
Geometric Filtering of Pairwise Atomic

Interactions Applied to the Design of Efficient

Statistical Potentials

Afra Zomorodian a, Leonidas Guibas a, Patrice Koehl b,∗

aDepartment of Computer Science
Stanford University

Stanford, CA 94305, USA
bDepartment of Computer Science and Genome Center

University of California, Davis
Davis, CA 95616, USA

Abstract

Distance-dependent, pairwise, statistical potentials are based on the concept that
the packing observed in known protein structures can be used as a reference for
comparing different 3D models for a protein. Here, packing refers to the set of
all pairs of atoms in the molecule. Among all methods developed to assess three-
dimensional models, statistical potentials are subject both to praise for their power
of discrimination, and to criticism for the weaknesses of their theoretical founda-
tions. Classical derivations of pairwise potentials assume statistical independence of
all pairs of atoms. This assumption, however, is not valid in general. We show that
we can filter the list of all interactions in a protein to generate a much smaller subset
of pairs that retains most of the structural information contained in proteins. The
filter is based on a geometric method called alpha shapes that captures the packing
in a conformation. Statistical scoring functions derived from such subsets perform
as well as scoring functions derived from the set of all pairwise interactions.
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1 Introduction

It is not feasible to determine experimentally the structure of the millions of
proteins whose corresponding genes have been sequenced as part of the mul-
tiple genome projects. However, there is hope that biologically useful models
can be derived by inference from the databases of known protein structures.
The main reason for this hope is the common knowledge that proteins with
homologous sequences have similar structures. In such cases, models for the
unknown structure of a new protein can be built from the structure of a ho-
mologous protein using comparative modeling techniques [1]. In many cases
however, there is no significant sequence similarity between the sequence of
the unknown protein, and the sequences of the proteins whose structures are
known. In these cases, it is possible to generate models for the protein whose
structure is unknown using either fold recognition techniques [2,3] or ab initio
protein structure prediction methods. The main challenge faced by the latter
approaches is the definition of an approximation of the potential energy func-
tion describing the stability of a protein. This approximation would ideally
have the native structure of a protein as a minimum. Should such a function
be known, protein structure prediction would proceed either by optimizing the
conformation of a protein such that its energy is minimum, or use the func-
tion for identifying native-like models in a large set of non-native models, also
called decoys [4]. There are two major types of potentials currently developed
for that purpose: the atomic “physical” potentials, and the database-derived
potentials [5].

Atomic force-fields are derived from physical models for intra-molecular in-
teractions and for solvent effects. The force-fields are widely used for precise
molecular dynamics and molecular mechanics simulations. The parameters of
these energy functions are traditionally optimized with respect to the proper-
ties of small molecules. In some cases, the parameters are extracted from quan-
tum chemical calculations [6]. These force-fields have proven useful for study-
ing the structures and dynamics of molecules near their native states. They
are, however, not (yet) appropriate for studying complex processes over large
time scales. They have large computational complexities and are unable to dis-
criminate reliably between native and non-native models of proteins. Conse-
quently, there has been a growing interest in developing simplified, specifically
designed energy functions that are tractable for simulations [7,8,9,10,11,12,13].
Two types of potentials have been designed, reflecting their respective usage.
Firstly, folding potentials are optimized for simulation of the protein folding
process. The common approach is to choose a functional form for the potential
and optimize a folding criterion over the parameter space [14, 15, 16, 17, 18].
Secondly, potential energy functions are designed to provide reliable sepa-
ration between near-native and non-native structures for a protein. Most of
these potential are knowledge-based, that is, they extract information from
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the database of known protein structures [9].

The basic assumption for designing knowledge-based potentials is that the
packing observed in known protein structures can be used as a reference point
when comparing different models for a protein. The packing information is
extracted using either a physical or statistical model. This information is then
utilized in a potential of mean force or statistical potential, respectively. It
was found that residue pairing frequencies [7, 8, 9, 19, 4, 11, 20, 21] (with or
without distance dependence), residue triplet [22] and residue quadruplet fre-
quencies [23], solvent accessibility and atomic contacts [24, 25, 26], dihedral
angle preferences [27], ion pair distributions [28], as well as combinations of
these properties [29, 4] provide useful information for discriminating near na-
tive structural models from misfolded models of proteins. Despite significant
progress however, there is not yet a “universal” potential that reliably solves
the discrimination problem.

