to the system.

3 The Reconfiguration Problem

A fundamental problem for a robot of this type is to
plan how to accomplish its reconfiguration. Given ini-
tial and final configurations, we would like to compute
the motions of the individual modules in the config-
uration that transform the initial configuration into



3

the final one. In theory, reconfiguration can be done
by searching the graph of all possible configurations,
with edges between two configurations representing the
reachability from one to other in a single step of some
module in the configuration. This searching approach
is not practical since the number of possible configura-
tions grows exponentially with the number of modules
in the configuration. The approach is thus intractable,
even for robots with modest numbers of modules.

Note that the optimal number of steps to transform
one configuration to another is a metric defined on the
space of all configurations. We refer to this number
as the distance in the configuration space. Any opti-
mal planner can be used to compute this distance, and
conversely, any way to compute this distance function
yields a way to do the motion planning. The compu-
tation of the optimal metric function would probably
be as hard as the motion planning itself. Current ap-
proaches for this problem define heuristic approxima-
tions to this function that can be computed quickly
and potentially decrease the distance to the final con-
figuration.

4 Difficulty with Motion Planning

It is unfortunate that in the presence of motion con-
straints, two configurations that are very close in most
intuitive distance notions may not be at all close to
each other in the configuration space. For example,
consider two solid disk-like shapes packed with mod-
ules except for a single-module hole near their centers,
but in a slightly different location in the two disks, see
Figure 2. These shapes are approximately the same by
virtually all geometric and topological measures. Yet,
the number of motion steps required to transform one
disk to another is large, since any motion plan must un-
pack the disk before being able to move some module
into the empty hole.

Before we discuss further difficulties, note that a
robot may be immobile, with none of its modules able
to move without violating their motion constraints.
Such immobile configurations are typically the result
of the blocking constraints (in practice the connectiv-
ity constraint always exists, but it cannot cause im-
mobilization by itself.) An example of immobilization
for a robot composed of rigid hexagons is shown in Fig-
ure 3. Robots made of fracta by Murata et al. or rhom-
bic dodecahedron by Yim et al. with 7-sided blocking

Figure 2: Configurations that are approximately the same

in geometric and topological sense may be far apart in the

configuration space.

constraints are known to have immobile configurations.
Robots made of rhombic dodecahedra with 3- and 5-
sided constraints can also be immobile. The construc-
tion of such immobile configurations is similar to that
of the configuration shown in Figure 3.

Figure 3: Here is an example of an immobile configura-

tion. The black module at one end of the chain is the fixed

base, and the module at the other end cannot move because

of blocking constraint. All other modules cannot move be-

cause of connectivity constraint.

If the initial or final configuration is immobile, it will
be impossible to find a motion plan between the two
configurations. In general, the existence of an immo-
bile configuration is likely to make the reconfiguration
problem harder, even when it is feasible. There ex-
ist immobile configurations where a slight change in
a configuration can make it mobile again — thus the
distance in the configuration space between two config-
urations can be very sensitive to local perturbations.
It would be hard for a heuristic measure to capture
this delicate distinction. Another problem with immo-
bile configurations is that there may exist an immo-
bile branch even in a mobile configuration. Any mo-



4

tion planning involving immobile branches would re-
quire construction or destruction of the branches, and
it would be hard to define a heuristic that captures
that.

Figure 4: An example of an immobile branch in a mobile

configuration.

Given the difficulty for solving the motion planning
problem in general, it is desirable to restrict ourselves
to a simpler problem. As already mentioned, we pro-
pose to restrict ourselves to a subset of all possible con-
figurations, large enough to adequately approximate an
arbitrary configuration, yet restricted enough to make
the motion planning more tractable.

5 Reconfiguration for Planar Hexago-
nal Modules

We consider the case of a reconfigurable robot com-
posed of rigid hexagonal modules in the plane, as illus-
trated in Figure 1. We assume that all configurations
of interest must be connected, and that a particular
module, called the base, is immobile. The base can be
used for transmitting power and communication into
the system. We will refer to a possible location for a
module as a grid cell, or simply a grid. The only mo-
tion allowed for a module is the rigid rotation around a
vertex it shares with some other module in the config-
uration, subject to the condition that such rotation is
not blocked by any module nor leaves the configuration
disconnected.

