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Abstract
We consider the problem of transporting shape descriptors across shapes in a collection in a modular fashion, in order to
establish correspondences between them. A common goal when mapping between multiple shapes is consistency, namely that
compositions of maps along a cycle of shapes should be approximately an identity map. Existing attempts to enforce consistency
typically require recomputing correspondences whenever a new shape is added to the collection, which can quickly become in-
tractable. Instead, we propose an approach that is fully modular, where the bulk of the computation is done on each shape
independently. To achieve this, we use intermediate nonlinear embedding spaces, computed individually on every shape; the
embedding functions use ideas from diffusion geometry and capture how different descriptors on the same shape inter-relate.
We then establish linear mappings between the different embedding spaces, via a shared latent space. The introduction of
nonlinear embeddings allows for more nuanced correspondences, while the modularity of the construction allows for paral-
lelizable calculation and efficient addition of new shapes. We compare the performance of our framework to standard functional
correspondence techniques and showcase the use of this framework to simple interpolation and extrapolation tasks.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

Understanding how different geometric shapes relate to each other
is a fundamental problem in geometry processing, and can be key
in analyzing, representing, learning, reconstructing and modeling
shapes in applications. A natural way to determine the relationship
between two or more shapes is by first placing them in correspon-
dence, for example by establishing a map between them. Once the
correspondence has been established, it is possible to reason about
the similarity between a pair of shapes, or the geometric variability
among shapes of a given category.

One way to express shape correspondence is in a point-to-point
fashion, where each point in one shape is assigned to its matching
point on the other shape. Alternatively, correspondences can be es-
tablished by matching between ‘functions, or descriptors, defined
on the shapes. Using descriptors is frequently a more concise and
informative way for expressing a correspondence: the fine-grained
detail encoded in a point-to-point map is often unnecessary due
to inherent shape ambiguities or because only approximate align-
ment is sought after. In addition, establishing descriptor-based cor-
respondence is often an easier task, especially if linearity assump-
tions on the mappings are imposed. In any case, as shown in recent
literature [OBCS∗12], the two kinds of correspondences can be in-
terchangeable.

An issue that frequently arises when computing correspondences
within a collection of shapes is that of consistency: mapping one

shape onto another via a third shape should ideally produce the
same result as when the two shapes are directly mapped to each
other. Ensuring consistency is generally a difficult task; solving for
all pairwise correspondences simultaneously so that global consis-
tency is achieved can be intractable. As a result, recent works have
imposed assumptions in order to simplify the problem, such as lin-
earity in the transport or a low-rank condition [HG13]. While these
assumptions reduce the underlying complexity, an issue of scalabil-
ity still remains: the pairwise correspondences need to be recom-
puted anew every time a new shape is added to the collection. For
scalability, a level of modularity is desired: adding a new shape
should ideally leave the computation on other shapes unaffected.

In this paper, we propose a modular way of establishing
function-based correspondences between shapes in a collection.
The key idea is to look at how different descriptors functions de-
fined on the same shape interrelate, and use this as a cue to describe
the shape via a latent representation. In this way, each shape is
mapped to its latent representation completely independently. This
not only allows for parallelizability of the computation, but also
trivially establishes consistency across the entire network of shapes.
Adding a new shape to the collection only requires calculation on
that specific shape. The quality of the correspondence depends on
selecting an appropriate set of matching functional descriptors used
for learning the latent space, which is a standard initial step in many
current shape correspondence techniques.
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Figure 1: Assume a shape collection S, S̃, Ŝ,S∗, with input descriptors
{ f1, f2, · · · fN} defined on each shape S; descriptors are in correspondence
across shapes. The interdependencies of the descriptors on each individual
shape are exploited via diffusion geometry to build nonlinear embedding
spaces Q (Q̃,Q̂,Q∗) for shape S (S̃, Ŝ,S∗ respectively), where the close-
ness between two features on the same shape is reflected in their embedding
inQ. The diffusion embeddingsQ,Q̃,Q̂,Q∗ are related to one another via
a linear map, which enables consistent descriptor transport across the net-
work, and thus shape correspondences. The individually-built embeddings
ensure modularity of the transport framework, which enables adding and
matching new shapes to the network with minimal computational overhead.

In order to express the relation between different features on the
same shape, we use ideas from diffusion geometry; diffusion dis-
tances have been previously shown to be powerful in the analysis
of shape meshes [RLF09]. We build an intermediate diffusion-
based nonlinear embedding for each shape in the collection, and
then define maps onto the shared latent space. Compared to many
recent, linear functional mapping techniques, the introduction of
these nonlinearities can help achieve more nuanced shape corre-
spondences that better respect the input descriptor correspondence.
In summary, our contributions are:

• A nonlinear descriptor embedding space, individually com-
putable from pre-computed features on every shape in a collec-
tion.
• A technique for connecting these embedding spaces via a shared

latent space.
• A straightforward application of this technique for transporting

general functions across shapes in the collection. This places the
shapes in correspondence in a modular and parallelizable way;
since all calculation is done independently, no additional consis-
tency constraint is necessary.
• Qualitative and quantitative validation and comparisons to prior

functional transport techniques, as well as applications in seg-
mentation transfer and data interpolation/extrapolation.

2. Related Work

Shape correspondences and models to infer them have been the
focus of much prior research in geometry processing. An extensive
discussion of all of these methods is beyond the scope of this work,
and is covered by existing surveys [VKZHCO11, TCL∗13]. Here,
we discuss techniques are directly related to our work.

Correspondences between isometric shape pairs, specifically
those related by a non-rigid transformation has been explored by
the model introduced by [BBK06] and [Mém07], where the core
assumption is the invariance of geodesic distances to isometric
transformations. This model inspired a number of shape corre-
spondence models such as [OMMG10, RPSS10]; the latter uses
feature matching to obtain a point-to-point map between shapes.
Other methods use assumptions other than isometry – for exam-
ple, [LF09,KLF11,APL15] focus on conformal deformation-based
correspondences. In both cases, the underlying shape deformation
models can be too restrictive for large geometric deformations.