Further, the theoretical basis of statistical potentials has been challenged
[30, 31, 32]. For example, pair-wise potentials rely on the assumption of the
independence of the different pairs of atoms considered. This assumption is
certainly not valid for a protein in a compact state: it was shown, for in-
stance, that statistical potentials based on residue pair frequencies remember
the topology of the proteins included in the database from which they were
derived [32]. In addition, most of these potentials are defined with respect to
a reference state. There is yet no consensus on how to define this state [33,34].

It is worth mentioning that decoys sets, i.e. collections of structural models
for a protein structure, play an essential role in the development of energy
functions: the latter are optimized for detecting near native conformations in
the former which, in turn, are constantly improved to provide stringent and
meaningful test sets to assess the quality of energy functions [4,35,36,37]. This
connection can in certain circumstances be put in good use. For example Baker
and co-workers have shown that if the distribution of structures in a decoy set
reflects the distribution of conformations expected from energetics consider-
ation, theere are a greater number of decoys near a native-like conformation
than there are surrounding a misfolded conformation [38]. This observation
has lead to the widespread strategy of clustering a decoy set using structural
similarity as a distance measure, and choosing a candidate model for the pro-
tein whose structure is predicted among the conformations found in the largest
cluster [38, 39]. As another example, Keasar and Levitt [37] have shown that
by refining iteratively the set of decoys and the energy function, they could
reduce substantially the conformational space that need to be sampled for ef-
ficient structure prediction. The use of this connection however comes with a
price: it leads to development of decoy dependent energy functions [40], that
are likely to fail on decoy sets generated under different conditions.
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In this paper, we focus on pair-wise, residue-level, contact information in pro-
teins, and their translation into statistical scoring functions. Our aim is not to
derive a better potential than existing ones. Rather, we investigate the extent
to which all pairs of residues within a protein are required for proper dis-
crimination. We also examine the possibility of extracting subsets of all pairs,
without loss of information. We test our potentials on well established decoy
sets, and provide comparison with published potentials.

2 Statistical Potentials

General atomic force-fields used in molecular simulations are designed to pro-
vide good approximations of the physical interactions that stabilize a proteins.
Since the native state of a protein is at a minimum of its free energy, it can
theoretically be derived by minimization of its total energy defined from these
force-fields. Statistical potentials, on the other hand, are designed to be op-
timal for native protein structures. The native state of a protein is assumed,
and the parameters describing the potential are derived such that this na-
tive state becomes optimal. Pairwise residue-specific contacts found in known
protein structures are used to define the relative probability of finding atom
pairs at specified distances. We use the above principle to develop a statis-
tical potential from probability distribution functions (PDFs) of distances
between atoms. Our formalism is residue-based: each residue in the protein is
represented by a single atom. However, it is easily extendable to a full-atom
potential.

Let M be a protein of n residues. We denote its sequence as S, where Si is
the ith amino acid in the sequence. We are interested in examining possible
conformations for this protein. Our main assumption is that a conformation
of a protein is fully characterized by all its inter-residue distances. Let (i, j)
denote the pair of residues at location i and j in the sequence S, and Ω be the
set of all

(
n
2

)
residue pairs. A proposed conformation C places each residue

pair (i, j) at distance dij. For each conformation, the space Ω can be described
by two variables, corresponding to structure and sequence, respectively. Let X
be the state variable for the distance between the two residues, and let T be
the state variable defining the amino acid types of a pair of residues. We now
wish to evaluate the probability that a given conformation C has sequence S.
This is the conditional probability P (S | C). We expect this probability to
attain its maximum when C is the native conformation of M . Therefore, we
define our scoring function to be the negative of this probability, linearized by
taking a log.

E(S | C) =− ln P(S | C) (1)
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Note that our scoring function E behaves like a traditional energy function,
reaching its minimum at the native conformation.

