Robust Extraction of 1D Skeletons from Grayscale 3D Images

Emilio Antinez
Dept. of Electrical Engineering
Stanford University
eantunez @stanford.edu

Abstract

We propose novel thinning conditions for grayscale
3D images that do not rely on image thresholding or
segmentation. The resulting grayscale skeletonization
routine extracts a topologically-consistent skeleton of
curve-like features at all scales and intensities of the
image. Our thinning conditions yield rich structural
data that can be used to identify and delete low-contrast
shape features created by blurring and noise.

1. Introduction

Medical imaging techniques such as MRI, CT, and
EM generate grayscale 3D images of a scanned vol-
ume. Often, this representation is unnecessarily dense;
for imaged subjects like blood vessels or proteins, rele-
vant structural information is more effectively conveyed
by a curve skeleton — a thin, largely one-dimensional
subset of voxels centered on high-intensity regions.

For binary images, well-known morphological thin-
ning techniques extract a skeleton that is topologically
equivalent to the foreground set. These methods are not
easily applied to grayscale images, where fuzzy bound-
aries and global intensity variations hinder the segmen-
tation of desired structures. Extracting a skeleton from
one or more binary versions of the image can be unnec-
essarily costly and yield fragile results.

We propose a version of morphological thinning that
is performed directly on the grayscale volume. The re-
sulting skeletonization routine is not only more efficient
than previous work, but more informative; by inspecting
all gray levels at once, our algorithm detects local struc-
ture not visible at one intensity. These local cues are
useful for filtering out low-contrast features and noise.

2. Background and Previous Work
2.1. Basic Concepts

Conventional 3D images are defined over the 3D in-
teger space, Z>. Each point in an image is called a voxel.
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Every voxel v has 26 neighbors whose coordinate
values each differ by at most one unit from its own; this
neighborhood is labeled Nog[v]. Of these neighbors, 18
will differ from v in at most two coordinates, and 6 will
differ from v in at most one coordinate; these neighbor-
hoods are labeled Nyg[v] and Ng|[v], respectively. The
set of voxels in Ny [v] are said to be k-adjacent to v.

A k-connected path is a voxel sequence where every
voxel is k-adjacent to the one before it.

2.2. Discrete 3D Images

Discrete images are defined by their infensity func-
tion, I : 72 — R. For binary images, a bilevel I divides
voxels into a high-valued foreground set and a low-
valued background set. For grayscale images, the mul-
tilevel I implies a one parameter-family of foreground
sets Iy, = {z € Z3 : I[z] > A} called \-sections.

To interpret shapes in a binary image or A-section,
we must decide which type of k-adjacency defines con-
nected components of the foreground and background.
Our methods can be applied to images of any connectiv-
ity class, but we assume a 6-connected foreground and
26-connected background to shorten our discussion.

2.3. Binary 3D Image Thinning

Binary morphological thinning iteratively deletes as
many points as possible from the foreground without
changing the image’s topology, leaving a thin “skele-
ton” of the original foreground set. These deletable
voxels are called simple points; they are well-studied
in both 2D and 3D, and many tests exist to detect them.

Our algorithm builds on this version of the test:

Theorem 1 ([2]). A voxel x is simple if and only if:
1. There is at least one foreground point in Ng[z].
2. There is at least one background point in Nag|x].

3. Every two foreground points in Ng[x] are con-
nected by a foreground path in Nyg[x].

4. Every two background points in Noglx| are con-
nected by a background path in Nog|x).
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Figure 1. An electron density map at 8A resolution (b) is generated from the atomic structure
(PDB ID 2ITG) shown in (a). As illustrated by isosurfaces (c) and (d), no single threshold
captures all desired features. The result of our skeletonization technique appears in (e).

2.4. Grayscale 3D Image Thinning

True grayscale thinning algorithms are rare; most
applications assume that an initial segmentation step
will extract an accurate foreground set for binary thin-
ning. A few thinning algorithms, however, do consider
grayscale information. One approach is to sample a
limited number of A-sections, then add thinning con-
straints to merge them into a single skeleton [1]. An-
other method constructs a rough foreground set, then
deletes simple points in order of increasing intensity to
carve out the skeleton [4][6].

An altogether different approach to grayscale thin-
ning — one closely related to our own — uses no explicit
foreground set. Instead, voxel values are iteratively re-
duced while preserving the topology of each binary sec-
tion [3]. A skeletal voxel’s final value equals the inten-
sity of the grayscale structure it represents. To compute
a voxel’s new value on every thinning pass, though, the
authors still rely on explicit simple point tests on up to
24 binary image sections. In the discussion to follow,
we show that this binary approach is needlessly costly
and ignores a great deal of useful grayscale structure.

