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Abstract— Many applications of wireless ad–hoc sensor net-
works involve collaboration among sensor nodes to achieve a
common task. Moreover, such collaboration is often dynamic in
nature. For instance, in an multi–object tracking application,
sensor nodes that are tracking various moving objects must
share information in order to improve the tracking quality.
Thus, it is important to have a protocol that maintains group
connectivity in such a setting. In this paper, we study the
problem of maintaining communication paths among a group
of moving agents that have interacted with one another. As
its solution, we propose a data structure called the Distributed
Collaboration Graph (DCG), which is a communication graph
obtained from the agent trajectories. DCG can be constructed in
a purely distributed fashion with very little cost and can be used
for group discovery and for multicasting/broadcasting among
agents. We also propose a distributed protocol which maintains a
communication tree among the agents within the DCG while the
agents are moving. This allows us to maintain group connectivity
and provides the infrastructure for routing among the moving
agents.

I. INTRODUCTION

Many applications of wireless ad–hoc sensor networks
(WASN) can be implemented using multiple mobile agents
– multiple agents that are roaming around in a WASN
while collecting and processing information about large–scale
physical phenomena. Eventually, information gathered by the
agents need to be reported back to a user through a gateway,
and it is much more power–efficient for them to aggregate
the information than for each agent to send its information
individually.

Another, more concrete, application based on mobile agents
is multi–object tracking, where each agent is instantiated at
object detection and follows the object as it moves. As objects
move, some of the corresponding agents could come within
communication range and interact with one another to share
some state information. In fact, for multi–object tracking, it
is not guaranteed that each agent will always follow the same
object [1]. Thus, agents have to share information when they
come close to one another, so that uncertainties in the object
identities could be resolved later.

The aforementioned applications in a WASN assume an ef-
ficient group communication protocol among roaming agents.
Maintaining group membership and their connectivity while
agents are roaming is a very challenging task, especially in

large–scale distributed systems like sensor networks. There are
two basic requirements for group communication in general: i)
member discovery, and ii) a multicasting protocol. Supporting
these features would typically require some global infrastruc-
ture or hierarchy. However, these are not likely to be available
in distributed systems of embedded battery–powered nodes.

In this paper, we focus on designing communication pro-
tocols for the so–called acquaintence group (AG) [2], which
is a set of agents that have interacted in the past. Supporting
communication within an acquaintence group is critical for
multi–object tracking and is also useful for many other WASN
applications based on mobile agents. To this end, we propose
two distributed data structures and show how to maintain
them in an efficient manner when the agents are moving.
Specifically, we propose:

� Distributed Collaboration Graph (DCG): DCG is a
graph obtained from the agent trajectories and can be
used for member discovery.

� Communication Tree on DCG: In principle, DCG itself
can be used as a communication graph by a simple flood-
ing protocol, although it is more desirable to maintain a
subtree spanning all the agents in the DCG for efficient
multicasting.

We develop light–weight distributed protocols that construct
and maintain the aforementioned data structures. Moreover, we
demonstrate their efficiency through analysis and simulation.

The paper is organized as follows. After briefly discussing
related works in Section II, we introduce the Distributed
Collaboration Graph (DCG) and discuss a protocol for con-
structing it in Section III. Then, we present a protocol for
dynamically maintaining a communication tree within the
DCG in Section IV. Finally, simulation results and conclusions
are presented in Sections V and VI.

II. RELATED WORK

In [2], the authors introduced the notion of collaboration
group, which is a set of nodes – or processes – that collaborate
to achieve a common goal. Most of the collaboration groups
mentioned in that paper can be supported by well–known
geographic routing protocols like Geocasting [3] or GEAR
[4], since nodes in those groups have well–defined geometric



or topological relations, e.g. a group of nodes within 1–
hop communication distances or a group of nodes within
some region

� ���������
	
. However, this is not the case for

the acquaintence group (AG), as membership is not defined
by geometric/topological primitives, but by their logical rela-
tionships, e.g. a group of agents that have observed ��������������
before.