We now examine the computation of the scoring function. Assuming that all
residue pairs in Ω are independent, we have

P(S | C) =
∏

(i,j)∈Ω

Pij, (2)

where

Pij = P
(
T = (Si, Sj) | X = dij

)
. (3)

In other words, knowing that a pair of residues lie at distance dij, we compute
the probability that their types matches the corresponding residues in the
sequence of our protein M . For each pair (i, j), we apply Bayes’s rule to (3)
to get

Pij =
P

(
X = dij | T = (Si, Sj)

)
P(X = dij)

×

P
(
T = (Si, Sj)

)
. (4)

In Section 4, we describe our method for estimating the probabilities in (4)
using frequencies computed on known protein structures. Substituting (4) into
(2) and (1), we arrive at our scoring function:

E(S | C) =− ln P(S | C)

=− ln

 ∏
(i,j)∈Ω

Pij


=−

∑
(i,j)∈Ω

ln P
(
X = dij | T = (Si, Sj)

)
+

∑
(i,j)∈Ω

ln P(X = dij)

−
∑

(i,j)∈Ω

ln P
(
T = (Si, Sj)

)
. (5)

The first two sums on the right side of Equation (5) depend on the confor-
mation C, while the last sum depends only on the sequence S. If we use the
scoring function E(S | C) to compute model structures for a fixed sequence,
we can ignore the last term as long as all residue pairs are included in the
computation. Indeed, dropping this term gives us the distance-dependent po-
tential of Sippl, derived through a physical argument based on the Boltzmann
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law [9, 21, 32]. This simplification is not valid, however, if we utilize a differ-
ent subset of the residue pairs for each conformation. This is precisely the
case when we use a distance cutoff or a geometric filter to obtain a subset for
computation.

3 Alpha Shapes

In this paper, we examine a method for selecting a significant subset of Ω,
the set of all residue pairs, for computing scoring functions. Our approach is
to use a geometric method called alpha shapes that captures the packing in
a conformation. The method of alpha shapes has a natural affinity to space-
filling models of molecules, such as the van der Waals model [41]. It models an
atom as a hard ball with its van der Waals radius. In reality, we should view
atoms as having fuzzy boundaries. We model a molecule’s interactions with
solvents by growing or shrinking the balls. Generalizing, we could grow and
shrink the balls to capture all the possible “shapes” of a molecule. The alpha
shapes model formalizes this idea. The full mathematical exposition of this
method is beyond the scope of this paper, and we refer the interested reader
to Edelsbrunner [42]. In this section, we hope to familiarize the reader with
two main ideas of this method: representing molecules via a combinatorial
object called the dual complex, and growing the representation of atoms via a
model that allows for efficient computation.

3.1 Dual Complex

We view a molecule as a union of spherical balls. We show a simple example in
two dimensions in Figure 1. To discover how the union of balls is connected, we
decompose the region into convex pieces using a convenient distance metric
that takes the radius of the atoms into account. Specifically, the weighted
square distance of a point x from a ball centered at c with radius r is ‖x −
c‖2−r2. The Voronoi region of a ball is the set of points closest to it according
to this metric. The boundaries of the Voronoi regions decompose the union of
balls into convex cells, as illustrated in Figure 1. Any two regions are either
disjoint or they overlap along a shared portion of their boundary.

The alpha shapes model captures the connectivity of the convex regions in
a combinatorial object called the dual complex. The complex is composed
of simplices (singular simplex ): vertices, edges, triangles, and tetrahedra, in
dimensions 0 to 3, respectively. Given a molecule, the vertices of the dual
complex are simply the centers of the atoms. If a pair of convex cells have a
common intersection, we place an edge between their respective atom centers.
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Fig. 1. The space filling diagram and its dual complex. As common in biology, we
model the atoms of a molecule as intersecting balls whose union forms the space
filling diagram. In the two-dimensional example shown here, the solid line segments
inside the disk separate the Voronoi regions, decomposing the union of discs into
convex cells. The dual of this decompostion is called the dual complex. Duality
means that we draw an edge between two atom centers if their convex cells share
an edge, and include the triangles formed by these edges in the dual complex if
their corresponding atoms (disks) share a common intersection (shaded triangles).
The dual complex contains all information about a molecule required to compute
its surface and volume.

Similarly, we generate a triangle between the centers of three intersecting cells,
and a tetrahedra for four intersecting cells. We show the dual complex for our
toy molecule in Figure 1. In general, at most four Voronoi regions (three
in two dimensions) can have a non-empty common intersection. Degenerate
cases arise in practice, however, but we may eliminate them via computational
techniques [43].