More recently, functional correspondence techniques
[OBCS∗12,SNB∗12,SRGB14] have become prominent, which at-
tempt to obtain soft probabilistic correspondences between shapes
by relating real-valued functions on shapes. When the shape
deformations are large, these methods generally tend to provide
more efficient and less error-prone correspondences. Non-rigid
shape matching has also been dealt with using learning techniques,
where training data is assumed and a deformation model is learnt
and applied onto new shape pairs. Such models have been learnt
for both point-to-point correspondences [WHC∗16] and functional
correspondences [COC14]. More recent work by [GSTOG16]
correspondences are shown to be more dependent on the “rank”
of the functions being matched (namely, the ordering of the shape
points as determined by the function values) rather than the func-
tion values themselves. As an extension of this idea, [DMB∗17]
uses the idea of biclustering to obtain refined region-based corre-
spondences between drastically different shapes. Inspired by these
works, we also use function-rank based descriptors as to build the
latent shape spaces for descriptor transfer.

Another concept of interest to computer vision and graphics re-
lated tasks is that of cyclic consistency. [WHG13] uses cyclic con-
sistency as a tool to co-segment similar objects across an image
network, while [HWG14] explores large shape collections using
a consistency-based paradigm. A similar idea has also been used
very recently to perform unsupervised image translation across im-
age domains, using a cyclic-consistency loss in a Generative Ad-
versarial Network (GAN) [ZPIE17]. In a technique that is very
different in spirit to our work, [CRA∗17] also aim to solve for
consistent maps over an entire shape collection to match partial
features through jointly learnt attributes using a sparse modeling
based approach. Cyclic consistency ensures the consistent trans-
port of descriptors across intermediate spaces (eg. images, shapes)
in all of these domains. With the same goal in mind, we build a
cyclically-consistent framework that aids in propagating descrip-
tors across a shape network. Descriptors from one shape are trans-
ported to a common latent space, via an intermediate embedding
space. This idea is similar in spirit to the multi-level map construc-
tion of [HWG14], with the map to the embedding space now be-
ing nonlinear. Building consistent nonlinear maps was attempted
in [OMPG13], with the goal of breaking symmetries in isomet-
ric shape matching. A fairly exhaustive quantization of descriptor
space was provided in [HS14], where cycle-consistency is guar-
anteed over a large shape collection. The major advantage of our
technique over [HWG14] and other discussed nonlinear descriptor
embedding techniques is its modularity, which makes it possible to
add new shapes to a shape collection, as opposed to having to re-
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compute maps between existing shapes every time a new shape is
added. This property enables computing maps on shape collections
of ever-increasing size such as Shapenet [CFG∗15].

Simple linear maps between functional spaces on shapes are
prone to heavy loss of descriptor information. This is predomi-
nantly due to dimensionality: the number of mesh vertices, over
which the descriptor functions are typically defined, can be orders
of magnitude higher than the dimension of the maps being com-
puted. In the classical functional correspondence techniques, this
is addressed by limiting the descriptor space: A Laplace-Beltrami
basis representation [Lév06] is used for the descriptors, which
works well for transferring descriptors built from the heat-equation
or other Laplacian-based differential equations [SOG09, ASC11].
In order to then build linear maps for more general descriptors, it is
vital to identify more general dimensionality reduction techniques,
e.g. by exploring embedding techniques different than linear proje-
tion. Locally linear embeddings [RS00] attempt to partially solve
this problem by computing a linear-like embedding on neighbor-
hoods. Other techniques capture different aspects of the source de-
scriptor information, such as classical multi-dimensional scaling
(MDS) [Bas99], which aims to preserve distances between de-
scriptors in the source shape space and the target embedding space.
Classical Principal Components Analysis (PCA) [Pea01] cap-
tures spectral differences between the descriptors in the embedding
space. In this paper, we build a novel embedding space inspired by
diffusion maps [NLKC06], which also attempts to capture relative
relations between shape descriptors. The construction of the dif-
fusion embedding itself is based on inter-descriptor differences -
our key assumption is that this enables capturing more nuanced de-
scriptor properties and relations compared to e.g. MDS, while still
embedding them into a lower dimensional space. We then build
linear maps between the diffusion-based embedding spaces to per-
form inter-shape transport. We use linear maps because of their
ease of use, but employ nonlinear embeddings to minimize infor-
mation loss. The computationally heavy nonlinear embedding is
done within a single shape space, and thus can be performed of-
fline. This modular concept automatically ensures consistency be-
tween maps across multiple shapes, and does so without additional
time or complexity costs in adding new shapes, which can be an
issue with existing works that address consistency [HWG14].

3. Method

3.1. Overview

The key idea in this paper is the indirect construction of a la-
tent space L which can be used to propagate descriptors across a
collection of shapes, thus placing shapes in correspondence. The
input is a set of shapes with matching shape descriptors defined
on them. The construction proceeds in two stages (Fig. 1). In the
first stage, for each shape S independently, a nonlinear, diffusion
distance-based embedding function e is constructed that maps from
the space F of descriptors on the shape to an intermediate space
Q, e : F →Q. A mapping along the opposite direction d :Q→F
(“de-embedder”) is also constructed for each shape. In a second
stage, linear full-rank mappings are constructed from each Q onto
the latent space L – we refer to the linear mapping for shape S via
its matrix E.

The functions e and d, as well as the mapping E, are specific
to each shape, and can be thought of as components “internal” to
the shape. The indirectly constructed latent space L can be thought
of as the “external” component shared across all shapes. Adding a
new shape S̃ to the collection only involves computing its internal
components. Transferring descriptors between S̃ and any other ex-
isting shape S can be achieved via a linear transformation between
Q̃ andQ. In the following sections we detail the construction of all
intermediate stages of this construction.

3.2. Diffusion-based embedding.

The input at this stage is a shape S and a set of shape descriptors
(on-shape functions { fi}, fi ∈ F ) defined on it: fi : S→R.

The type of information captured by each descriptor, and the
variability of each descriptor across different shapes in the collec-
tion may vary greatly across descriptors. Thus, each such descrip-
tor can be thought of as a snapshot of the shape from a particular
“viewpoint”; the information extracted by one descriptor correlates
to that of other descriptors in a shape-dependent way. We propose
to understand the variability and relationships between these dif-
ferent views of a shape using diffusion distances; this is similar to
an idea explored by [KCLZ10] in a signal processing context. Per-
forming diffusion on descriptors provides us with low-dimensional
representation of features, which are dependent only on how they
are related to other features.