We call a robot configuration admissible if it is con-
nected and there is no empty grid cell directly in be-
tween two occupied grid cells in the configuration; see

Figure 5. Admissible configurations have a very nice
property, as shown in the following proposition.

Figure 5: The above configuration is inadmissible because

the empty grid B is between two occupied grids A and C.

If a module is added to the configuration at B, the configu-

ration becomes admissible. The configuration also becomes

admissible if the module at A or C is removed.

Proposition 1 Any admissible configuration can be
transformed into a straight line configuration.

As an immediate corollary of proposition 1:

Corollary 2 Any admissible configuration can be
transformed into any other admissible configuration
with the same number of modules.

Proof of proposition 1:

We construct a transformation from an admissible
configuration to a straight configuration in two phases.
First, we transform the admissible configuration to an
admissible chain configuration (to be defined below),
and then convert that chain to a straight line configu-
ration.

Note that the complement of an admissible configu-
ration in the plane consists of one or more connected
components, exactly one of which is infinite. We call
this infinite component the outer free space (with re-
spect to the configuration). The module boundary line
segments separating the outer free space and the config-
uration are called the outer boundary, and the modules
in the configuration that border the outer free space are
said to be on the outer boundary.

For ease of discussion, we assume that the hexagon
lattice is oriented as in the previous figures. We use lat-



5

tice coordinates with the x-axis in the minus 30 degree
direction, and the y-axis in the vertical direction.

In the first phase, we use a greedy algorithm. Let
us choose an extreme module in the configuration, say
choose among all modules with maximal x coordinate
the one with maximal y coordinate. Clearly, this mod-
ule is on the outer boundary of the configuration. We
grow a ‘tail’ by repeatedly locating available modules
that can be moved towards the extreme module we just
selected, moving them there and then appending them
to the end of this growing tail. This process ends when
there is no module available for extending the tail.

The search for a module to add to the tail is done
greedily. Starting from the extreme position, we search
among all modules on the outer boundary of the config-
uration, say in the counter-clockwise direction, for the
first module that can move clockwise without violating
any motion constraints. We then let that module roll
into the free space, along the outer boundary toward
the extreme position, and then along the existing tail
until it reaches the tip. The feasibility of such a motion
is guaranteed with the help of the following lemma:

Lemma 3 A module moving along the outer bound-
ary of an admissible configuration in counter-clockwise
(clockwise) direction can only be blocked at a position
at which its blocker module is capable of moving in the
that same direction.

Figure 6: This figure is used in the proof of lemma 3. A

is a grid on the outer boundary of a configuration, and B

and C are on the outer free space. If a module, moving

in the counter-clockwise direction along the outer boundary

of the configuration, can reach B but cannot reach C, then

the lemma asserts that the module at A can move counter-

clockwise to either K, or I. Other grid labels in the figure

are used in the proof of the lemma.

Proof of lemma 3:

We only consider the case when the direction is
counter-clockwise. The clockwise case is similar. See
Figure 6.

Say that in the original configuration, before the
moving module moves to B, grid A is occupied, and
grids B and C are empty. The admissibility of the
configuration implies that grids D and F are empty.
Thus the only reason that a moving module cannot
move forward from B to C is that E is occupied. The
admissibility again dictates that H and I are empty.
There are now two possibilities:

• If K is occupied, then L is empty, and thus the
module at A can roll counter-clockwise over K to
I .

• If K is empty, then there must be a module at J
so that A is not disconnected from the rest of the
configuration. Grid M must then be empty, and
the module at A can roll counter-clockwise over
module at J to K.

In both situations, the module at A can move
counter-clockwise, and thus lemma 3 is proved. �

Since we choose the first module that can move
counter-clockwise, the lemma guarantees that such a
module can move counter-clockwise without ever be-
ing blocked toward the extreme module. The module
can then move to the tip of the constructed tail. We
need to make sure, however, that the configuration is
admissible at the end of each move.