The dual complex is a simplicial complex : any two simplices are either disjoint
or they intersect among a common simplex of lower dimension. For example,
two triangles always intersect along an edge or by sharing a common vertex.
The dual complex is dual to the union of balls, as it is connected the same
way. Therefore, we may use it to represent any union of balls, be it a molecule,
or a molecule undergoing growth.

3.2 Alpha Complex

We now describe the growth model that the alpha shapes method utilizes. The
idea is to increase the squared radius of every ball by any real number α2. This
strategy ensures that the Voronoi regions do not change and the complex only
grows as the balls are expanded. We call the dual complex Kα of balls expanded
by α2 an alpha complex [43]. When α2 = −∞, the balls are imaginary and the
alpha complex K−∞ is empty. When α2 = ∞, the alpha complex K∞ is the
Delaunay complex, D, a well-studied object in computational geometry [44].
In between, we always get a subset of the Delaunay complex, called an alpha
complex. This is the key to the efficiency of the alpha shapes method: we only
need to compute the Delaunay complex once, and then determine the α at
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which a simplex enters the alpha complex. We show a few alpha complexes for
the protein 1ctf in Figure 2. Alpha complexes are a multi-scale representation

Fig. 2. The van der Waals model of 1ctf (right) and four of its 13,081 alpha com-
plexes with increasing alpha. All alpha complexes are subcomplexes of the Delaunay
complex D of the balls, shown on the right.

of the connectivity of a molecule and give us effective control over the size of
the features we wish to consider in computing the scoring function.

4 Method

Our aim is to study the influence of the size and quality of the database
of residue pairs on the performance of knowledge-based scoring functions. In
this section, we begin by describing the set of protein structures we utilize
as input. We then describe our method for extracting different databases of
residue pairs from this input, as well as computing scoring functions based on
these databases. Finally, we discuss our verification procedures for the scoring
functions.

4.1 Protein Structure Database

The majority of the sequences of the proteins included in the Protein Data
Bank (PDB) [45] are very similar to each other. To minimize the effect of this
redundancy, we select a subset of high-quality unique representatives using
the BLAST [46] E -value as a measure of protein sequence similarity. The
representative subset is a selection of protein domains defined at the 0.0001
level of sequence similarity. That is, the similarity between any two sequences
in this subset has an E -value greater than 0.0001. This subset includes 2,145
protein domains from SCOP 1.55 [47]. It can be retrieved from the ASTRAL
compendium [48].
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4.2 Databases of Residue Pairs

We use the Cα atom to represent each residue in a protein. The protein struc-
ture is consequently modeled as a union of balls centered at the Cα, with
radius r = 2Å. For each protein domain in the database, we compute the
Delaunay and alpha complexes using the alpha shapes software [43]. We then
extract the edges, triangles, and tetrahedra of an alpha complex. Currently,
we only use the edges to compute pair potentials, but we plan to examine the
viability of three-body and four-body potentials in the future. We establish
two databases. The Ω<d database contains all residue pairs with distance lower
than a cutoff distance d. The Ωα database contains the subset of pairs that
occur as edges in the alpha complex Kα. We do not include pairs consisting of
same or adjacent residues in either database. This is equivalent to eliminating
pairs at topological levels zero and one, using Sippl’s terminology [9]. For our
experiments, we choose d = 20Å and set α = 10Å to generate pairs of similar
maximum distance.

We store the data raw, binning only up to the significant digits, using a simple
and flexible hashing scheme [49]. Each pair (i, j) in a database contributes a
data point specifying its type (Si, Sj) and distance dij. There are a total of(

20
2

)
+20+1 = 211 pair types, the last being the “unspecified” type. We store

each data point twice, once for its type and once for the unspecified type.
While this doubles the size of the database, it allows for efficient calculation
of probabilities.

4.3 Random Databases

To verify that our geometric filter has selection power, we also perform exper-
iments using randomly designed databases. Using a random selection proce-
dure, we establish databases of approximately the same size as Ωα. We then
derive the score for a protein by computing Equation (5) over a set of ran-
domly chosen residue pairs, using the random database as reference. Again,
we choose approximately the same number of pairs as selected by the alpha
shapes method.