A brief description of the diffusion kernel is provided below;
for a more detailed study see [CLL∗05,NLKC06,NLCK06,LT14].
The diffusion kernel as defined in diffusion geometry is a bivariate
function D : P×P→R computed on points p, p′ ∈P, where P is an
input metric space with norm ‖·‖P. This is usually considered to be
a "local" Markov kernel, commonly the Gaussian kernel, in which
case the function values are uniformly diffused from p across the
metric space:

K(p, p′) =
1

w(p)
e−‖p−p′‖P

2/ε (1)

Here, w(p) = Ep′′(e
−‖p−p′′‖P

2/ε), where Ep′′ denotes the ex-
pected value over P, which ensures that the kernel remains Markov.

In our discrete surface setup, we use the diffusion process to an-
alyze how shape descriptors on the same shape relate to each other.
Specifically, for each shape S we consider diffusion in its space
of descriptor functions F . We are given a set of N such descriptors
{ fi}N

i=1, fi ∈F . Inspired by the diffusion operator above, we define
the nonlinear embedding function e : F →Q⊂RN as

e( f ) =
1

w( f )

[
e−‖ f− f1‖2/ε e−‖ f− f2‖2/ε . . . e−‖ f− fN‖2/ε

]T

(2)
where w( f ) = ∑

N
j=1 e−‖ f− f j‖2/ε and ε is the average mean-square

distance of f from its nearest neighbors in F . The number of near-
est neighbors used to compute ε determines the extent of diffusion.
This nonlinear mapping transports square-integrable real functions
on the shape S (namely, elements inF) to points in N−dimensional
space. By evaluating the above embedding function on all descrip-
tors in { fi} and concatenating the results as the columns of a ma-
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trix, we obtain

E =
[
e( f1) e( f2) . . . e( fN)

]
. (3)

The mapping e and the matrix E solely depends on the shape S and
the relationships between its descriptors: it is agnostic to any other
shape in the collection. If multiple shapes are given, the calculation
of the matrices are entirely independent and thus also paralleliz-
able.

For completeness, we note that we also define a “de-embedding”
function d : Q ⊂ RN → F , which maps an embedded descriptor
onto an on-shape function. This function emulates the inverse of
the embedding function e. In practice, we compute this function
numerically; more details will be provided in the next section.

3.3. Latent space and Inter-shape descriptor transfer

We now consider a collection of shapes S. Assume that for any
two shapes S, S̃ ∈ S we are given a set of corresponding pairs of
descriptors { fi ∈ F}N

i=1, { f̃i ∈ F̃}N
i=1 ; we call these the “training”

descriptors. We can then define and evaluate the diffusion-based
embedding functions e : F →Q, ẽ : F̃ → Q̃ as per Eq. (2) at each
shape separately. This produces matrices E, Ẽ (Eq. (3)) . We assume
that the introduction of nonlinearity in e, ẽ is such that a linear
mapping can be found between the embedding spaces Q and Q̃.
Namely, for a pair of corresponding descriptors ( f , f̃ ) on S and S̃
respectively, there exists a matrix XSS̃ such that

XSS̃e( f ) = ẽ( f̃ ). (4)

By applying this assumption on the input descriptors { fi} and { f̃i},
we obtain XSS̃e( fi) = ẽ( f̃i),∀i, or equivalently XSS̃E = Ẽ. Under
the further assumption that E is invertible for every shape S, the
unique linear mapping between the spacesQ and Q̃ is then

XSS̃ = ẼE−1. (5)

Using Eq. (5) and the linearity assumption Eq. (4) on any corre-
sponding descriptor pair ( f , f̃ ) ∈ F ×F̃ , we obtain

L( f ) = E−1e( f ) = Ẽ−1ẽ( f̃ ) = L̃( f̃ ) (6)

where we defined the operator L(·) = E−1e(·) on S, and equiva-
lently for S̃. This indicates that there exist transformations L and
L̃, computed independently on each shape, that embed the corre-
sponding descriptors f an f̃ onto the same vector y = L( f ) = L̃( f̃ )
in some latent space L. Using the definition Eq. (3) of matrix E,
it can be easily verified that the operator L, applied on the input
features { fi} yields L( fi) = 1i, where 1i is the indicator function
of RN in the ith dimension. This is true for any shape. Thus, the
operators L, determined entirely by their respective shapes S, map
every descriptor fi ∈ F to an independent dimension in the latent
space L.

Using these concepts we can perform feature transfer between
any two shapes S and S̃ with matching sets of training descriptors.
Assume we are given a feature f on S. We first embed it into Q
using Eq. (2), to obtain z = e( f ). Then, using the linearity assump-
tion Eq. (4), we compute a vector in the embedding Q̃ of the other
shape S̃ as z̃ = XSS̃z. We then use the “de-embedder” d̃ : Q̃ → F̃

cat dog michael victoria horse gorilla centaur wolf
SE, ours 0.005 0.005 0.007 0.013 0.281 0.076 0.121 0.005

SE, FMaps 2.85 3.14 3.39 3.37 2.71 1.67 3.67 3.38
CE, ours 0.54 0.47 0.21 0.18 0.40 0.20 0.27 0.42

CE, FMaps 3.78 4.06 4.37 4.36 3.41 2.55 4.68 4.27
CE, Scaled 1.05 1.07 1.03 1.04 1.34 0.90 0.99 0.89
CE, Partial 1.53 1.92 1.04 1.28 2.18 - 1.11 2.25

Table 1: Mean per-category normalized error on self-transfer (S→ S,
self-error SE), and inter-shape transfer (S → S̃, cross-error CE) of de-
scriptors in shapes from the TOSCA dataset [BBK08]. We use HKS, WKS
and Multi-Scale Mean Curvature descriptors to build diffusion-based latent
spaces on each shape, and select from the same pool some features for test-
ing. We also compare against Functional Maps [OBCS∗12] (CE, Fmaps).
We also compute the cross-error in transporting descriptors from down-
sampled version of a shape to the complete shape (CE, Scaled) and from a
shape to a partialized version of itself provided by Rodolá et al. [RCB∗17]
(CE, Partial). The lowest valued entries for our comparison with the Func-
tional Maps technique is presented in bold font, and for all categories in the
TOSCA dataset, our method performs better. All errors are in %.

