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Abstract

Unsupervised generation of high-quality multi-view-

consistent images and 3D shapes using only collections of

single-view 2D photographs has been a long-standing chal-

lenge. Existing 3D GANs are either compute-intensive or

make approximations that are not 3D-consistent; the for-

mer limits quality and resolution of the generated images

and the latter adversely affects multi-view consistency and

shape quality. In this work, we improve the computational

efficiency and image quality of 3D GANs without overly

relying on these approximations. We introduce an expres-

sive hybrid explicit-implicit network architecture that, to-

gether with other design choices, synthesizes not only high-

resolution multi-view-consistent images in real time but also

produces high-quality 3D geometry. By decoupling fea-

ture generation and neural rendering, our framework is

able to leverage state-of-the-art 2D CNN generators, such

as StyleGAN2, and inherit their efficiency and expressive-

ness. We demonstrate state-of-the-art 3D-aware synthesis

with FFHQ and AFHQ Cats, among other experiments.

1. Introduction
Generative adversarial networks (GANs) have seen im-

mense progress, with recent models capable of generat-
ing high-resolution, photorealistic images indistinguishable
from real photographs [27–29]. Current state-of-the-art
GANs, however, operate in 2D only and do not explicitly
model the underlying 3D scenes.

Recent work on 3D-aware GANs has begun to tackle the
problem of multi-view-consistent image synthesis and, to a
lesser extent, extraction of 3D shapes without being super-
vised on geometry or multi-view image collections. How-
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Figure 1. Our 3D GAN enables synthesis of scenes, producing
high-quality, multi-view-consistent renderings and detailed geom-
etry. Our approach trains from a collection of 2D images without
target-specific shape priors, ground truth 3D scans, or multi-view
supervision. Please see the accompanying video for more results.

ever, the image quality and resolution of existing 3D GANs
have lagged far behind those of 2D GANs. Furthermore,
their 3D reconstruction quality, so far, leaves much to be
desired. One of the primary reasons for this gap is the com-
putational inefficiency of previously employed 3D genera-
tors and neural rendering architectures.

In contrast to 2D GANs, 3D GANs rely on a combination
of a 3D-structure-aware inductive bias in the generator net-
work architecture and a neural rendering engine that aims
at providing view-consistent results. The inductive bias can
be modeled using explicit voxel grids [14,21,47,48,68,74]
or neural implicit representations [4, 47, 49, 58]. While
successful in single-scene “overfitting” scenarios, neither
of these representations is suitable for training a high-
resolution 3D GAN because they are simply too memory
inefficient or slow. Training a 3D GAN requires rendering
tens of millions of images, but state-of-the-art neural vol-
ume rendering [45] at high-resolutions with these represen-
tations is computationally infeasible. CNN-based image up-
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sampling networks have been proposed to remedy this [49],
but such an approach sacrifices view consistency and im-
pairs the quality of the learned 3D geometry.

We introduce a novel generator architecture for unsuper-
vised 3D representation learning from a collection of single-
view 2D photographs that seeks to improve the computa-
tional efficiency of rendering while remaining true to 3D-
grounded neural rendering. We achieve this goal with a two-
pronged approach. First, we improve the computational ef-
ficiency of 3D-grounded rendering with a hybrid explicit–
implicit 3D representation that offers significant speed and
memory benefits over fully implicit or explicit approaches
without compromising on expressiveness. These advan-
tages enable our method to skirt the computational con-
straints that have limited the rendering resolutions and qual-
ity of previous approaches [4, 58] and forced over-reliance
on image-space convolutional upsampling [49]. Second,
although we use some image-space approximations that
stray from the 3D-grounded rendering, we introduce a dual-
discrimination strategy that maintains consistency between
the neural rendering and our final output to regularize their
undesirable view-inconsistent tendencies. Moreover, we in-
troduce pose-based conditioning to our generator, which de-
couples pose-correlated attributes (e.g., facial expressions)
for a multi-view consistent output during inference while
faithfully modeling the joint distributions of pose-correlated
attributes inherent in the training data.