Note that the removal of a module from an admissi-
ble configuration always leaves it admissible as long as
it is still connected. We only need to ensure that when
we add the module to the tip of the tail, the configu-
ration is still admissible. Since the tail points right up
from a module at an extreme position, most modules
in the tail are too far to affect the admissibility of the
rest of the configuration. We need to be cautious only
when building the first few modules in the tail.

Let the coordinates of the extreme module be
(x0, y0). It is easy to verify that the following scheme
for building the tail will keep the configuration admis-
sible, see Figure 7:

• if (x0− 1, y0 + 1) is empty, the tail can be build at
(x0 + 1, y0 + 1), (x0 + 2, y0 + 2), (x0 + 3, y0 + 3), . . .;



6

Figure 7: There are three different types of tails. In each

sub-figure, the grid shaded with slanted lines is the extreme

module, gray grid(s) are other occupied grids, and grids

shaded with bricks are grids in the tail to be constructed.

• if (x0−1, y0+1) is occupied, and (x0−1, y0) is also
occupied, the tail can be build at (x0, y0+1), (x0+
1, y0 + 1), (x0 + 2, y0 + 2), (x0 + 3, y0 + 3), . . .;

• if (x0 − 1, y0 + 1) is occupied, but (x0 − 1, y0) is
empty, then (x0 − 1, y0 − 1) is also empty, and in
order for (x0, y0) to be connected, (x0, y0−1) is oc-
cupied. The tail can be build at (x0 + 1, y0), (x0 +
2, y0 + 1), (x0 + 3, y0 + 2), . . ..

The first phase eventually ends. At that time, no
piece in the configuration is free to move except the
module at the end of the constructed tail.

Lemma 4 The configuration at the end of phase 1 is a
chain with one end at the end of the newly constructed
tail and with the other end at the fixed base.

Before we prove lemma 4, let us prove:

Lemma 5 Any admissible configuration has a module
on the outer boundary that can move without any mo-
tion constraint.

Proof of lemma 5:

We call a module, sayX , in a configuration a connec-
tor if the removal of X from the configuration makes
the configuration disconnected. For a connector X , we
define the branch at X as the subconfiguration consist-
ing ofX and the component that becomes disconnected
from the base upon the removal of X .

Consider an extreme module in the configuration
that is different from the fixed base. This module is
on the outer boundary, and its motion (clockwise or
counter-clockwise) into the outer free space doesn’t vi-
olate any blocking constraint. If this module is not a
connector, it is the desired module.

If it is a connector, consider the branch at this con-
nector as a configuration, with the connector as the
fixed base. By an inductive argument, we can assume
that there is a module capable of moving without con-
straints. This module is on the outer boundary of the
new configuration and thus is on the outer boundary
of the original configuration. �
Proof of lemma 4:

In this proof, we use the term loop for a circular
list of distinct modules, each being a neighbor to the
modules located right before and after it in the circular
list. See Figure 8.

Figure 8: The black loop represents the largest loop in the

configuration. A is the loop connector for the fixed base.

B is the loop connector for the the tail. C is an extreme

module on the loop that has no motion constraints for its

motion to the outer free space. D is an extreme module on

the loop, but is a connector. A and B happen to be extreme

modules of the loop.

Consider the configuration obtained after phase 1.
Assume, for the sake of contradiction, that this config-
uration is not a chain, so there is a loop in the configu-
ration. Among all the loops, choose the one enclosing
the largest number of grids. Call this loop L. ¿From
any module, say X , outside of loop L, there is one or
more paths connecting the module to the loop, all of
which must share a common module Y contacting the
loop (otherwise, the loop can be augmented to enclose
more grids inside.) We call Y the loop connector for X .
The removal of Y would make X disconnected from L,
and thus make the configuration disconnected. Thus,
a loop connector is a connector as previously defined.



7

Consider an extreme module M in loop L. Without
loss of generality, we can assume that M is neither the
loop connector for the tip of the tail constructed, nor
the loop connector for the fixed base (if the loop con-
nectors for those modules are defined). We can make
this assumption, since a loop has more than two ex-
treme modules, and thus we can always choose an ex-
treme module different from the above two connectors.
Note that with our choice of L, module M must be on
the outer boundary of the configuration.