to map this vector onto a descriptor function on S̃ – the transported
feature on S̃ is then as follows

f̃ = d̃
(
XSS̃e( f )

)
(7)

An equivalent expression for feature transport can be written using
the latent space operator from Eq. (6). Let us define another shape-
specific operator M : L→F that maps from the linear embedding
back to the original descriptor space F , for any shape: M(·) :=
d(E(·)). Then, we can write the feature transport Eq. (7) as

f̃ = (M̃◦L)( f ). (8)

Eq. (8) provides a modular decomposition of the inter-shape fea-
ture transport into intra-shape segments. Each segment L(·) trans-
ports a descriptor to L, while the composition of the individual seg-
ments transports from one individual feature space of one shape, to
the latent space, then back to the individual feature space of the
other shape, similar in spirit to [HG13]. The modularity, by def-
inition, also ensures cyclic consistency of this approach. This is
discussed in Appendix A.

Note. In the problematic case where the matrix E (Eq. (3)) is not
invertible for a given shape, we found that it suffices to replace E−1

by the Moore-Penrose pseudo-inverse E†.

3.4. Dictionary-based representation

For a given shape S, the embedding function e in Eq. (2) trans-
ports a feature on the shape to a vector in Q ⊂ RN . The feature
function, in our discrete setup, is given by its value at each vertex
of the mesh. For a mesh of |V | vertices, the dimension of the fea-
ture is also |V |. Therefore, d ◦e is a function composition that maps
through spaces R|V |→RN→R|V |. Since in most cases |V |>>N,
the inversion will not in general be perfect. Thus, not all functions
in the function space can be reconstructed perfectly by this com-
position. Using a dictionary-based descriptor representation, it is
possible to reduce the minor reconstruction error for most descrip-
tors.

To this end, we collect all the input descriptors as the columns
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of a matrix F =
[

f1 f2 . . . fN
]

and apply Singular Vector De-
composition (SVD), F = UΣVT . Let A(r) denote the first r columns
and A(r,r) the top r× r sub-matrix of a matrix A. By only consid-

ering the first r singular vectors of F, we get U(r)
Σ
(r,r)
S V(r)T

as an
approximation for F. Taking U(r) as an r−dimensional dictionary

for F, we obtain Σ
(r,r)V(r)T

as the more compact representation for
the vectors of F in the dictionary. Since the dictionary U(r) is or-
thonormal, distances between descriptors in the reduced dictionary
representation are the same as the Euclidean distance between the
original descriptors. We used this reduced representation (Fr ⊂Rr,
as opposed to F ⊂R|V |). of the descriptors for all the experiments
in the paper Then, the composition function maps through spaces
R|V | → Rr → RN → Rr → R|V | which should allow for correct
reconstruction, provided minimal loss is incurred in transfer of de-
scriptor to dictionary basis. The parameter r is set to a value that
enables reconstructing the shape space vector from the dictionary
effectively, while at the same time ensuring that the loss incurred
by the reduced dictionary representation is minimal. For all the ex-
periments in our paper, we set the value of r to min(N,60).

3.5. The de-embedding function

We design d to approximate the inverse of the embedder e, namely
so that e ◦ d = IdF is ideally satisfied. Given the dictionary-based
representation, we only need to build an embedder-de embedder

setup e,d so that e◦d = IdFr , since then U(r)e◦dU(r)T
≈ IdF . This

improvement in efficiency is another motivation for using the SVD-
based dictionary. To that end, we solve a nonlinear optimization
problem: Given an embedded descriptor z ∈Q, we compute its de-
embedded value (d(z) ∈ Fr) by solving:

d(z) = argmin
f∈F

‖e( f )− z‖2
2 (9)

In practice, this is solved using the MATLAB fminunc func-
tion. Given the non-convex nature of the optimization, a good ini-
tialization for the solution is necessary. We choose as an initial so-
lution the input descriptor that minimizes ‖e( f )− z‖2. Since d(.)
maps a higher-dimensional space (RN ) to a lower-dimensional one
(Rr), this map is reliable and lossless. The loss introduced in the
transfer is purely dependent on the dictionary-based representation.

3.6. Efficient Transport of Embedded Functions

The transport to the embedding space and the inverse transport to
shape space are provided by Eq. (6) and Eq. (8) as L( f ) = E−1e( f )
and M(g) = d(Eg) respectively. Since e(·) and d(·) are functions,
with enough memory, they could be stored as look-up tables for
different input vectors. In this case, the main computational over-
head comes from multiplying by matrices E−1 and E respectively;
the complexity of computation of each shape space or embedding
space vector is then O(n2).

It is possible to write E as E = AΘΘΘ, where ΘΘΘ a diagonal matrix
and A consists of columns which are the columns of E, but normal-
ized. In this manner, E−1 can also be rewritten as E−1 = ΘΘΘ

−1A−1.
In this manner, L( f ) = ΘΘΘ

−1(A−1e( f )) and M(g) = d(AΘΘΘg).

CE SE CE SE CE SE
human 16.44 15.87 chair 18.97 16.79 plier 15.63 15.26
octopus 15.51 14.92 fish 16.12 15.80 bearing 16.21 12.15
glass 18.26 15.26 table 15.71 13.78 bird 17.69 16.11
airplane 16.41 16.22 teddy 17.12 16.88 four-leg 16.46 16.19
ant 15.43 15.01 hand 16.38 16.14 bust 18.95 17.90
cup 17.04 15.30 armadillo 16.86 16.69 mech 14.96 13.68

vase 16.97 15.17

Table 2: Mean per-category normalized error on transfer of HKS / WKS
descriptors, using latent spaces built on contextual descriptors of Kaloger-
akis et al. [KHS10]. Evaluation is done on the Princeton Segmentation
Benchmark [CGF09]. Self-error (SE) and cross-error (CE) are defined as
in Table 1. All errors are in %.