As an additional benefit, our framework decouples fea-
ture generation from neural rendering, enabling it to di-
rectly leverage state-of-the-art 2D CNN-based feature gen-
erators, such as StyleGAN2, to generalize over spaces of 3D
scenes while also benefiting from 3D multi-view-consistent
neural volume rendering. Our approach not only achieves
state-of-the-art qualitative and quantitative results for view-
consistent 3D-aware image synthesis, but also generates
high-quality 3D shapes of the synthesized scenes due to its
strong 3D-structure-aware inductive bias (see Fig. 1).

Our contributions are the following:

• We introduce a tri-plane-based 3D GAN framework,
which is both efficient and expressive, to enable high-
resolution geometry-aware image synthesis.

• We develop a 3D GAN training strategy that pro-
motes multi-view consistency via dual discrimination
and generator pose conditioning while faithfully mod-
eling pose-correlated attribute distributions (e.g., ex-
pressions) present in real-world datasets.

• We demonstrate state-of-the-art results for uncondi-
tional 3D-aware image synthesis on the FFHQ and
AFHQ Cats datasets along with high-quality 3D ge-
ometry learned entirely from 2D in-the-wild images.

Figure 2. Neural implicit representations use fully connected lay-
ers (FC) with positional encoding (PE) to represent a scene, which
can be slow to query (a). Explicit voxel grids or hybrid variants
using small implicit decoders are fast to query, but scale poorly
with resolution (b). Our hybrid explicit–implicit tri-plane repre-
sentation (c) is fast and scales efficiently with resolution, enabling
greater detail for equal capacity.

2. Related work
Neural scene representation and rendering. Emerging
neural scene representations use differentiable 3D-aware
representations [1, 3, 6, 8, 13, 17, 43, 44, 52, 65] that can be
optimized using 2D multi-view images via neural render-
ing [15, 20, 24, 30, 34–37, 40, 45, 46, 50, 51, 54, 62, 63, 70–
72]. Explicit representations, such as discrete voxel grids
(Fig. 2b), are fast to evaluate but often incur heavy mem-
ory overheads, making them difficult to scale to high res-
olutions or complex scenes [38, 61]. Implicit representa-
tions, or coordinate networks (Fig. 2a), offer potential ad-
vantages in memory efficiency and scene complexity com-
pared to discrete voxel grids by representing a scene as a
continuous function (e.g., [43, 45, 52, 60, 66]). In practice,
these implicit architectures use large fully connected net-
works that are slow to evaluate as each query requires a full
pass through the network. Therefore, fully explicit and im-
plicit representations provide complementary benefits.

Local implicit representations [3, 5, 23, 56] and hybrid
explicit–implicit representations [11,35,39,53] combine the
benefits of both types of representations by offering compu-
tationally and memory-efficient architectures. Inspired by
these ideas, we design a new hybrid explicit–implicit 3D-
aware network that uses a memory-efficient tri-plane repre-
sentation to explicitly store features on axis-aligned planes
that are aggregated by a lightweight implicit feature decoder
for efficient volume rendering (Fig. 2c). Our representation
bears some resemblance to previous plane-based hybrid ar-
chitectures [11, 53], but it is unique in its specific design.
Our representation is key to enabling the high 3D GAN im-
age quality that we demonstrate through efficient training
comparable (in time scales) to modern 2D GANs [27].