There are two possible cases:

• If M has no neighboring module outside of the
loop then, due to its extremality, M can move
into the outer free space without any motion con-
straints.

• If M has as a neighbor module N outside of the
loop, then M is a loop connector for N . Consider
the branch at M as a configuration with fixed base
M . By lemma 5, there is a module on the bound-
ary of this new configuration that can move into
the outer free space of the new configuration. It
is clear that this module can move into the outer
free space of the original configuration.

Thus, in both cases, we have a contradiction: there is
a module capable of moving to the tail built at the end
of phase 1. This proves that the assumption we made
is false, and thus lemma 4 holds. In other words, the
greedy algorithm in phase 1 transforms any admissible
configuration into an admissible chain. �

In phase 2, we show that it is possible to transform
an admissible chain configuration into a straight line
configuration. The chain configuration may be wind-
ing around the fixed base, and a simple way to make
it straight is to unwind it. Starting with the extreme
module we used in phase 1, we repeatedly choose a dif-
ferent extreme module on the chain, then build a tail at
this location. The tail will have more and more mod-
ules after each iteration, since the previous extreme
module and all the modules in the previous tail are in
the new tail. Eventually, the fixed base becomes one of
the extreme modules, and the tail contains all modules
other than the fixed base.

If the original configuration has n modules, the first
phase would take O(n2) steps since each module moves
at most O(n) steps. In the second phase, the cost for

each tail relocation is O(n2). The number of tail relo-
cation can be bounded by the following lemma:

Lemma 6 The number of tail relocation steps in phase
2 is O(n1/2)

Proof: At any moment, consider the configuration ex-
cluding the tail. Assume that this configuration has
m, (m ≤ n) modules, then its diameter d (measured
in terms of grid modules) is at least Θ(m1/2). Let P
and Q be two modules with distance d. It is easy to
see that in two tail relocations, by relocating the tail
to P then to Q (or to Q, then to P ), the tail has at
least d more modules; the remaining configuration has
Θ(m1/2) less modules. Straightforward analysis shows
that the number of tail relocations must be at most
O(n1/2). �

¿From lemma 6, the number of steps in the second
phase is O(n5/2). This worse case can be achieved for
a winding chain of n modules around the fixed base.

This completes our proof of proposition 1. �

6 Robots Composed of Metamodules

In this section, we explore a different approach to re-
configuration planning. Instead of restricting ourselves
to admissible configurations, we consider arbitrary con-
figurations that can be built out of a different building
block, a skeletal metamodule or in short a metamod-
ule. A skeletal metamodule is a collection of modules
in a scaffolding-like structure, designed with the pur-
pose of relaxing the basic module blocking constraints.
The metamodules themselves pack in a lattice struc-
ture; the ones we consider have an overall shape that
is a scaled-up copy of the basic module shape.

Figure 9 shows a robot of rigid hexagons, built from
skeletal metamodules. The metamodule in Figure 9
still has a hexagonal shape, but it is an enlarged copy
of the original module shape and has an empty interior.

A metamodule can decompose itself into modules,
which can move to another nearby location, then re-
assemble themselves back into a metamodule. This can
happen on the surface of the structure, just like with
regular modules, but now with no blocking constraints.
More interestingly, in a configuration of metamodules
that are sufficiently large, a metamodule can move to
a neighboring empty position through the interior of



8

Figure 9: This figure illustrates a configuration of sev-

eral hexagonal metamodules. Each metamodule consists of

36 hexagonal modules, yet collectively behaves like a single

hexagonal module. Unlike a regular hexagonal module, a

metamodule have no blocking constraints, and can move by

tunneling through other metamodules.

a supporting metamodule neighboring both the meta-
module and the nearby empty location. This can be
achieved by moving out of the way certain modules of
the supporting metamodule, thus creating a gate to
its interior, and then allowing modules of the moving
metamodule to go inside. The supporting metamodule
can then close the gate and open another gate toward
the empty location, letting the modules inside it move
out and to assemble back to a metamodule again; see
Figure 10. This neighbor to neighbor motion is again
without any blocking constraint. In the same way a
metamodule can actually tunnel through the interior of
the structure and then reassemble itself when it reaches
the boundary on the other side. Thus the metamodule
can be thought of as a module of a new metamorphic
robot, but now this module has no blocking constraints
and can pass through the interior of other modules.