Therefore, if the look-up embedding function is re-defined to en-
compass A−1e(·) and the de-embedding function re-defined to en-
compass d(A·), then the transport across the latent shape space is
just the product ΘΘΘMΘΘΘ

−1
L ; as the product of two diagonal matri-

ces, this step has computational complexity O(n). Finally, since
the columns of A are unit-norm, each entry of ΘΘΘL and ΘΘΘM is repre-
sentative of how strongly each of the descriptors influences the final
transport. Therefore, if there are descriptors which are more desir-
able than others in their influence of the final transport, this could
be achieved by multiplying with an intermediate diagonal weight
matrix WWW to obtain ΘΘΘMWWWΘΘΘ

−1
L .

4. Results

In this section, we validate the method discussed in Section 3, dis-
cuss applications and evaluate them both qualitatively and quanti-
tatively. We assume that the input training shape descriptors are all
in the [0,1] range. While this is not generally the case, it has been
argued [GSTOG16] that shape correspondences benefit less from
matching the exact descriptor values at the shape vertices and more
from matching descriptor ranks – namely, the ordering of shape
vertices if we were to sort them by their descriptor values. Since
normalizing a function does not affect the ordering of vertices in
terms of that function, we normalize all input descriptors in pre-
processing.

4.1. Validation

For validation, we typically measure the normalized error of trans-
ferring shape descriptors between pairs of shapes, or from one
shape to itself. We refer to the former type of error as cross-error,
and to the latter as self-error. Namely, given any transport tech-
nique TSS̃ between two shapes S and S̃, and a set of corresponding
descriptor pairs ( fk, f̃k) k = 1,2, . . . ,N on both shapes, the cross-

error is measured via the sum 1
N ∑

N
k=1
‖TSS̃( fk)− f̃k‖2

‖ f̃k‖2
. The self-error

is defined equivalently, where now S and S̃ coincide, and the trans-
port technique corresponds to the d ◦ e. We typically also average
these normalized errors across all shape pairs of a given shape cat-
egory, depending on the type of dataset used.

Embedding techniques. In Fig. 2, we compare the diffusion-
based embedding against other embedding techniques, used for
transporting shape descriptors from one shape to another. We use
shapes from the “horse” category of TOSCA dataset, and evaluate
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Figure 2: Comparison between different embedding techniques for the
task of descriptor transport. Each curve shows the mean normalized trans-
fer error (on unseen HKS descriptors) for respective methods, using em-
bedding spaces built with varying numbers of HKS descriptors (x-axis) for
"horse" shapes in the TOSCA dataset [BBK08]. Bold lines demonstrate
self-errors (SE), while dashed-lines demonstrate cross-errors (CE), both de-
fined as in Table 1. Our diffusion-based technique outperforms all others
(PCA, MDS, LLE [RS00,Bas99,Pea01]) in cross-error. It also outperforms
MDS and LLE in self-error. Note that PCA has zero self-error due to itself
being a full rank representation.

(a) (b) (c) (d) (e) (f)

Figure 3: Transport of WKS descriptor from homer to alien. (a) Input de-
scriptor on homer (b) Ground-truth corresponding descriptor on alien. The
corresponding output descriptors are shown after using the following em-
bedding techniques: (c) our diffusion-based embedding (d) PCA [Pea01]
(e) MDS [Bas99] (f) LLE [RS00]

the transport error across embedding spaces built on different num-
bers of HKS descriptors. The relative (%) error of transporting new
descriptors across different shapes, as well as the self-transport er-
ror (computed by cyclically transporting a descriptor on a single
shape to the intermediate latent space and back to the same shape)
is very high for Locally Linear Embedding (LLE) [RS00] and In-
cremental Multidimensional Scaling [Bas99]. The percentage self-
transport error for Principal Components Analysis (IPCA) [Pea01]
is trivially zero, since IPCA essentially utilizes a full rank matrix
of principal component vectors to project the input descriptor into
the embedding space. However, the diffusion-based embedding is

#Shapes 2 4 8 10 12 14 18 20
[HG13] 1.52 4.76 18.60 37.50 43.32 60.98 104.76 142.20
Ours 0.018 0.040 0.256 0.500 0.840 1.344 2.844 3.860

Ours, Eff. 0.018 0.020 0.039 0.058 0.060 0.082 0.090 0.089

Table 3: Timing comparisons. The first row shows times shows times (in
s) for computing maps across multiple shapes using [HG13]. The last two
rows refer to our method, its vanilla version and the efficient modification
discussed in Section 3.6. The modularity of our technique is demonstrated
by the lower computation time. The lowest time taken for map computation
is presented in bold font.

seen to always outperform the PCA-based embedding when trans-
porting across different shapes. It can also be seen that the self-
transport and cross-transport errors of the diffusion-based embed-
ding are very similar in magnitude, indicating the generalizability
of this approach. We also provide a qualitative comparison in Fig. 3.
In this example, we transport an unseen new WKS descriptor be-
tween two shapes, via embedding spaces built using different WKS
descriptors. Our diffusion-based embedding space, with a 3% de-
scriptor reconstruction error, outperforms other methods (PCA -
15%, MDS- 43%, and LLE - 44% respectively).

Self transport. The embedding/de-embedding functions e,d are
computed by means of the diffusion-based embedding; the former
directly (Eq. (2)) and the latter via optimization (Eq. (9)). Given
the dimensionality issues affecting the invertibility of e, discussed
in Section 3.3, and the nonlinear nature of the optimization, this
inversion might in general be lossy. Moreover, the use of a reduced
dictionary basis to represent the input descriptor features can con-
tribute an additional lossy component. We validate the error intro-
duced by the inversion process and the introduction of the dictio-
nary in the first two rows of Table 1, by evaluating the deviation of
the composition function d◦e from identity on a shape. Namely, we
select a feature on S, transport it back to S via Eq. (7) and measure
the normalized reconstruction error, referred to as the self-error.
Shapes are taken from the TOSCA dataset, and the latent space is
built using a set of 20 Wave Kernel Signature (WKS) [ASC11] de-
scriptors on the shape. We select the test features being transported
from the same training set of input descriptors used to build the la-
tent space. According to the table, the average error, normalized
by descriptor magnitude and averaged within shape category, is
fairly low; which indicates that the embedding/de-embedding pro-
cess has almost complete reconstruction capability. We also com-
pare to classical functional maps [OBCS∗12].