Generative 3D-aware image synthesis. Generative ad-
versarial networks [16] have recently achieved photorealis-
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tic image quality for 2D image synthesis [25,28,29,55]. Ex-
tending these capabilities to 3D settings has started to gain
momentum as well. Mesh-based approaches build on the
most popular primitives used in computer graphics, but lack
the expressiveness needed for high-fidelity image genera-
tion [33, 64]. Voxel-based GANs directly extend the CNN
generators used in 2D settings to 3D [14, 21, 47, 48, 68, 74].
The high memory requirements of voxel grids and the com-
putational burden of 3D convolutions, however, make high-
resolution 3D GAN training difficult. Low-resolution 3D
volume generation can be remedied with 2D CNN-based
image upsampling layers [49], but without an inductive 3D
bias the results often lack view consistency. Block-based
sparse volume representations overcome some of these is-
sues, but are applicable to mostly empty scenes [19,35] and
difficult to generalize across scenes. As an alternative, fully
implicit representation networks have been proposed for 3D
scene generation [4, 58], but these architectures are slow to
query, which makes the GAN training inefficient, limiting
the quality and resolution of generated images.

One of the primary insights of our work is that an ef-
ficient 3D GAN architecture with 3D-grounded inductive
biases is crucial for successfully generating high-resolution
view-consistent images and high-quality 3D shapes. Our
framework achieves this in several ways. First, unlike most
existing 3D GANs, we directly leverage a 2D CNN-based
feature generator, i.e., StyleGAN2 [29], removing the need
for inefficient 3D convolutions on explicit voxel grids. Sec-
ond, our tri-plane representation allows us to leverage neu-
ral volume rendering as an inductive bias, but in a much
more computationally efficient way than fully implicit 3D
networks [4, 45, 58]. Similar to [49], we also employ
2D CNN-based upsampling after neural rendering, but our
method introduces dual discrimination to avoid view incon-
sistencies introduced by the upsampling layers. Unlike ex-
isting StyleGAN2-based 2.5D GANs, which generate im-
ages and depth maps [59], our method works naturally for
steep camera angles and in 360� viewing conditions.

The concurrently developed 3D-aware GANs StyleN-
eRF [18] and CIPS-3D [73] demonstrate impressive image
quality. The central distinction between these and ours is
that while StyleNeRF and CIPS-3D operate primarily in
image-space, with less emphasis on the 3D representation,
our method operates primarily in 3D. Our approach demon-
strates greater view consistency, and is capable of generat-
ing high-quality 3D shapes. Furthermore, our experiments
report superior FID image scores on FFHQ and AFHQ.

3. Tri-plane hybrid 3D representation
Training a high-resolution GAN requires a 3D represen-

tation that is both efficient and expressive. In this section,
we introduce a new hybrid explicit–implicit tri-plane repre-
sentation that offers both of these advantages. We introduce

Figure 3. A synthesized view of the multi-view Family scene,
comparing a fully implicit Mip-NeRF representation (left), a dense
voxel grid (center), and our tri-plane representation (right). Even
though neither voxels nor tri-planes model view-dependent effects,
they achieve high quality.

MLP Rel. Speed " Rel. Mem. #

Mip-NeRF [2] 8⇥ 256 1⇥ 1⇥
Voxels (hybrid) 4⇥ 128 3.5⇥ 0.33⇥
Tri-plane (SSO) 4⇥ 128 2.9⇥ 0.32⇥
Tri-plane (GAN) 1⇥ 64 7.8⇥ 0.06⇥

Table 1. Relative speedups and memory consumption compared to
Mip-NeRF. The proposed tri-plane representation is 3–8⇥ faster
than a fully implicit Mip-NeRF network and only requires a frac-
tion of its memory. In this example, both voxel grid and tri-plane
representation use an MLP-based decoder, as indicated. The num-
ber of voxels is chosen to match the total parameters of the tri-
plane representation, thus the resolution is relatively low and the
memory footprint lower than Mip-NeRF. In the SSO experiment
(Fig. 3), we used a larger decoder for the tri-plane representation
than for the GAN experiments discussed in Sec. 4 to optimize ex-
pressiveness over speed for this experiment.

the representation in this section for a single-scene over-
fitting (SSO) experiment, before discussing how it is inte-
grated in our GAN framework in the next section.