As the above example shows, metamodules can be
built out of regular reconfigurable robot modules and
then they themselves can be treated as building blocks

Figure 10: This figure illustrates the process in which a

metamodule, collapsed inside another metamodule, comes

out to form a metamodule again. On the top we see a

metamodule with another collapsed metamodule inside it.

The grids labeled by letters form the gate that opens to let

the collapsed metamodule out. On the bottom we see the

second metamodule almost fully assembled. Its final mod-

ules are in the grids labeled by numbers — after they come

out the transformation is complete.

for a reconfigurable robot. Any sufficiently large shape
built out of basic modules can be well approximated by
metamodules, or an exact scaled version of the original
shape can be constructed directly out of metamodules
(if scale is not important) by using a metamodule in-



9

stead of a module as the basic unit. Thus metamodules
configurations can be used in lieu of basic module con-
figurations, with little loss in modeling power.

Metamodules have several advantages over standard
modules. If we have a heuristic algorithm to do motion
planning for a reconfigurable robot of hexagon mod-
ules, that algorithm can be used directly for a robot of
hexagonal metamodules. Furthermore, heuristic mea-
sures for the distance between two configurations will
most likely result in better quality plans in the meta-
module case, as the blocking constraints have been
eliminated. For example, the heuristics proposed by
Chirikjian and Pamecha to do motion planning [Pa97],
and the bound on the number of steps [ChP] are valid
for metamodule configurations.

Metamodules also have the additional tunneling ca-
pability. Besides moving on the boundary of the con-
figuration, like regular modules, metamodules have the
flexibility to go through the interior of other modules
and thus they can make shortcuts through the configu-
ration. If we let many modules move at the same time,
the interior is now available to provide a much higher
bandwidth channel for the motion than is possible on
the surface alone. This tunneling capability of meta-
modules can be also used to create compressible mod-
ules, such as those proposed by Rus and Vona [Ru99].

6.1 Restricted Configurations of Metamodules

In this section, we propose a new way to do parallel
motion planning for a restricted class of metamodule
configurations. This combines the idea of metamod-
ules and that of restricted configurations. We allow
modules to move concurrently to speed up reconfigu-
ration. The approach is motivated by the work of Rus
and Vona [Ru99].

Suppose that we have two layers of metamodules as
shown in Figure 11. If we keep the metamodules on
the bottom layer fixed, we can collapse all metamod-
ules on the top layer, move the modules in parallel to
the right, then reconstruct the metamodules on top.
This can be thought of as a shifting of the top layer
over the bottom layer by one module, in one time step.
The overall effect of the operation is to move the left-
most metamodule of the top layer all the way to the
right in one time step, independent of the number of
metamodules on the layers.

Figure 11: The top layer of metamodules can move to the

right over the bottom layers in one parallel time step. This

is equivalent to moving the metamodule on the top layer

from the extreme left position to the extreme right position

in one parallel step.

Figure 12: The two local combinations of modules on the

left are prohibited in a fat configuration. The dark and light

gray grids represent occupied and unoccupied grids respec-

tively. The configuration on the right is not fat, because

the fat condition is violated in two different places. If two

modules are added to the configuration at B and C, the con-

figuration will become fat.

We will use the above operation as a basic step for
our motion planning. It is preferable that the config-
uration we deal with is not too skinny. We restrict
ourselves to a new class of fat configurations in which
two local combinations of metamodules, as explained in
Figure 12, are prohibited. This restriction essentially
requires that a fat configuration has locally, width two
or more; again, it should be clear that this restriction
has little affect on the class of shapes that can be ap-
proximated. We will use the term nonfat for configu-
rations that are not fat.

Fat configurations have a nice property, as shown in
the following proposition:

Proposition 7 Any fat configuration of n metamod-
ules can be transformed into a straight line fat config-



10

uration in O(n) parallel steps.