Modularity. An important contribution of this work is its modu-
larity in computing maps, which speeds up map computation across
many shapes, as can be seen in Table 3. For maps between multiple
shapes, mean time for map computation goes up in quadratic fash-
ion for the non-modular approach of Huang and Guibas [HG13],
since all

(N
2
)

maps need to be computed together. Instead, modu-
larity provides a way to compute these maps in parallel, speedens
our technique, especially in the presence of the modifications dis-
cussed in Section 3.6. A quadratic increase is observed in timing
of Huang and Guibas when number of shapes increase, while our
method manages to parallelize this process and drastically cut down
on computation time.
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Descriptor transfer. Here, we validate the quality of descriptor
transfer between different shapes, using the transport equation of
Eq. (8). We build the latent space using 50 Heat Kernel Signa-
ture (HKS) [SOG09], 50 Wave Kernel Signature (WKS) and 50
multi-scale mean curvature descriptors [MDSB03], then use the
same pool of descriptors for transport and testing. We also com-
pare the map provided by our technique to classical functional
maps [OBCS∗12], which also aims at transporting functions. We
present results on selected shapes of the TOSCA dataset in rows
3 and 4 of Table 1, in terms of the inter-shape transport cross-
error. As is evident, introducing the nonlinearity in the first embed-
ding step of the mapping improves the performance of the transport
function significantly.

Transport to downsampled/partial meshes. The effect of using
our embedding-based technique to transport between differently
sampled versions of meshes in the TOSCA dataset is shown in Ta-
ble 1(row 5). We report the mean-normalized percentage cross er-
ror in descriptor transfer from a downsampled mesh to the original
full-resolution mesh. While there is some loss of descriptor accu-
racy due to scaling up of these meshes, the descriptors are mostly
transported accurately. We also perform transport from full onto
partial meshes of the TOSCA dataset in Table 1(row 6). We report
the mean-normalized percentage cross error in descriptor transfer
from the complete TOSCA shape to all partializations of the shape
provided in the dataset of Rodolá et al. [RCB∗17]. The experimen-
tal setup for both these experiments is as in the previous paragraph.

Training/Testing on different feature types. In Table 2, we val-
idate the quality of feature transport when the set of test features
being transported is different from the training set used for build-
ing the latent space. Here, we build latent spaces across every shape
category of the Princeton Segmentation Benchmark [CGF09], us-
ing the features of [KHS10] – 628 features in total. We then trans-
port 10 HKS and 10 WKS features between shapes of each cate-
gory, and measure the mean percentage error between the ground-
truth and transported descriptors. High self-error on certain cat-
egories indicates a failure of the embedder / de-embedder frame-
work, which was trained on the contextual features of [KHS10], to
reconstruct the more classical HKS/WKS features. Naturally, fail-
ure of the embedder / de-embedder framework also results in the
inter-shape transporting mechanism failing – which explains why
the cross-error is strictly greater than the self-error in all categories.
Note also that in order to accurately compute the HKS/WKS fea-
tures used for transport testing, the meshes need to be manifold,
which is not the case in several shape categories. This could affect
the quality of transport, since the training features do not suffer
from such inaccuracies. In the table, while the cross-error is always
more than self-error, the two errors are always similar in magnitude.
This shows the generalizability of diffusion-embedding based de-
scriptor transport, as long as the embedding spaces are built with
descriptors in correspondence.

Dependence on feature type. Fig. 4 and Fig. 5 qualitatively high-
light the effect of transporting features of a different kind than the
training features used for building the latent space. Fig. 4 illustrates
transport of a WKS feature across multiple shape categories using
latent spaces trained on the features from [KHS10]. Despite some

(a) 

(b) 

(c) 0

1

Figure 4: Qualitative results of transferring HKS / WKS descriptors
across shapes, using latent spaces built on a different kind of descriptors
[KHS10]. The image on the left shows the input descriptor on a source
shape. Images of the right show the same descriptor transported onto dif-
ferent shapes in the same shape category – shown are (a) airplane, (b) fish,
and (c) vase categories. In all three categories, the input image has certain
high-valued and low-valued regions as denoted by red and white colors
respectively, and this is reflected in the transported descriptors on other
shapes as well.

inaccuracies in the feature transport, prominent aspects of the fea-
ture are preserved – this includes feature extrema, e.g. on the handle
and central parts of vase, the wings, body and tail of airplane and
the nose, fins and hump of fish. This result indicates generalizability
of our technique: it is possible to train on certain kinds of features
and transport features of different kinds.

When transport is done using the same kind of geometric fea-
tures both for training and testing, we observe good feature recon-
struction, as illustrated in Fig. 5. Note that the features being trans-
ported are different than the ones used for training, although they
are both of the same HKS/WKS type. In the cat / dog experiment,
the latent spaces were built using 50 WKS descriptors, while the
feature transported is a HKS descriptor. In the michael / victoria
experiment, the latent spaces were built using 50 HKS descriptors,
and a WKS descriptor is being transported. In both cases, almost
perfect reconstruction is achieved.

Cyclic Consistency. Fig. 6 shows transport of a part label feature
on a shape S back to S via multiple intermediate shapes in a net-
work of shapes. Notice that features are generally transported con-
sistently, even when on the intermediate shapes the signal might

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



Ganapathi-Subramanian et al. / Modular Latent Shape Spaces

0

1

source target transferred source

Figure 5: Feature transfer across non-isometric shapes from the TOSCA
dataset, using the same kind of feature for training as for testing. In the
first row, the latent spaces were built on WKS descriptors, but the feature
being transferred is the HKS descriptor at time 0. In the second row, the
latent spaces were built on HKS descriptors, but the feature being trans-
ferred is the WKS descriptor at time 0. Left to right: the source descriptor
on the source mesh (HKS/WKS for first/second row respectively), the match-
ing ground-truth HKS/WKS descriptor on the target mesh, and the source
descriptor transferred onto the target shape.