In the tri-plane formulation, we align our explicit fea-
tures along three axis-aligned orthogonal feature planes,
each with a resolution of N ⇥ N ⇥ C (Fig. 2c) with N

being spatial resolution and C the number of channels. We
query any 3D position x 2 R3 by projecting it onto each of
the three feature planes, retrieving the corresponding fea-
ture vector (Fxy , Fxz , Fyz) via bilinear interpolation, and
aggregating the three feature vectors via summation. An
additional lightweight decoder network, implemented as a
small MLP, interprets the aggregated 3D features F as color
and density. These quantities are rendered into RGB images
using (neural) volume rendering [41, 45].

The primary advantage of this hybrid representation is
efficiency—by keeping the decoder small and shifting the
bulk of the expressive power into the explicit features, we
reduce the computational cost of neural rendering compared
to fully implicit MLP architectures [2, 45] without losing
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Figure 4. Our 3D GAN framework comprises several parts: a pose-conditioned StyleGAN2-based feature generator and mapping net-
work, a tri-plane 3D representation with a lightweight feature decoder, a neural volume renderer, a super-resolution module, and a pose-
conditioned StyleGAN2 discriminator with dual discrimination. This architecture elegantly decouples feature generation and neural render-
ing, allowing the use of a powerful StyleGAN2 generator for 3D scene generalization. Moreover, the lightweight 3D tri-plane representation
is both expressive and efficient in enabling high-quality 3D-aware view synthesis in real-time.

expressiveness. To validate that the tri-plane representa-
tion is compact yet sufficiently expressive, we evaluate it
with a common novel-view synthesis setup. For this pur-
pose, we directly optimize the features of the planes and the
weights of the decoder to fit 360� views of a scene from
the Tanks & Temples dataset [31] (Fig. 3). In this exper-
iment, we use feature planes of resolution N = 512 and
channels C = 48, paired with an MLP of four layers of
128 hidden units each and a Fourier feature encoding [66].
We compare the results against a dense feature volume of
equal capacity. For reference, we include comparisons to a
state-of-the-art fully implicit 3D representation [2]. Fig. 3
and Tab. 1 demonstrate that the tri-plane representation is
capable of representing this complex scene, albeit without
view-dependent effects, outperforming dense feature vol-
ume representations [38, 61] and fully implicit represen-
tations [45] in terms of PSNR and SSIM, while offering
considerable advantages in computation and memory effi-
ciency. For a side length of N features, tri-planes scale with
O(N2) rather than O(N3) as dense voxels do, which means
for equal capacity and memory, the tri-plane representation
can use higher resolution features and capture greater de-
tail. Finally, our tri-plane representation has one other key
advantage over these alternatives: the feature planes can be
generated with an off-the-shelf 2D CNN-based generator,
enabling generalization across 3D representations using the
GAN framework discussed next.

4. 3D GAN framework
Armed with an efficient and expressive 3D representa-

tion, we train a 3D GAN for geometry-aware image synthe-
sis from 2D photographs, without any explicit 3D or multi-
view supervision. We associate each training image with
a set of camera intrinsics and extrinsics using off-the-shelf
pose detectors [10, 32]; see the supplement for details.

Fig. 4 gives an overview of our network architecture. We
use the tri-plane representation introduced in the last sec-

tion to efficiently render images through neural volume ren-
dering, but make a number of modifications to adapt this
representation to the 3D GAN setting. Unlike in the SSO
experiment, where the features of the planes were directly
optimized from the multiple input views, for the GAN set-
ting we generate the tri-plane features, each containing 32
channels, with the help of a 2D convolutional StyleGAN2
backbone (Sec. 4.1). Instead of producing an RGB im-
age, in the GAN setting our neural renderer aggregates fea-
tures from each of the 32-channel tri-planes and predicts
32-channel feature images from a given camera pose. This
is followed by a “super-resolution” module to upsample
and refine these raw neurally rendered images (Sec. 4.2).
The generated images are critiqued by a slightly modified
StyleGAN2 discriminator (Sec. 4.3). The entire pipeline
is trained end-to-end from random initialization, using the
non-saturating GAN loss function [16] with R1 regulariza-
tion [42], following the training scheme in StyleGAN2 [29].
To speed training, we use a two-stage training strategy in
which we train with a reduced (642) neural rendering reso-
lution followed by a short fine-tuning period at full (1282)
neural rendering resolution. Additional experiments found
that regularization to encourage smoothness of the density
field helped reduce artifacts in 3D shapes. The following
sections discuss major components of our framework in de-
tail. For additional descriptions, implementation details,
and hyperparameters, please see the supplement.