As an immediate corollary of proposition 7:

Corollary 8 Any fat configuration of n metamodules
can be transformed into any other fat configuration
with the same number of modules in O(n) parallel
steps.

Proof of proposition 7:

Without loss of generality, it suffices to show that
we can transform a fat configuration to a fat straight
line configuration with a rounded end (shown shaded
with slanted lines in Figure 13.) Furthermore, we can
assume that the six metamodules surrounding the base
metamodule are already in the original configuration.
This is so we can preprocess the original configuration
and postprocess the final configuration to the desired
form in O(n) time.

Figure 13: The metamodules in a fat configuration can

move to generate the rounded straight line to the right. The

algorithm applied on this configuration first moves A, then

moves both B and C (and breaks the only loop in the con-

figuration), then moves D, F, and E to the tail.

We again will use a greedy algorithm. Starting from
the tip of the tail constructed so far, we search in the
counter-clockwise direction along the boundary of the
configuration to find the first metamodule not already
in the tail satisfying either of the following two condi-
tions:

• The removal of the metamodule leaves the config-
uration connected and fat. In this case, we use the
parallel shearing operation to shift an entire layer
of the configuration on the boundary, with the net
effect of moving the selected metamodule in O(1)

steps to the tip of the tail. If the layer on the
boundary includes metamodules in both the up-
per and lower layers of the tail, we do the shearing
in two steps, the first shearing uses only one of the
two layers of the tail, and the second shearing uses
the remaining layer.

• The removal of the metamodule leaves the configu-
ration connected but nonfat, and further removal
of one of its neighboring metamodule leaves the
configuration still connected and fat again. In this
case, we move both modules to the tip of the tail
in two consecutive time steps.

Note that the fixed base should not be in any layer
being shifted, and this is guaranteed since there are
modules surrounding the fixed base at all times. Also,
although the configuration at the end of each step may
not be fat, this only happens at the tip of the tail (when
the tail first touches some other part of the configura-
tion.) For the analysis, it is safe to assume that the
configuration is always fat, since we can pretend that
the tip of the tail is not yet there when we search for
the next metamodule.

Before further analysis, let us give some intuition
behind the two cases above. In the first case, the op-
eration takes away a metamodule on the boundary,
making the configuration thinner. Since the configu-
ration is fat, the topology of the configuration does not
change. In the second case, the configuration has some
thin cross section in a loop. The removal of a module
in that thin section makes the configuration nonfat,
yet the additional metamodule removal eliminates the
skinny cross section. The loop is disconnected, and the
topology of the configuration changes, see Figure 13.

We claim that the above greedy algorithm moves all
metamodules in the configuration to the tail. Let us as-
sume for the sake of contradiction that there are some
metamodules not in the tail when the greedy algorithm
fails to find any metamodules to move. Consider the
free space, the complement of the configuration. If
there are two or more connected components of the
free space, consider the smallest distance between the
component contacting the tail and all remaining com-
ponents. This distance is not one, since we assume
that the configuration at the beginning of each search
is always fat. If this distance is two, the second condi-
tion would be applicable to remove the two metamod-
ules, merging the two components of the free space. If



11

the distance is three or more everywhere, clearly the
first condition would have been used to remove further
metamodules. Thus the free space is connected. In
order for the first condition not to be applicable, the
metamodules not in the tail are on one or more thin
chains originating from the tail. This is a contradic-
tion, since the metamodules at the tip of these chains
would have been removed by the first condition.

The O(n) number of parallel steps follows trivially,
since the remaining configuration has one less meta-
module after every O(1) time steps. �

6.2 Reconfiguration by Tunneling

If the metamodules are large enough to allow tunneling,
then another method can be used for reconfiguring an
arbitrary configuration into a line, in O(n) steps. The
intuition here is that a metamodule at a boundary of
a configuration can follow a tunneling path through a
configuration emerging at a growing tail that is forming
a line (and consequently between two arbitrary config-
urations). Every metamodule in that path can imme-
diately follow this leader metamodule and emerge at
the end of the tail. The appropriate metaphor here is
of a turning a rubber glove inside out by pushing in at
the fingers and having them come out the other end,
one at a time, appended to each other in a straight line,
see Figure 14.