4.4 Computing the Scoring Function

Our databases contain probability density distributions for each type of residue
pairs, including the unspecified one. When computing probabilities, we use a
bucket of size 0.1Å. We have experimented with other bucket sizes to check
the robustness of the method. Given a sequence S in conformation C, we first
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obtain two list of interacting pairs, representing the all pair and alpha complex
pairs, respectively. We then compute Equation (5) over the pairs in each list
using the corresponding databases Ω<d and Ωα to arrive at the scores for that
conformation.

4.5 Testing the Potentials

Protein decoy sets greatly facilitate the verification of a newly developed en-
ergy function [4]. A decoy set usually contains a few to thousands computer-
generated models for a given protein structure. We test a scoring function
by measuring its ability to identify near-native conformations among all non-
native decoys. In this study, we use two measures of performance, namely the
rank scores and correlation coefficients. The rank score (RS) is simply the
rank in cRMS of the structure with the best score. A perfect energy func-
tion would always give the lowest score to the structure that is the closest
to the native structure (RS = 1.) The correlation coefficient (CC) is Pear-
son’s coefficient between the scores and cRMS values of the model structures
being tested. Again, a good scoring function should have a high correlation
coefficient, either negative or positive.

In this study, we focus on the 4state-reduced set of decoys [4] that can be ob-
tained from the Decoys ’ R’ Us website: http://dd.stanford.edu [35]. This set
has been, and remains widely used as a test set for new potential (see for ex-
ample [50], and references therein). It contains decoys for seven proteins: 1ctf,
1r69, 1sn3, 2cro, 3icb, 4pti and 4rxn. The decoy set for each protein contains the
native structure of the protein and between 600 and 700 computer-generated
models covering a large range of cRMS distance to the native structure, in-
cluding many conformations within 4Å cRMS and several within 2Å cRMS.
The decoys were generated geometrically through random modifications of the
dihedral angles in the inter secondary structure regions of the native protein
structures [4]. As such, these decoys are unlikely to be biased toward any
particular energy function.

5 Results and Discussion

Recall that pairwise knowledge-based energy functions rely on an indepen-
dence assumption on all pairs of atoms in a protein. This assumption has
been proven not to be correct [32]. We aim to learn how much bias this as-
sumption introduces in energy functions. We are also interested in defining
subsets of residue pairs that contain the same information as the full set of
pairs. In this section, we begin by characterizizing the database of all residue
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pairs. We then discuss the different subsets obtained by geometric filtering
using the concept of alpha shapes, described in Section 3. Finally, we extract
energy functions from our databases and compare their discrimination power
using decoy sets.

5.1 Databases: All Pairs versus Alpha Shapes

All distance-dependent, pairwise potentials ignore interactions beyond a cer-
tain distance cutoff value d on the basis that long range interactions are not
residue specific and are mainly determined by solvation effects. Sippl and
Jaritz studied the dependence of the performance of their pairwise statisti-
cal potentials on the distance cutoff [51]. They showed that the predictive
power of their potential was low for short cutoff distances (d < 10Å), and
increased slowly and steadily for larger cutoff distances. They concluded that
setting d = 20Å yields the best results for successful discrimination of the na-
tive fold of a protein from non-native conformations. This cutoff distance has
been subsequently used for residue based potentials [51] as well as for all-atom
potentials [21]. The number of residue pairs increases quadratically as we in-
crease the cutoff distance d (illustrated in Figure 3). For d = 20, Ω<20 contains
29,654,812 pairs. We expect however that the dependence among residue pairs
also increases as the cutoff distance is increased. Furuichi and Koehl [32] have
shown that statistical potentials have a memory of the size of the proteins
included in their databases for d > 8Å. Jones et al. [3] and Melo and Feyt-
mans [20] recognized this implicitly by defining their statistical potentials for
distances up to 10Å. We wish to filter the set of all pairs of residues so that
we maintain a minimal set of nearly independent pairs that characterize the
whole structure. At the same time, we hope to avoid the loss of information
that occurs when using short cutoffs. We propose to use the method of alpha
shapes to achieve both goals.