4.1. CNN generator backbone and rendering
The features of the tri-plane representation, when used

in our GAN setting, are generated by a StyleGAN2 CNN
generator. The random latent code and camera parameters
are first processed by a mapping network to yield an inter-
mediate latent code which then modulates the convolution
kernels of a separate synthesis network.

We change the output shape of the StyleGAN2 backbone
such that, rather than producing a three-channel RGB im-
age, we produce a 256 ⇥ 256 ⇥ 96 feature image. This
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Figure 5. Dual discrimination ensures that the raw neural render-
ing IRGB and super-resolved output I+RGB maintain consistency,
enabling high-resolution and multi-view-consistent rendering.

feature image is split channel-wise and reshaped to form
three 32-channel planes (see Fig. 4). We choose Style-
GAN2 for predicting the tri-plane features because it is a
well-understood and efficient architecture achieving state-
of-the-art results for 2D image synthesis. Furthermore, our
model inherits many of the desirable properties of Style-
GAN: a well-behaved latent space that enables style-mixing
and latent-space interpolation (see Sec. 5 and supplement).

We sample features from the tri-planes, aggregate by
summation, and process the aggregated features with a
lightweight decoder, as described in Sec. 3. Our decoder
is a multi-layer perceptron with a single hidden layer of
64 units and softplus activation functions. The MLP does
not use a positional encoding, coordinate inputs, or view-
direction inputs. This hybrid representation can be queried
for continuous coordinates and outputs a scalar density �

as well as a 32-channel feature, both of which are then pro-
cessed by a neural volume renderer to project the 3D feature
volume into a 2D feature image.

Volume rendering [41] is implemented using two-pass
importance sampling as in [45]. Following [49], volume
rendering in our GAN framework produces feature images,
rather than RGB images, because feature images contain
more information that can be effectively utilized for the
image-space refinement described next. For the majority
of the experiments reported in this manuscript, we render
32-channel feature images IF at a resolution of 1282, with
96 total depth samples per ray.

4.2. Super resolution
Although the tri-plane representation is significantly

more computationally efficient than previous approaches, it
is still too slow to natively train or render at high resolutions
while maintaining interactive framerates. We thus perform
volume rendering at a moderate resolution (e.g., 1282) and
rely upon image-space convolutions to upsample the neural
rendering to the final image size of 2562 or 5122.

Our super resolution module is composed of two blocks
of StyleGAN2-modulated convolutional layers that upsam-
ple and refine the 32-channel feature image IF into the final
RGB image I

+
RGB . We disable per-pixel noise inputs to re-

duce texture sticking [27] and reuse the mapping network
of the backbone to modulate these layers.

4.3. Dual discrimination
As in standard 2D GAN training, the resulting renderings

are critiqued by a 2D convolutional discriminator. We use a
StyleGAN2 discriminator with two modifications.

First, we introduce dual discrimination as a method to
avoid multi-view inconsistency issues observed in prior
work [47, 49]. For this purpose, we interpret the first three
feature channels of a neurally rendered feature image IF

as a low-resolution RGB image IRGB . Intuitively, dual
discrimination then ensures consistency between IRGB and
the super-resolved image I

+
RGB . This is achieved by bilin-

early upsampling IRGB to the same resolution as I+RGB and
concatenating the results to form a six-channel image (see
Fig. 4). The real images fed into the discriminator are also
processed by concatenating each of them with an appropri-
ately blurred copy of itself. We discriminate over these six-
channel images instead of the three-channel images tradi-
tionally seen in GAN discriminators.