The first step is to impose a tree structure on the
configuration. This is done by labeling the metamod-
ules with increasing numbers in a breadth first traver-
sal sequence, starting with the metamodule where the
tail will grow as number 0. The breadth first number-
ing can be achieved with simple incremental message
passing.

The following algorithm is purely local, in that ev-
ery metamodule runs the same program (a small fi-
nite state machine) and no communication is required
between metamodules except for knowledge of their
neighboring metamodules and their numbers (in the
labeling).

There are four states that every metamodule can be
in:

• S1 — the metamodule is part of the original struc-
ture (not tunneling nor part of the tail)

• S2 — the metamodule is tunneling towards the 0
metamodule.

• S3 — the tunneling metamodule has reached the
0 metamodule and is now tunneling in the tail.

• S4 — the metamodule has grown the tail and so
has stopped tunneling.

There are three rules for transitioning between
states:

• T1 (S1 7→ S2): if the metamodule is or becomes a
leaf metamodule, it starts to tunnel toward 0.

• T2 (S2 7→ S3): if the metamodule has tunneled
into the 0 metamodule, it starts to tunnel to the
tip of the tail.

• T3 (S3 7→ S4): if the metamodule has reached the
end of the tail, it exits and forms a normal non-
tunneling metamodule growing the tail.

Any metamodule that is a leaf will move up the tree
by tunneling inside the branches towards 0. Moving
up the tree is accomplished by examining the number
of the metamodules neighboring the current metamod-
ule that the tunneling metamodule is contained in and
targeting the neighbor with the lowest number as the
direction to tunnel. When a leaf tunnels up a branch
of the tree, the former second-to-last metamodule be-
comes the last metamodule and thus a leaf, so it starts
to move up.

There are three cases where a metamodule in state
S2 will not be able to tunnel into its neighbor: 1) when
it is being tunneled itself, 2) when another metamod-
ule is inside the target metamodule and has not exited
because it is waiting for another metamodule to move,
and 3) when a metamodule with a higher number wants
to enter the same target metamodule. The last case is
an arbitrary prioritization (or right of way) convention.
Once a metamodule reaches the 0 metamodule, it at-
tempts to form the tail by tunneling down the tail until
it emerges at the end, thus growing the tail.

At every step, at least one metamodule is either mov-
ing up the tree, or growing the tail. In fact, every meta-
module will either be a conduit for other metamodules
to pass through or will itself be tunneling through an-
other metamodule after O(n) steps. While there is
always a convoy tunelling towards the root or growing
the tail, some convoys may be waiting at branch nodes
for other convoys to finish their tunneling. Clearly a



12

Figure 14: Several snapshots of the tunneling process as

it transforms the top configuration to a straight line. Meta-

modules tunnel toward the base, then extend out to form a

straight line. In these figures, light gray grids contain regu-

lar metamodules, and dark gray grids contain metamodules

with another metamodule tunneling inside them.

metamodule only moves O(n) steps before it reaches
its eventual goal position in the tail, as its motion fol-
lows a path in the tree and through the tail. What is
more interesting is that a metamodule M also never
waits a total of more than O(n) steps before reaching
its destination. We can see this as follows. After the
initial O(n) steps, metamodule M waits only when it
is being tunneled through, or when it is part of a tun-
neling convoy that is waiting at a branch node up the
tree for another convoy to pass through. In both cases
another module, the blocker of M from a different sub-
tree, is moving though the branch node for every time
step that our module M has to wait. But once a meta-
module has been the blocker of M , it can never block
M again at a branch node, as it has now become an
ancestor of M in the tree. Thus no node needs more
than O(n) moving or waiting steps to reach its final
destination.

Since we move from the leaves of the branch inward,
connectivity is never broken. Furthermore this algo-
rithm operates in a very simple and purely local fash-
ion. All of this assumes that only one metamodule
can be “tunneled” inside another metamodule at one
time. Metamodules with larger interiors would have
more “bandwidth” which would mean less traffic prob-
lems and fewer steps.