Alpha shapes select relatively independent pairs by construction as it is always
a subset of the Delaunay complex D. An important geometric property of D
is that any edge can be surrounded by an empty sphere, that is, one that
does not contain atoms uninvolved in the creation of the edge. The Delaunay
simplices can then be seen as local independent descriptors of the geometry of
the protein of interest. The different alpha complexes define approximations
of the shape of the protein, with increasing level of accuracy as we decrease
the value of α (see Figure 2.) For the simple case where all atom balls have
the same radius r, the length dα of the longest possible edge contained in the
alpha complex Kα is defined by:

d2
α = 4

(
r2 + α2

)
.
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For large α, dα ' d/2. Note that the edges of the alpha complex Kα constitute
a subset of the set of all residue pairs with length smaller than dα. In Figure 3
we compare the size of the databases Ω<d and Ωα when d/2 = α. The figure
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Fig. 3. A comparison of the size of databases Ω<d and Ωα with d/2 = α.

shows that the number of alpha complex edges in Ωα increases at a much
smaller rate than the corresponding set of all pairs Ω<d. The set Ωα=10 contains
3,643,018 pairs, representing only 12.8% of the full set Ω<20.

We assess the impact of our geometric filtering by comparing the probability
density distributions extracted from the databases Ωα=10 and Ω<20, as shown
in Figure 4. Intrinsically, the alpha shapes method captures local information,
that is, pairs with a small inner-distance, and few pairs with a longer inner-
distance. These few pairs however capture significant information about the
overall structure of the protein. In the rest of this section, we investigate the
quality of this filtering, and the degree to which geometric filtering distills
structural information contained in distance pairs.

5.2 Predictive Power of Filtered Statistical Potentials

There are two questions that we can ask about scoring functions: what is the
best structure they can pick in a large set of computer generated decoys, and
more generally, how well can they identify near native conformations among
these decoys? The rank score (RS) of the energy of the native structure pro-
vides a quantitative measure to answer the first question, while the correlation
coefficient (CC) measures how well a scoring function discriminates the near
native conformations. We utilize these two measures to compare the qual-
ity of the scoring functions derived from the all-pair database Ω<20, and the
geometrically filtered database Ωα=10.

We employ the 4state-reduced decoys of Park and Levitt [4] we introduced in
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Fig. 4. Comparison of a few probability density distributions contained in the pairs
databases Ω<20 and Ωα=10.

Section 4 as our test sets. Figure 5 shows the rank score/cRMS scatter plots.
Table 1 summarizes the results for correlation coefficients, and Table 2 lists the
rank scores of the native conformation, as well as our two scoring functions.

We compared the discriminative power of the two scoring functions presented
in this paper with those of ∆Genv, a physics-based free energy function that
quantify the environment of each atom [52], of RAPDF, an all-atom pairwise
statistical potential [21], and of PAT/ME, a statistical atomic environment po-
tential [50] (Table 1 and table 2). The two scoring functions presented in this
paper have only average discrimination powers. The Score versus cRMS plots
shown in Figure 5 have the classical ”sheep” appearance, and the difference
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Fig. 5. Rank score/cRMS correlation plots for three proteins of the 4state-reduced
decoy set. We compute scores using the Ω<20 database on the left, and Ωα=10 on
the right.

between near-native, and non native structures is not optimal. Both RAPDF
and PAT/ME performs better than the scoring functions considered here; sev-
eral other statistical potentials also perform better (see [53,26,54] and [50] for
an overview of the performance of statistical potentials on the 4state-reduced
decoy sets). The correlation coefficients between score and cRMS (Table 1)
are good but not optimal for 1ctf and 3icb, average for 1r69 and 2cro, and
not significant for 1sn3, 4pti and 4rxn. We observe the same behavior when
we compare the decoys with lowest energy selected by the two scoring func-
tions (Table 2). Neither of the two functions identify the best decoys (in terms
of cRMS distance to the native structure) as the structure with the lowest
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correlation (CC)
protein size # decoys type