In [5], the authors proposed a general group communication
framework in a WASN. The basic idea is to maintain a
moving backbone, which is a set of nodes used for exchanging
messages among agents while they are moving. Their methods,
however, require a separate member discovery mechanism for
a specific group definition – or else agents could receive
unwanted messages.

III. DISTRIBUTED COLLABORATION GRAPH (DCG)

A. Acquaintence Group

We first make the following assumptions on the sensor net-
work. All the nodes are stationary and can directly exchange
messages only with the nodes within their communication
range. In a multi–object tracking scenario, which our paper
will focus on, nodes at the boundary of a sensor network detect
objects and assign an agent to each object. In this context, an
agent is a process running on a node. It maintains and updates
the information of a single moving object, e.g. its position
estimate, signature etc. An agent follows an object in a sensor
network as the object is moving so that it can maintain the
good signal–to–noise ratio and reduce communication cost –
staying close to physical sources is always beneficial.
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Fig. 1. A simple agent interaction for multi-object tracking application

Figure 1 illustrates a typical scenario with three agents � ,�
and � tracking ����� , �! #"$� and �&%�' , respectively. Each agent

maintains two pieces of information on its target – position
and ID. Near the left intersection marked by a star–shape,
two objects ����� and �& (")� are very close to each other, and
the two corresponding agents can no longer distinguish the

IDs of their objects1. Those two agents then communicate
with one another to update their ID as the union of the
previous IDs *+�,��� � �! #"$�.- – this object can be either �,���
or �& (")� – and this process is called mixing.2 Later at the
right intersection, �& (")� and �&%�' are mixed again and their
corresponding agents update their IDs as *+�,��� � �& (")� � �&%�'.-
– note that the agent following �! #"$� has its ID *+�,��� � �& (")��-
after the first mixing. In general, after a mixing, two agents
update their IDs as the union of the two previous identities.
Now, we define the notion of an acquaintence group (AG) [2].

Definition 1: An acquaintence group �0/21�354 is a group of
agents, whose ID set contains 3 .

According to the above definition, �6/217�& (")�84:9;�0/217�,���84<9*+� � � � ��- and �6/217�&%�'4=9>* � � ��- in figure 1. Intuitively,�0/21?�& (")�84 can be interpreted as a group of agents, who
share information on �& (")� – no one outside this group knows
anything about �& (")� .

Now, let’s discuss a scenario of group communication
within an acquaintence group. Suppose that an agent in�0/21?�& (")�84 observes some local evidence that indicates its
object is �& (")� . Then, this information needs to be shared with
the rest of the members of �0/21?�& (")�84 for consistency – this
is called an identity management [1]. Note that we do NOT
use the names of the agents for this type of communication.
The naming of agents (or nodes) for the group communication
is based on their data – IDs of physical objects, in this case.
Thefore, the communication primitive within an �0/21?�&%@'4 is
“I want to hear from everyone who has seen �&%�' ”.

It seems hopeless to support group communication as de-
scribed above without any global infrastructure on membership
management and multicasting protocol. Figure 2, however,
indicates that we might be able to use agent paths for the
membership discovery and group communication – groups are
always formed at the intersections of agents. We will call this
graph a distributed collaboration graph (DCG) and the details
will be discussed in the next section.

Fig. 2. Idea of using agent paths for member discovery and group
communication: The agent paths after the mixing can be used as member
discovery and group communication in this example.

1This is a data association problem, which is known to be NP–hard.
2For the sake of discussion, we consider only pairwise mixings throughout

this paper.



B. Construction of Distributed Collaboration Graph

The construction of DCG can be done in the following way.
Each agent that belongs to more than one group3 must leave
a routing table at the node it resides before it handoffs to
another node. A routing table contains information on node
class, previous node(s), next node(s), group membership and
current time stamp as summarized in Table I.