7 Conclusion

In this paper we have explored certain restrictions on
the allowed structure of reconfigurable robots with the
aim of making the motion planning problem easier,
without unduly confining the set of shapes the robot
can assume. Though all our results are in 2D, we be-
lieve that appropriate extensions to 3D are possible,
and in some cases straightforward. For example, we
can build 3D rhombic dodecahedron metamodules that
consist of an edge skeleton of a scaled copy of the ba-
sic RD module. Because the parallelogram facets of
these metamodules are actually solid only along their
edges, other collapsed metamodules can enter, tunnel
through, and exit a given metamodule easily, without
any of the gate opening or closing operations we need
in 2D. In 3D as well, the traffic management of convoys
of modules tunneling through the robot interior seems
easier than in 2D. Since the tunneling reconfiguration
algorithm imposes a tree structure which is indepen-
dent of the dimensionality of the physical modules, it
will work for this 3D RD case as well.



13

Acknowledgments

Leonidas Guibas and An Nguyen were supported in

part by National Science Foundation grants CCR–9623851

and IRI–9619625, as well as by US Army MURI

grant DAAH04–96-1-0007. An Nguyen was also supported

by a Stanford Graduate Fellowship.

References

[Ca99] Casal, A., Yim, M., “Self-Reconfiguration Plan-
ning for a Class of Modular Robots”, SPIE Sym-
posium on Intelligent Systems and Advanced Man-
ufacturing, Sept. 1999.

[Ch94] Chirikjian, G., “Kinematics of a Metamor-
phic Robotic System,” in Prc. 1994 IEEE
Int. Conf. Robotics and Automation, San Diego,
CA.

[ChP] Chirikjian, G., Pamecha, A., “Bounds for Self-
Reconfiguration of Metamorphic Robots,” JSU
Technical Report, RMS-9-9 5-1.

[Ch96] Chirikjian, G. et al., “Evaluating Efficiency of Self-
Reconfiguration in a Class of Modular Robots,” in
Journal of Robotic Systems, June 1996.

[Ko98] Kotay, K., et al., “The Self-reconfiguring Robotic
Molecule: Design and Control Algorithms”, Algo-
rithmic Foundations of Robotics, 1998.

[Ko98] Kotay, K. et al., “The Self-reconfiguring Robotic
Molecule,” in Proceedings of the 1998 IEEE Inter-
national Conference on Robotics & Automation,
May 1998.

[Mu94] Murata, S. et al., “Self-Assembling Machine”, in
Proceedings of the 1994 IEEE International Con-
ference on Robotics & Automation, May 1994.

[Mu98] Murata, S. et al., “A 3-D Self-Reconfigurable
Structure”, in Proceedings of the 1998 IEEE In-
ternational Conference on Robotics & Automation,
May 1998.

[Pa96] Pamecha, A. et al., “Design and Implementation of
Metamorphic Robots” in Proceedings of the 1996
ASME Design Engineering Technical Conference
and Computers in Engineering Conference, Aug
1996.

[Pa97] Pamecha, A., Chirikjian, G., “Useful Metrics for
Modular Robot Motion Planning,” in IEEE Trans-
actions on Robotics and Automation, Vol. 13, No
4, August 1997.

[Ru99] Rus, D., Vona, M., “Self-reconfiguration Plan-
ning with Compressible Unit Modules,” in Pro-
ceedings of the 1999 IEEE International Confer-
ence on Robotics & Automation, May 1999.

[Yi93] Yim, M., “A Reconfigurable Modular Robot with
Many Degrees of Locomotion,” in Proc. 1993
JSME Int. Conf. Advanced Mechatronics.

[Yi94] Yim, M., “Locomotion With a Unit-Modular Re-
configurable Robot”, Stanford University PhD
Thesis, 1994.

[Yi97] Yim, M. et al., “Rhombic Dodecahedron Shape
for Self-Assembling Robots,” Xerox PARC, SPL
TechReport P9710777, 1997.

[Zh99] Zhang, Y., et al., “Distributed Control for 3D
Shape Metamorphosis,” submitted Autonomous
Robots Journal, special issue on self-reconfigurable
robots, 1999.