Ω<20 Ωα=10 ∆Genv RAPDF PAT/ME

1ctf 74 630 α+β 0.70 0.56 0.28 0.73 0.72

1r69 69 675 α 0.31 0.43 0.25 0.7 0.68

1sn3 65 660 α -0.04 0.002 -0.15 0.47 0.36

2cro 75 674 α 0.32 0.52 0.19 0.76 0.65

3icb 75 653 α 0.66 0.79 0.41 0.85 0.8

4pti 58 687 small 0.18 0.04 0.1 0.47 0.36

4rxn 54 677 small -0.08 -0.22 0.26 0.58 0.39
Table 1
Protein size, type, number of decoys, and score/cRMS correlation for our two
databases for the 4state-reduced decoy sets. For comparison, we provide the
score/cRMS correlations obtained using the functions ∆Genv [52], RAPDF [21],
and PAT/ME [50]

best cRMS rank (RS)
protein

cRMS Ω<20 Ωα=10 Ω<20 Ωα=10 ∆Genv RAPDF PAT/ME

1ctf 1.32 3.97 2.32 156 57 1 2 4

1r69 0.88 5.35 4.47 410 268 8 8 72

1sn3 1.31 6.56 6.36 428 383 354 24 69

2cro 0.81 4.19 1.87 246 24 314 6 6

3icb 0.94 6.32 1.45 387 16 5 26 26

4pti 1.41 6.28 4.75 424 169 187 158 129

4rxn 1.36 3.91 7.01 140 606 302 14 9
Table 2
The best (lowest) cRMS for each decoy set, and the cRMS and rank for the decoy
selected by our scoring functions, computed using the full Ω<20 and filtered Ωα=10

databases. For comparison, we provide the cRMS rank of the best decoy identified
by ∆Genv [52], RAPDF [21], and PAT/ME [50]

energies, for all seven proteins decoy sets. The scoring function defined from
the filtered database Ωα=10 selects better structures than the scoring func-
tion defined from the all pair database, but we expect this difference to be
marginal, as the corresponding correlation coefficients are not significantly
different. We have included a comparison over a wide range of scoring func-
tions: from physics-based (∆Genv), pairwise atom-based (RAPDF) or residue-
based (the two functions developed in this study, to multi-body, atom-based
(PAT/ME). It is worth mentioning that none of these functions clearly out-
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perform the other functions on all test cases included in the 4state decoy sets.
This was also observed by Summa and colleagues [50]. The current state of
the art in applying statistical potentials to analyse large decoy sets calls for
the application of multiple functions and averaging out the results.

Our goal in this study, however, is not to derive a new potential that out-
performs existing potentials. We are interested, rather, in understanding the
effect of including correlated residue pairs in the databases used to generate
statistical energy functions. The main result we observe from Figure 5 and
Tables 1 and 2 is that the scoring function derived from Ωα=10 performs com-
petitively with the one derived Ω<20, even though the former uses only 12.8%
of the data. To substantiate this result, we have to show that the same is not
true for any random subset. To do so, we perform a number of random trials
as follows. We establish ten databases using residue pairs chosen uniformly at
random from all pairs, so that each database contains approximately the same
number of pairs as the alpha shape database Ωα. For each protein structure in
a decoy set, we compute ten sets of randomly chosen pairs, once again of the
same size as the set filtered by alpha shapes. We then compute scores for each
set using each of the ten random databases, leading to 100 trials in total. We
show the correlation coefficients (CC) for each trial in Figure 6 for the decoy
set 1ctf. Note that the random statistical scores achieve an average correla-
tion coefficient of 0.23, less than half the correlation coefficient obtained for
the scoring function derived from the geometric filtered database. Therefore,
the random tests show that our geometric filtering method does have selection
power.

5.3 Databases and Statistical Scoring Functions

Distance-dependent pair potentials are the most common potentials used for
fold recognition [3, 19], protein structure assessment [21,55], and for ab initio
protein structure prediction. The critical parameters that usually define such
potentials include the set of proteins used to derive the databases of pairs, the
range of distances considered, and the resolution used to represent the protein
structures (from Cα only to all atoms) [56].