TABLE I

A ROUTING TABLE IN A NODE OF A COLLABORATION GRAPH

Information stored at nodes in DCG

Node class:  ('���%�� �!�# ���
Previous node ��� : � �8���
	�������
Previous node ��� : � �8���
	�������

Next node ��� : � ������	������
Next node � � : � ������	����� �

Group membership (ID Set): /
Current time: �

There are two main classes of nodes in DCG. One is a
junction node, which makes some routing decision between
four (three) nodes – two (one) input nodes and two output
nodes, and the other is a relay node, which just relays packets
between two nodes. Junction nodes are formed at mixings;
two agents involved in a mixing select a node within the
intersection of the two communication ranges as a junction
node. There is one special junction, which has no previous
node IDs and called a root. All the current agent nodes are
called terminals. Information stored at nodes can be visualized
as Figure 3
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Fig. 3. Information stored at relay nodes (left) and junction nodes (right)

Let’s take an example of five agents with five objects in
a WASN and visualize the DCGs of each group. Figure 5
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Fig. 4. Mobile agent paths

shows five collaboration graphs corresponding to five different

3This is equivalent to agents, of which objects have multiple identities.

object identities. We emphasize that these graphs are just for
visualization and no single node contains global information
on a DCG. For example, the left DCG in Figure 5, denoted
as � � /217�& (")�84 , is a collection of nodes (and edges), whose
routing table(s) contain �& (")� as group membership. It is
easy to see why group member discovery is automatic given
a DCG – the terminals of � � /217�& (")�84 are precisely the
members of �0/217�! #"$�4 , and vice versa.

Fig. 5. Distributed collaboration graphs

Proposition 1: Discovery of all the members of �0/2173�� 4
can be done by simply visiting all the terminals in � � /2173�� 4 .

Although simple flooding on a DCG can be used as a group
communication protocol, it is not efficient, as packets will visit
all the nodes in the DCG. In the next section, we will present
a protocol for maintaining a communication tree among the
terminals (a subgraph of a DCG) in a distributed fashion.

IV. MAINTAINING COMMUNICATION TREE ON DCG

We will now show how to maintain the DCGs and com-
munication trees for each of the acquaintence groups as the
objects move. As we shall see, a major feature of our protocol
is that all the computations can be done in a distributed and
local manner. Informally, the DCG for object  , which we
shall denote by � � /21� (4 , keeps track of the positions as well
as trajectories of those agents whose ID sets contain  . In
other words, � � /21  (4 can be viewed as the acquaintence
group �6/21  (4 augmented with trajectory information. The
communication tree for �0/21� #4 is a Steiner tree in � � /21  (4
that spans the terminals. In particular, we will use this tree as
a data structure for supporting group communication. We call
an edge in the DCG active if it belongs to the communication
tree.

Initially, there has been no interaction among the agents.
Hence, the DCG for each object is empty. As the objects and
their tracking agents move around in the network, we would
have to update the corresponding DCGs. The updating of the
DCGs is triggered by three types of events – mixing event,
crossing event, and relay event. We now describe each of these
in turn.

A. Mixing Event

Suppose that two agents, one carrying ID set 3� and the
other carrying ID set 3�� , come to close proximity of each
other at the point � (we shall assume that � is a node in the
network). We call such an event a mixing event. As mentioned
before, we need to update the ID sets carried by the agents.
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Fig. 6. A multi–target tracking scenario. In the above figure, objects are
labelled ��� � ���������
	 . The arrows indicate the trajectories of objects. Each
square represents a mixing event (see Section IV-A).

Moreover, we need to update � � /21  (4 and its communication
tree for each  �� 3 to reflect the mixing. We now describe
each of the updating tasks in turn.

1) Updating the Identity Sets: As mentioned in Section III-
A, the agents in the two outgoing edges will carry the ID set329 3��� 3 � . Clearly, this update step can be carried out in a
local manner.