3. Thinning Using Least-Extremal Paths

Our core contribution is an algorithm to identify all
A-sections for which a voxel is simple, without brute-
force simplicity testing at each section. More impor-
tantly, in sections where a voxel is nonsimple, our
method provides a local structure descriptor that indi-
cates why it is nonsimple, and how the image must
change locally to make the voxel deletable. This will
be the key to detecting and filtering skeletal noise.

3.1. Least-Extremal Paths

Theorem 1 identified simple points based on fore-
ground and background paths. We now introduce an
analogue of these paths for grayscale images.

For any connected image path p, we define max(p)

and min(p) to be the maximum and minimum intensi-
ties of any voxel in p, respectively.

A k-connected path between voxels a and b, re-
stricted to set X C Z3, is called a least-negative
path (LNPla,b, k, X]) if there is no other such
path with greater min(p) and a least-positive path
(LPPJa,b, k, X]) if there is no other such path with
lower max(p). Collectively, LNPs and LPPs are re-
ferred to as least-extremal paths (LEPs).

Though our LEP definition is general, our thin-
ning conditions will only consider paths in a fixed do-
main, with fixed connectivity, and one common end-
point. For brevity, we will use the shortened notations
LNP[a] = LNP[a,Nmaz,6, N1g] and LPP[a] =
LPP[a, nmin, 26, Nog|, where n,q, is a max-valued
voxel in Ng and n,,,;,, is a min-valued voxel in Nog.

The set of LNPs (or LPPs) from a single source to
all other voxels can be computed easily using a modi-
fied version of Dijkstra’s algorithm. This algorithm can
return not only the optimal path intensities but also a
tree of optimal paths rooted at the source.

3.2. LEP-Based Simplicity and Destructibility Tests
We now define simple point conditions, analogous to

those of Theorem 1, for sections of a grayscale image.

Theorem 2. In the \-section Iy of a (6,26)-connected
grayscale image with intensity function I, a voxel x is
simple if and only if:

1. X < I[nmax)-

3. A & (min(LNP[n]), I[n]],Vn € Ng.

4. X ¢ (I[n],max(LPPIn])],Vn € Nag.

To find the 32 nonsimple ranges above, we need only
to compute Nyar € Ng, Mmin € Nag, an LNP tree
rooted at 1,42, and an LPP tree rooted at 1n,,,;,,.



As in [3], we define a destructibility test to check
how far a voxel’s value can be reduced without chang-
ing the topology of any A-section. Unlike [3], we do
not need to perform simple point tests on multiple sec-
tions; we simply compute the max value in any nonsim-
ple range that falls at or below the voxel value.

3.3. The Extended Nonbranching Range

An extra condition is needed to preserve the end-
points of open curves. To be compatible with noise-
filtering techniques discussed later, this test also must
specify whether a voxel is the end of a high-contrast
curve. Commonly-used endpoint conditions fail to do
so if a grayscale curve fades out gradually. Instead, we
use a condition that will preserve a voxel if it appears in
a locally-1D curve for a wide range of binary sections.

A foreground voxel in a binary image is a branch-
ing point if it is 6-adjacent to three or more foreground
voxels. For each voxel x in a grayscale image, we de-
fine the extended nonbranching range (A, I[x]], where
I, is the highest section in which z is connected to a
branching point by a foreground path of length £ or less.
Our thinning algorithm preserves z’s value if this range
is nonempty. (We found k£ = 2 gives good results.)

3.4. Grayscale Thinning Algorithm

With a destructibility condition and the nonbranch-
ing test defined, the final grayscale thinning algorithm
visits each voxel in the image and lowers its value as
far as possible without crossing into one of the nonsim-
ple or nonbranching ranges, known collectively as pro-
tected ranges. The thinning is complete when no voxel
values change after a given thinning pass.

3.5. Curve Skeleton Extraction

The grayscale image returned by our thinning rou-
tine will be optimally “thin”; any further reduction of
voxel values would change the topology of some bi-
nary section. Extraction of the desired curve skeleton,
however, involves more than simply accepting all vox-
els above a fixed background intensity.

Voxel surfaces/volumes may keep arbitrarily high in-
tensities if bounded by higher-intensity curves/surfaces;
these structures are known as funnels/cavities.

We can identify voxels belonging to curvelike struc-
tures using the rules from Theorem 2: most of the
desired skeletal voxels will have nontrivial protected
ranges for condition 1, condition 3, or the nonbranch-
ing condition, which is not true for voxels belonging
only to high-intensity surfaces or volumes.