Dual discrimination not only encourages the final output
to match the distribution of real images, but also offers ad-
ditional effects: it encourages the neural rendering to match
the distribution of downsampled real images; and it encour-
ages the super-resolved images to be consistent with the
neural rendering (see Fig. 5). The second point importantly
allows us to leverage effective image-space super-resolution
layers without introducing view-inconsistency artifacts.

Second, we make the discriminator aware of the cam-
era poses from which the generated images are ren-
dered. Specifically, following the conditional strategy from
StyleGAN2-ADA [26], we pass the rendering camera in-
trinsics and extrinsics matrices (collectively P) to the dis-
criminator as a conditioning label. We find that this con-
ditioning introduces additional information that guides the
generator to learn correct 3D priors. We provide additional
studies in the supplement showing the effect of this discrim-
inator conditioning and the robustness of our framework to
high levels of noise in the input camera poses.

4.4. Modeling pose-correlated attributes
Most real-world datasets like FFHQ include biases that

correlate camera poses with other attributes (e.g., facial ex-
pressions), and naively handling them leads to view incon-
sistent results. For example, the camera angle with respect
to a person’s face is correlated with smiling (see supple-
ment). While faithfully modeling such attribute correla-
tions inherent in the dataset is important for reproducing
the best image quality, such unwanted attributes need to be
decoupled during inference for multi-view consistent syn-
thesis. Related work has been successful at being view
consistent [4, 58, 59] or modeling pose-appearance corre-
lations [47, 49], but cannot achieve both simultaneously.

We introduce generator pose conditioning as a means to
model and decouple correlations between pose and other
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Figure 6. Curated examples at 5122, synthesized by models trained with FFHQ [28] and AFHQv2 Cats [7]

Figure 7. Qualitative comparison between GIRAFFE, ⇡-GAN, Lifting StyleGAN, ours, with FFHQ at 2562. Shapes are iso-surfaces
extracted from the density field using marching cubes. We inspected the underlying 3D representations of GIRAFFE and found that its
over-reliance on image-space approximations significantly harms the learning of the 3D geometry.

attributes observed in the training images. To this end, we
provide the backbone mapping network not only a latent
code vector z, but also the camera parameters P as input,
following the conditional generation strategy in [26]. By
giving the backbone knowledge of the rendering camera po-
sition, we allow the target view to influence scene synthesis.

During training, pose conditioning allows the generator
to model pose-dependent biases implicit to the dataset, al-
lowing our model to faithfully reproduce the image distri-
butions in the dataset. To prevent the scene from shifting
with camera pose during inference, we condition the gener-
ator on a fixed camera pose when rendering from a moving
camera trajectory. We noticed that always conditioning the
generator with the rendering camera pose can lead to degen-
erate solutions where the GAN produces 2D billboards an-
gled towards the camera (see supplement). To prevent this,

we randomly swap the conditioning pose in P with another
random pose with 50% probability during training.

5. Experiments and results

Datasets. We compare methods on the task of uncondi-
tional 3D-aware generation with FFHQ [28], a real-world
human face dataset, and AFHQv2 Cats [7,27], a small, real-
world cat face dataset. We augment both datasets with hori-
zontal flips and use off-the-shelf pose estimators [10, 32] to
extract approximate camera extrinsics. For all methods on
AFHQv2, we apply transfer learning [26] from correspond-
ing FFHQ checkpoints; for our method on AFHQv2 5122,
we additionally use adaptive data augmentation [26]. For
more results, please see the accompanying video.
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FFHQ Cats
FID# ID" Depth# Pose# FID#

GIRAFFE 2562 31.5 0.64 0.94 .089 16.1
⇡-GAN 1282 29.9 0.67 0.44 .021 16.0
Lift. SG 2562 29.8 0.58 0.40 .023 —
Ours 2562 4.8 0.76 0.31 .005 3.88
Ours 5122 4.7 0.77 0.39 .005 2.77†

Table 2. Quantitative evaluation using FID, identity consistency
(ID), depth accuracy, and pose accuracy for FFHQ and AFHQ
Cats. Labelled is the image resolution of training and evaluation.
† Trained with adaptive data augmentation [26].