2) Updating the DCG and the Communication Tree: For
simplicity of discussion, let us fix our attention to � � /21  (4 ,
where  �� 3 . To update � � /21  (4 , we first declare the crossing
point � a junction node for  . As the agents hop to the next
nodes, we declare both of the outgoing edges active for  . It
is important to note that an edge may belong to many DCGs,
and hence we need to specify to which group the edge is
active. Now, since two agents are meeting at the common
point � , the active edges in the updated � � /21� (4 may contain
a cycle. However, note that if  ��� 3 ��� 3 � , then the active
edges in the updated � � /21  (4 would not contain a cycle (see
Figure 7). On the other hand, if  �� 3 ��� 3 � , then the active
edges in � � /21� #4 will form a cycle after the update, since
both agents have information about  iff they have interacted
earlier. To remedy this situation, we first declare one of the
active cycle–edges, say � , inactive. Then, starting from the
edge � , we traverse around the cycle and check whether
there are dangling active edges. An active edge is said to be
dangling if there are no incident active edges on either one
of its endpoints, and none of its endpoints are terminals. We
would like to deactivate as many dangling edges as possible,
since their deactivation should not affect the connectivity
of the resulting communication tree. Indeed, we have the
following proposition.

Proposition 2: Suppose that initially the active edges in
� � /21  (4 form a tree that spans the terminals. If a mixing
event creates a cycle of active edges in � � /21� #4 , then upon
applying the cycle–cancelling algorithm described above, the
resulting active edges will still form a tree that spans the
terminals. In particular, the subgraph induced by the active

edges at the end of the algorithm is connected.

Proof: The first step of the algorithm declares one of
the active cycle-edges inactive, and this step clearly preserves
connectivity and the spanning property. Moreover, the active
edges form a tree after this step. Now, observe that a dangling
edge is an edge that leads to a non–terminal leaf node in this
tree. Hence, its removal would neither destroy the connectivity
nor the spanning property.

We remark that an optimal set of edges to delete from the
cycle (i.e. a set that yields that maximum number of edges)
while preserving connectivity can be found in � 17� � 4 time,
where � is the length of the cycle. Moreover, the graph induced
by the remaining active edges is a tree that spans the terminals.
Thus, it follows by induction on the number of update steps
that our scheme has the desired properties.

i is in I_1 but not in I_2

I_1

I_2

I=I_1 U I_2

active

I=I_1 U I_2

active

Updated Portion of DCG_i when

Fig. 7. Mixing Event: The updated tree does not contain a cycle.

To perform the cycle–cancelling operation, we need only
information stored in the nodes along the cycle. Thus, all the
above computations can be done in a distributed and local
manner. To illustrate our protocol, consider the example in
Figure 6. The various communication trees for object � , as
time evolves, are shown in Figure 8.

B. Crossing Event

Observe that not every intersection of the trajectories corre-
sponds to a mixing event. It could be the case that one agent
arrives at � at an earlier time than the other, but that both agents
carry information about object  . In this case, we would still
need to update � � /21� #4 in order to ensure the correctness of
the data structure. We call such event a crossing event.

Suppose that one agent, say � , reach � earlier. As � hops
to the next node, it would leave the set of identities 3�� at
� . Now, when the other agent � reaches � , it could check
whether 3�� � 3���9�� . If 3�� 3�� � 3�� �9�� , then we mark � as
a junction of � � /21� #4 for each  ���3 . Again, let us focus on
one particular identity  �� 3 . (The marking of � as a junction
is mainly for keeping track of the entire � � /21� #4 .) After
marking � as a junction, we need to update the communication
tree in � � /21� (4 . To do so, let � � be the terminal where
agent � resides. If � is incident upon an active edge along
the trajectory of � , then we update the communication tree
using the mechanism described in the preceding section (see
Figure 9). Otherwise, we simply add the edge 1 � � �!� 4 to the