Figure 6: Transport of soft part descriptors across a shape network
back to the source shape. (a) four-leg - torso, (b) glasses - lens, (c) chair -
backrest.

become corrupted. The minor deviation from identity between the
the final output on S and the original input is not due to lack of the-
oretical consistency in the framework but to losses caused during
the embedding / de-embedding process.

4.2. Applications

Segmentation Transfer. Our method can be used to transport se-
mantically meaningful descriptors across shapes; we can apply it
for transporting segmentation labels. Given a segmentation of an
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Figure 7: Map estimation accuracy (RC curves) on pairs of shapes
using our latent shape space framework, compared against the adjoint-
regularized [HO17] , coupled [ERGB16] , and classical Functional Maps
[OBCS∗12] for shapes in SCAPE [ASK∗05].

input shape, we can use Eq. (8) to transport it onto a different shape
by transporting the indicator functions corresponding to individ-
ual shape parts. Fig. 8 shows qualitative results of this process on
a variety of shape categories. The training features { fi}, fi ∈ F
used to build the latent spaces for the shapes were produced us-
ing [KHS10], for a total of 628 features per shape. Note, however,
that our method is more applicable to “soft” descriptors, not dis-
crete part-indicator functions. In general, transporting an indicator
function from S using Eq. (8) will not produce another indicator
function on S̃. Instead, it will be a soft segmentation: a smoothly
varying function on S̃, with higher values concentrated on the ver-
tices of S̃ that are more likely to correspond to the respective input
semantic part that is being transported. We convert this soft label-
ing into a hard segmentation via post-processing, described below.
Using this approach, we are able to get viable segmentation results,
though not of equivalent quality to more sophisticated approaches
tailored to segmentation specifically (eg. Huang et al. [HKG11]).

Given a “softly” transported segmentation labeling, we convert
it to a discrete labeling function in a post-processing step. To this
end, we utilize the known layout of parts in the input S and aim to
preserve the adjacencies between parts in S̃: e.g., if S, S̃ are human
shapes, a mesh segment corresponding to a leg cannot be adjacent
to a segment corresponding to the head. We encode these adjacen-
cies in a graph involving the connected components of the part la-
beling in S and S̃. Post-processing proceeds as follows

• Transfer all part labels from S to S̃. For m parts, this results in m
functions on S̃, each indicating the likelihood for a specific part
at each vertex of S̃.

• Assign to each vertex on S̃ the label corresponding to the func-
tion (among the m) that has the highest value. This provides us
an initial labeling of the output mesh.

• Extract connected components on S̃ using this initial labeling.
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Figure 8: Segmentation transfer between non-isometric shapes. In each of the shape pairs, the first image shows the ground-truth part labeling on the
first shape, while the second image shows the same labeling transferred onto the second shape via our latent space. The shape categories are taken from the
Princeton Segmentation Benchmark [CGF09]: (a) human, (b) cup, (c) glasses, (d) airplane, (e) ant, (f) chair, (g) bearing, (h) table, (i) teddy, (j) fish, (k)
octopus, (l) vase, (m) mech, (n) armadillo, (o) bird, (p) plier, (q) four-leg.

• Mark any components whose number of vertices is less than 5%
of the number of vertices in S̃ as un-labeled.
• Fix the labels for all large components (larger than 15% of S̃).
• For the remaining components, if their labels violate expected

part adjacencies, as determined by the input graph on S, relabel
them by propagating labels iteratively: for any unlabeled compo-
nent neighboring two or more labeled components, mark it with
the label of the largest of these neighboring components.

Note that while we aim to preserve adjacencies between seman-
tic parts, we do not preserve the exact structure of the component
graph, since the number of connected components that belong to
the same semantic part may vary across shapes - see e.g. Fig. 8(g)
where the two chairs have different numbers of slats on their back,
or Fig. 8(i) where the tables have different numbers of legs. Addi-
tionally, whenever a part label does not appear at all in the initial
transferred segmentation, the part adjacencies cannot be enforced.

Shape Correspondence. Most shape correspondence techniques
aim at obtaining either point-to-point maps or “soft” probabilistic
maps, which can then be converted into point-to-point maps us-
ing various techniques. Since our technique is based on descriptor
transfer, it also produces a soft map, which can then be used to in-

directly place shapes in correspondence, in a spirit similar to other
approaches that focus on functional transport, e.g. as in the classi-
cal functional map case [HO17,ERGB16,OBCS∗12]. Note that in
contrast to these approaches, our method does not provide an ex-
plicit linear map. In Fig. 7 we perform quantitative comparisons to
other such linear descriptor mapping techniques. For these exper-
iments, we use our latent space-based feature transfer mechanism
vs. the linear mapping technique to transport the Laplace-Beltrami
eigenfunctions between two shapes; as shown in [OBCS∗12], this
transport can be used to extract point-to-point maps. As in [HO17],
we use 71 pairs of shapes from the SCAPE dataset, with 20 WKS
descriptors [ASC11]. Our selected dictionary uses 60 dimensions
(r = 60), to ensure a fair comparison to the other techniques. Con-
trary to some of the methods we compare against, we do not post-
process the results using ICP, since obtaining a point-to-point map
is not the end goal of our approach; even so, our method per-
forms comparably to these state-of-the-art correspondence tech-
niques. We also show the transport of WKS descriptors between
shape pairs and compare it to the performance of classical func-
tional maps in Table 1. We build the embedding space and func-
tional map based on 50 WKS descriptors in correspondence and
then test it on 50 new WKS descriptors.
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Figure 9: Multiple uniformly sampled frames from two corresponding video sequences (boxes - top row, and arm - bottom row) generated by rendering
simple animated 2D meshes. Frames extracted from these sequences are used as training data to build a latent space, and then tested on interpolation /
extrapolation tasks, where the boxes sequence serves as the source animation and the arm sequence is being synthetically generated. See text for more details.
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Figure 10: Top row: Sequence interpolation. On the left, we show three sample boxes and arm mesh sequence frames (extracted from Fig. 9) used to
train for the interpolation task. On the right, we show three boxes frames used for testing, and the corresponding arm frames synthesized by transporting
the boxes frames using our diffusion-based latent space method. The test frames are taken to be intermediate frames in the video sequence. Bottom row:
Sequence extrapolation. Similarly to the top row, we use parts of both sequences to train a latent space, and test by transporting from the boxes sequence to
the arm sequence. However, now the training frames form a contiguous subsequence of the original ground truth video (Fig. 9) and we test on the remaining
subsequence.