5.1. Comparisons
Baselines. We compare our methods against three state-
of-the-art methods for 3D-aware image synthesis: ⇡-
GAN [4], GIRAFFE [49], and Lifting StyleGAN [59].

Qualitative results. Fig. 6 presents selected examples
synthesized by our model with FFHQ and AFHQ at a
resolution of 5122, highlighting the image quality, view-
consistency, and diversity of outputs produced by our
method. Fig. 7 provides a qualitative comparison against
baselines. While GIRAFFE synthesizes high-quality im-
ages, reliance on view-inconsistent convolutions produces
poor-quality shapes and identity shift—note the hairline in-
consistency between rendered views. ⇡-GAN and Lifting
StyleGAN generate adequate shapes and images but both
struggle with photorealism and in capturing detailed shapes.

Our method synthesizes not only images that are higher
quality and more view-consistent but also higher-fidelity 3D
geometry as seen in the detailed glasses and hair strands.

Quantitative evaluations. Table 2 provides quantitative
metrics comparing the proposed approach against baselines.
We measure image quality with Fréchet Inception Distance
(FID) [22] between 50k generated images and all available
real images. We evaluate shape quality by calculating MSE
against pseudo-ground-truth depth-maps (Depth) and poses
(Pose) estimated from synthesized images by [10]; a simi-
lar evaluation was introduced by [59]. We assess multi-view
facial identity consistency (ID) by calculating the mean Ar-
cface [9] cosine similarity score between pairs of views of
the same synthesized face rendered from random camera
poses. Additional evaluation details are provided in the sup-
plement. Our model demonstrates significant improvements
in FID across both datasets, bringing the 3D GAN to near
the same level as StyleGAN2 5122 (2.97 for FFHQ [29] and
2.99 for Cats [26]) while also maintaining state-of-the-art
view consistency, geometry quality, and pose accuracy.

Runtime. Table 3 compares rendering speed at inference
running on a single NVIDIA RTX 3090 GPU. Our end-
to-end approach achieves real-time framerates at 5122 fi-
nal resolution with 1282 neural rendering resolution and

Res. GIRAFFE ⇡-GAN Lift. SG Ours Ours + TC

2562 181 5 51 27 36
5122 161 1 — 26 35

Table 3. Runtime in frames per second at different rendering res-
olutions. We compare variants of our approach with and without
tri-plane caching (TC). Run on a single RTX 3090 GPU.

FID # FACS Smile Std. #

Naive model 5.5 0.069
+ DD 6.5 0.054
+ DD, GPC (ours) 4.7 0.031

Table 4. Dual-discrimination (DD) improves multi-view expres-
sion consistency but hurts the model’s ability to capture pose-
correlated attributes for image quality. Adding generator pose con-
ditioning (GPC) allows the model to improve upon both aspects.
Reported at 5122, with FFHQ.

96 total depth samples per ray, suitable for applications
such as real-time visualization. When rendering consecu-
tive frames of a static scene, we need not regenerate the
tri-plane features every frame; caching the generated fea-
tures is a simple tweak that improves render speed. The
proposed approach is significantly faster than fully implicit
methods like ⇡-GAN [4]. Although it is not as fast as Lift-
ing StyleGAN [59] and GIRAFFE [49], we believe major
improvements in image quality, geometry quality, and view-
consistency outweigh the increased compute cost.