All of the experimental protein structures included in the PDB are legitimate
sources of information for statistical potentials, as they all correspond to na-
tive protein structures. There is however a high level of redundancy in the
PDB, and protein sets used to build statistical potentials are usually filtered
to include only proteins with low levels of sequence similarity. For example,
in this study we use a subset of all SCOP domains in which no two sequences
have a similarity better than an E-value of 0.0001. Filters based on sequence
similarity are not enough, however. We know that the discrimination power of
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Fig. 6. Random scoring functions. We establish ten databases Ωi of the same size
as Ωα=10 using pairs chosen uniformly at random from the database containing all
residue pairs of proteins. We then obtain ten random sets Ωj of residue pairs for
1ctf such that each set has the same size as the set of edges of the alpha complex for
1ctf with α = 10. We plot the correlation coefficient of the score and cRMS values
for each of the 100 trials {Ωi,Ωj}. For comparison, we also plot the correlation
coefficient obtained for the scoring functions derived from the all pair database
Ω<20 (solid) and from the alpha-complex database Ωα=10 (dashed).

statistical potentials depends both on the number of structures used in their
derivation, as well as on the size of structures themselves [30,32]. The depen-
dence on the number of proteins can be explained by statistical consideration
as the sampling improves with larger protein sets. The dependence on the
length of the proteins, on the other hand, is more complex and is related to
the definition of the range (or cutoff distance) used to compute the statistical
potential. Most of the short range interactions of an atom in a protein in-
volve other atoms of the same proteins, while long range interactions include
mostly solvent interactions. The separation distance ds between ”short range”
and ”long range” interactions depends on the size of the protein considered:
small proteins will have a smaller ds than large proteins. This is consistent
with the fact that the optimal cutoff d is smaller for small proteins (around
20Å) than for long proteins (around 30Å). The difference between potentials
derived from small proteins and from large proteins disappears when a short
cutoff distance (d < 8) is used, at a significant cost however in discrimination
power [32].

While long distance cutoffs define potentials with better abilities to discrimi-
nate between good and bad models, they raise the question of the validity of
the hypothesis on which these potentials are designed. Probably the strongest
assumption considered is the independence of residue pairs in proteins, which
has already been shown not to be valid [30, 32]. We have shown in this study
that we can reduce the effect of data dependence on the potential by using a
geometric filter on the sets of all residue pairs representing a protein structure.
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By construction, the alpha shape complex selects the minimal set of residue
pairs that characterizes the protein shape. The size of the set of all pairs of
atoms is on the order of n2, where n is the number of atoms in the protein.
The size of the alpha complex, in contrast, is generally on the order of n. In-
terestingly, the reduction in size does not translate into loss of discrimination
power (see Tables 1 and 2.)

We have presented results for scoring functions derived from a representation
of protein structure based on Cα only. We have, however, repeated all the
same studies with more detailed representations of the proteins (inclusion of
all atoms of the backbone, as well as all-atom models), and reached similar
conclusions (data not shown).

6 Conclusion

The recent literature on distance-dependent, pairwise statistical potentials and
their application to protein structure modeling makes no secret of their limi-
tations and problems. In particular, there are known concerns on the influence
of the sets of proteins used to derive the potentials, on the range of distances
included in the definition of the potentials, as well as on the resolution used
to represent the protein structures. Most attempts to derive potentials that
are mathematically or physically sound have unfortunately led to potentials
with less discriminative power. As a consequence, a pragmatic approach has
emerged, in which the problems are acknowledged, but the potentials are de-
signed for efficiency rather than generality. For example, it was suggested that
size should be taken into account explicitly when testing a protein model, by
deriving the scoring potential from native proteins of similar size [56]. Simi-
larly, it was shown that statistical potentials derived from mainly α proteins
will work better on assessing mainly α proteins [32].

In this paper, we focused on the definition of databases of residue pairs for
deriving distance-dependent, pairwise scoring functions. We proposed to filter
the set of all residue pairs using the concept of alpha shapes, which provides
hierarchical shape descriptors for protein structures. We showed that this fil-
tering leads to a significant reduction of the number of pairs without loss of
information and discrimination power. The filtering is simple to implement
and may be used automatically for all types of pairwise statistical potentials.

Filtering the database of all residue pairs using the alpha shape complex does
not deteriorate, but does not improve the discrimination power of pairwise
potentials. The alpha shape descriptors provide information on residue triplets
(measured through the surface of the corresponding triangles), and residue
quadruplets (measured through the volume of the corresponding tetrahedra).

18



We are currently working on integrating all this information into a general
scoring function that captures the geometry of the protein structures.
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