4. Local Filtering of Topological Noise

The algorithm described in the previous section was
designed to preserve skeletal curves for “foreground”

shapes appearing at any intensity. This behavior is not
always desirable, however. Image blurring and noise
can create spurious, low-constrast shape features — ap-
pearing in only a narrow range of binary sections — that
are not desirable in the final skeleton. Our grayscale
simplicity test generates local cues that can be used to
identify and eliminate these shallow structures.

4.1. Naive Contrast Filtering

The naive approach to this problem is to ignore all
nonsimple ranges below some minimum length. This
behaves as a contrast filter; only grayscale features with
sharp, high-contrast boundaries are preserved.

4.2. Deleting Shallow Curves

Lack of a sharp boundary does not necessarily indi-
cate a shallow feature; a high-intensity shape may have
a wide, smoothly-varying boundary region. To preserve
such shapes while deleting shallow curves, one should
only require a minimum length for protected regions re-
sulting from condition 2.1 or the branching condition.
The resulting thinning algorithm erodes a low-contrast
curve from its endpoints, and deletes the curve once
it is reduced to a single voxel. A deeper curve’s end-
points eventually achieve high-enough contrast during
the thinning to halt the erosion and preserve the curve.

4.3. Collapsing Shallow Cavities

During thinning, a shallow cavity’s interior is
shielded from erosion by a thin, slightly higher-intensity
bounding surface. For reasons mentioned above, con-
trast filtering is not a safe solution to this problem. We
can, however, modify the thinning behavior so that a
voxel surface barely separating two regions of vastly-
different intensity is incrementally pushed toward the
higher-intensity side. This will shrink and collapse shal-
low cavities as low intensities reach their exterior.

We can detect these deformable surface points dur-
ing thinning by examining each LP P|n|: the intensity
of n will be much higher than n,,;, and barely lower
than max(LPP[n]). If so, n is on the higher-intensity
side of the surface; by setting I[n] «— max(LPP[n]),
the boundary is fattened inward (see Fig. 2). We do
this for each of a boundary voxel’s LPPs then repeat its
destructibility test. In most cases, the voxel’s value can
safely be lowered, thus completing a surface deforma-
tion step.

4.4. Collapsing Shallow Tunnels

During thinning, a shallow tunnel becomes a voxel
surface shielded from further erosion by a slightly
higher-intensity boundary curve. Again, we would like
to push this boundary inward until the tunnel collapses.
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Figure 2. Cross-sections (b,c) of a cavity
(a) show the collapsing step for one voxel.
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Figure 3. Planar views (b,c) of a tunnel (a)
show the collapsing step for one voxel.

For cavities, we used I [n,;,] as a measure of “ero-
sive pressure”, to ensure that the surface was only de-
formed if a major intensity difference formed across it.
The equivalent value here is Ag., where I, is the low-
est section for which the voxel is a surface endpoint. As
suggested by [5] for binary images, we label x a surface
endpoint for those sections I, for which there exists no
6-connected cycle, ¢, in Nig[x] with min(c) > A.

If a voxel x is a deformable curve point, then for
some n € Nglx] the “potential boundary intensity”
App = min(I[z], I[n]) will be much higher than A, and
barely higher than min(LN P[n]). If true, then nqz,
x, and n are all boundary voxels, and LN P|n] is a path
bypasses = through the slightly lower-intensity voxel
surface. By setting I[y] «— max(I[y], \y) for every
y € LNPIn], the boundary curve is thickened inward
near z (see Fig. 3). If we repeat the destructibility test
on z, the voxel’s value can safely be reduced in most
cases, thus completing the boundary curve contraction
step.

5. Results

An example of our algorithm’s output can be seen in
Figure 1, performed on an 8A-resolution synthetic elec-
tron density map, generated from an atomic structure
using the CNS software package. A similar dataset ap-
pears in [1]; note that our skeleton does not include the
small, spurious loops seen in their output.

Each point in our skeleton also has an associated in-
tensity. Curves resulting from blurring often have lower
intensity than nearby curves; this may provide further
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Figure 4. A shallow cavity (a) is thinned
with cavity contraction off (b) and on (c).

opportunities for nonlocal noise filtering.

Figure 4 shows our thinning result with and with-
out cavity contraction. Note that the off-center cavity
does not bias the skeleton in Figure 4(c); the result is a
straight line, as expected for that solid without its cavity.

6. Conclusion

We presented a new thinning/skeletonization algo-
rithm for grayscale 3D images that does not require
segmentation of high-intensity regions. By default,
it generates skeletal points for curve-like structures at
any scale and intensity of the image. Using the LEPs
constructed during the destructibility test, we can ex-
tend the default thinning behavior to filter out shallow
grayscale shape features and noise.

In the future, we will expand this algorithm to ex-
tract grayscale surface skeletons. We will also capitalize
on the intensity associated with each voxel to perform
more robust global pruning of the skeleton.
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