(a) (b)

Figure 11: Failure cases. We show failure cases in part segmentation
transfer using our method on (a) finger (b) head, from the Princeton Seg-
mentation Benchmark dataset [CGF09]

Video Interpolation/Extrapolation. As an additional proof of
concept and future application beyond shape correspondence, we
demonstrate interpolation and extrapolation of simple video data.
This application illustrates the generative potential of the diffusion-
based latent spaces for generating data. The input and ground truth
is a pair of corresponding video sequences, each with 200 frames,
produced by rendering two similar 2D meshes – a mesh represent-
ing a human arm, and a mesh consisting of two rectangular boxes
attached at one end, which is a rough geometric proxy for a human
arm shape. Both meshes are animated (by modifying rig param-
eters) in a synchronized way to perform similar-looking actions,
corresponding to an arm flexing; since the animation is synchro-
nized, the two videos correspond in a frame-by-frame basis, sam-

ples of which are illustrated in Fig. 9. We can then think of the
video frames as “descriptors” ; using a subset of the compatible
video frames as training data to build a latent space, we can inter-
polate or extrapolate frames for one of the meshes by using frames
from the other mesh as test data and transporting them. Thus we can
use the boxes sequence to synthetically generate the arm sequence,
and compare against the ground truth.

We show such experiments in Fig. 10. In the first experiment (in-
terpolation - Fig. 10(a)), we train the shape space on the extremal
frames of the sequence (first row), together with other frames sam-
pled from the two sequences every 20 frames. For the remainder
of the sequence, we use the boxes sequence as test data and trans-
port it to generate the intermediate frames for the arm mesh. As
expected, the quality of the interpolation improves with more train-
ing frames. In the second experiment (extrapolation - Fig. 10(b)),
we build the latent space based on a contiguous part of the two
sequences corresponding to 120 frames of the respective videos,
roughly corresponding to the “flexing” part of the sequence. The
remainder of the sequence (the “opening” of the arms) is then ex-
trapolated from the boxes to the arm mesh. We observe that the
stretching-out of the arm is generated fairly reliably. While this is
a simple example, it indicates that our technique could potentially
be applied to more complex parameter-based generative scenarios,
as long as the parameters can be used as descriptors and can be
interpolated/extrapolated.
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5. Conclusion and Future Work

Modular processing of shapes is key to analyzing ever-growing net-
works of shapes. In this paper, we seek modularity in the problem
of placing shapes in correspondence. In our framework, matching
shape descriptors are utilized to build nonlinear embedding spaces,
which can further be related through a latent space. The embed-
ding spaces are built independently for each shape based on the in-
terdependencies of the on-shape descriptors, computed exclusively
on each individual shape. This makes for a modular construction,
which can be used to perform descriptor transport across shapes, es-
tablish shape part correspondences and interpolate/extrapolate data.
The modular nature of our framework makes it possible to incre-
mentally add shapes to the shape network and place them in corre-
spondence with the ones already present, without further recompu-
tation for the existing shapes.

A limitation of our method is the dependency on the input de-
scriptors; transporting a descriptor of a much different type than
the ones used to build the latent space might lead to suboptimal
transport. This can be seen when segmentations, that are essen-
tially concatenated part indicator functions, are transported across
shapes, whose embedding spaces have been built using soft de-
scriptors. An example of this is seen in Fig. 11(a), where most
soft descriptors do not distinguish between the different fingers of
a hand, and that shows up as a problem when a segmentation of one
hand is attempted to be transferred to another. In Fig. 11(b), most
parts of the face are islands within other parts of the face, and this
also causes a similar problem, where soft descriptors, which are
used to build the embedding spaces have more gradual means of
changing value from the eyes or nose to the rest of the face, while
this is not seen with segmentations and therefore lead to poor part
transfer. As a future direction, we aim to build embedding spaces
that are not dependent on descriptors, but instead can be built di-
rectly from shapes represented in different modalities, eg. meshes,
scanned point clouds etc. An example would be to apply learning-
based techniques, especially given the recent surge in deep learn-
ing techniques, which has produced deep networks able to process
many different modalities of 3D data. Automatically learning latent
spaces that can understand the essence of a shape, preserve modu-
larity, and build consistent correspondences across different shapes
would be an exciting avenue for extending this work.
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Appendix A: Consistency of the Modular Framework

Theorem 1 Assume a network of shapes, with embedding and de-
embedding functions e :F →Q, d :Q→F such that e◦d = IdQ.
Then, the descriptor-transporting function across any walk on the
shape network that begins on shape S and ends on shape S̃ is M̃◦L,
regardless of the sequence of intermediate shapes visited.

Proof First, note that if e ◦ d = IdQ, then we can write L ◦M =
(E−1e(·))◦ (d(E(·))) = E−1(e◦d(E(·))) = IdQ. The theorem can
be proven by induction on the size of the walk. Consider the walk of
size one, namely with zero intermediate shapes, where the descrip-
tor transport is directly from S to S̃. Then, under the assumption
of invertibility, the descriptor transport function is exactly given by
Eq. (8); thus the theorem holds in this case. Now let us assume
the theorem holds for all walks of size k− 1. A walk involving k
shapes can be decomposed into a walk of size k− 1 followed by a
walk of size one. Assuming the walk of size k− 1 begins at shape
S and ends at shape Ŝ, and the walk of size one connects Ŝ with
S̃, the individual transport functions for the two walks are given
by M̂ ◦L (using the induction hypothesis) and M̃ ◦ L̂ respectively.
Then the descriptor transport function for the entire walk will be
(M̃◦ L̂)◦ (M̂◦L) = M̃◦L.

Corollary 1 In a network of shapes as above, where d and e are
perfectly invertible, the descriptor transport is cyclically consistent.

Proof The descriptor transport is cyclically consistent if the trans-
port across a loop of shapes is the identity. A loop is a network
walk where the start and end shapes are the same shape S. Using
Theorem 1, the transport around the loop is then given by M ◦L.
Invertibility implies d ◦ e = IdF , hence M◦L = IdF .
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