Fig. 8. The various communication trees for object � as time evolves. Edges that are declared inactive are marked with crosses.

communication tree (and hence 1 � � � � 4 is an active edge).
By induction on the number of update steps, we see that
such a scheme maintains group connectivity, i.e. every object
in the same group is connected by the communication tree.
Moreover, in order to perform the update, we need only the
information stored at � . Hence, the update step is completely
local.

t_x

���
�

p

cycle
breakup

active active

active
t_y

Fig. 9. Crossing Event

C. Relay Event

As an agent follows an object, it will hop from node to node.
If the agent carries an ID set 3 with more than one element
(which indicates that the agent has involved in a mixing event
before), then it will leave a routing table at the node it resides
(call it % ) before hopping to another node � (see Section III-
B). In this case, we add the node � to � � /21  (4 , where  �� 3 ,
and declare the edge 1�% � �54 active.

V. SIMULATION

To validate the correctness and efficiency of the proposed
protocols, we have performed a simulation. Approximately
1200 nodes are placed in �������	����� region with a commu-
nication range of 25 (no unit). For a given number of agents,
their directions are randomly chosen, but their velocities

are carefully chosen so that there are a few junctions. We
mainly focus on verifying the correctness of our protocols, so
control packets, link-level acknolwedgements and other low-
level parameters are not simulated or ignored for simplicity.
Figure 10 shows a typical scenario involving five agents.

Fig. 10. A typical scenario with five agents

We compare the performances of two group communication
protocols – a flooding on a whole DCG and multicasting on a
communication tree. For a given set of agent trajectories, we
compare the two protocols in terms of the total number of hops
from a randomly selected agent to the rest of the agents. For
fair comparision, we assume that a flooding scheme maintains
a queue at each node so packets do not travel forever. For each
number of agents, we generate 50 different random scenarios
(trajectories), over which the number of hops are averaged.
Figure 11 shows the comparison results; the overhead of
maintaining communication trees is validated especially when
there are many agents.
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VI. DISCUSSION AND CONCLUSION

We have studied how to support a group communication
among interacting agents (acquaintence group) in a WASN and
proposed two distributed data structures and two correspond-
ing protocols that support i) group membership discovery
and ii) efficient multicasting in a purely distributed manner.
Simulation shows the feasibility, correctness and efficiency of
the proposed protocols.

There is room for improvement on both theoretical and
practical aspects of the current protocols. In the current setting,
if one of the nodes/links in the communication graph fails –
which can happen quite often in wireless systems – then the
whole group communication would be broken. Our prelim-
inary study, however, shows that a simple local replication
scheme can remedy the situation. Whenever an agent leaves a
routing table, the agent also broadcasts the table to its one–hop
neighbors, and at node/link failures, the redundant information
at the neighboring nodes can be used instead.4 Figure 12 shows
that this heuristic can effectively reduce the probability of
link/node failure for different node densities.
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Fig. 12. A simple heuristic to deal node/linke failures

Another question we plan to address is the quality of
the communication tree (in terms of hop–count or some

4This is a good example of exploiting diversity in wireless communication.

other metric) produced by our algorithm. Observe that the
communication tree is simply a Steiner tree in the DCG that
spans the terminals. The problem of computing an optimal
Steiner tree in a general graph is NP–hard, and there has been
lots of approximation algorithms for this problem, see e.g.
[6]. However, none of these algorithms are local, and they do
not address the issue of moving terminals. We plan to address
these issues in the future using the kinetic data structure (KDS)
framework developed in [7]. In particular, it would be inter-
esting to develop a local, distributed approximation algorithm
for the Steiner tree problem under the KDS framework.

DCG can be useful for supporting a query on identities of
objects. Suppose a user is only interested in information about
a specific object, say, �& (")� in a WASN, then � � /21?�& (")�84 can
be used as an information aggregation tree – it is not exactly
a tree, but can be converted into one using the similar cycle–
handling protocol described in this paper.
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