5.2. Ablation study

Without dual discrimination, generated images can in-
clude multi-view inconsistencies due to the unconstrained
image-space super-resolution layers. We measure this ef-
fect quantitatively by extracting smile-related Facial Action
Coding System (FACS) [12] coefficients from videos pro-
duced by models with and without dual discrimination, us-
ing a proprietary facial tracker. We measure the standard
deviation of smile coefficients for the same scene across
video frames. A view-consistent scene should exhibit lit-
tle expression shift and thus produce little variation in smile
coefficients. This is validated in Table 4 showing that intro-
ducing dual discrimination (second row) reduces the smile
coefficient variation versus the naive model (first row), in-
dicating improved expression consistency. However, dual
discrimination also reduces image quality as seen by the
slightly worse FID score, perhaps because the model is re-
stricted from reproducing the pose-correlated attribute bi-
ases in the FFHQ dataset. By adding generator pose con-
ditioning (third row), we allow the generator to faithfully
model pose-correlated attributes while decoupling them at
inference, leading to both the best FID score and view-
consistent results.
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Figure 8. Style-mixing [27–29] with FFHQ 5122.

5.3. Applications
Style mixing. Since our 3D representation is designed
with the StyleGAN2 backbone from the ground up, it in-
herits the well-studied properties of the StyleGAN2 latent
space, allowing us to do semantic image manipulations.
Fig. 8 shows our method’s results for style mixing [27–29].

Single-view 3D reconstruction. Fig. 9 shows the appli-
cation of our learned latent space for single-view 3D recon-
struction. We use pivotal tuning inversion (PTI) [57] to fit
test images. The learned 3D prior over FFHQ enables sur-
prisingly high-quality single-view geometry recovery. Fur-
ther exploration of few-shot 3D reconstruction and novel-
view-synthesis may prove a fruitful avenue for future work.

6. Discussion
Limitations and future work. Although our shapes show
significant improvements over those generated by previous
3D-aware GANs, they may still contain artifacts and lack
finer details, such as individual teeth. To further improve
the quality of the learned shapes, we could instill a stronger
geometry prior or regularize the density component of the
radiance field following methods proposed by [51, 67, 69].

Our model requires knowledge of the camera pose dis-
tribution of the dataset. Although prior work has proposed
learning the pose distribution on the fly [49], others have
noticed such methods can diverge [18], so it would be fruit-
ful to explore this direction further. Pose conditioning aids
the generator in decoupling appearance from pose, but still
does not fully disentangle the two. Furthermore, ambigui-
ties that can be explained by geometry remain unresolved.
For example, by creating concave eye sockets, the gener-
ator creates the illusion of eyes that “follow” the camera,
an incorrect interpretation, though the renderings are view-
consistent and reflect the underlying geometry.

We used StyleGAN 2, but other 2D backbones may find
success in our framework. Alternative backbones, such as

Figure 9. We use PTI [57] to fit a target image and recover the
underlying 3D shape. Target (left); reconstructed image (center);
reconstructed shape (right). From a model trained on FFHQ 5122.

as image-to-image translation or Transformer-based mod-
els, could enable new applications in conditional synthesis.

Ethical considerations. The single-view 3D reconstruc-
tion or style mixing applications could be misused for gen-
erating edited imagery of real people. Such misuse of image
synthesis techniques poses a societal threat, and we do not
condone using our work with the intent of spreading misin-
formation or tarnishing reputation. We also recognize a po-
tential lack of diversity in our faces results, stemming from
implicit biases of the datasets we process.

Conclusion. By combining an efficient explicit–implicit
neural representation with an expressive pose-aware convo-
lutional generator and a dual discriminator, our approach
takes significant steps towards photorealistic 3D-aware im-
age synthesis and high-quality unsupervised shape gener-
ation. This may enable rapid prototyping of 3D models,
more controllable image synthesis, and novel techniques for
shape reconstruction from temporal data.
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Voxels: Learning persistent 3D feature embeddings. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 2, 4

[62] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
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