
Two-Locus Association Mapping in Subquadratic Time

Panagiotis Achlioptas
Department of Computer

Science
University of Crete, Greece
achliopt@csd.uoc.gr

Bernhard Schölkopf
Department of Empirical

Inference
MPI for Intelligent Systems

Tübingen, Germany
bs@tuebingen.mpg.de

Karsten M. Borgwardt
Machine Learning and
Computational Biology

Research Group
MPIs Tübingen, Germany

karsten@tuebingen.mpg.de

ABSTRACT
Genome-wide association studies (GWAS) have not been
able to discover strong associations between many complex
human diseases and single genetic loci. Mapping these phe-
notypes to pairs of genetic loci is hindered by the huge num-
ber of candidates leading to enormous computational and
statistical problems. In GWAS on single nucleotide poly-
morphisms (SNPs), one has to consider in the order of 1010

to 1014 pairs, which is infeasible in practice. In this ar-
ticle, we give the first algorithm for 2-locus genome-wide
association studies that is subquadratic in the number, n, of
SNPs. The running time of our algorithm is data-dependent,
but large experiments over real genomic data suggest that
it scales empirically as n3/2. As a result, our algorithm can
easily cope with n ∼ 107, i.e., it can efficiently search all
pairs of SNPs in the human genome.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms, Experimentation, Measurement

Keywords
Epistasis detection, two-locus association mapping, light-
bulb algorithm

1. INTRODUCTION
A central question in genetics is whether natural variation

in phenotypes can be explained by differences between indi-
viduals on the genomic level. Advances in sequencing tech-
nology allow us now to study these genomic differences at an
unprecedented level of detail. Particularly in humans, mil-
lions of single nucleotide polymorphisms (SNPs) have been
determined [5], that is positions in the genome where one
nucleotide varies between different individuals.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’11, August 21–24, 2011, San Diego, California, USA.
Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

Current genome-wide association studies (GWAS) tend to
focus on single loci or single SNPs that are associated with
a phenotype. GWAS that do consider groups of loci usually
assume an additive effect of these loci. Interactive effects,
even between pairs of loci, are typically not searched for.
Such an epistatic interaction effect occurs if the average phe-
notypic value of the two-locus genotypes deviates from that
expected by summing the allelic effects of the two loci [6].
Such gene × gene interactions are widely believed and ac-
knowledged to be a major factor in many complex traits
such as many humans diseases [12]. For instance, the pres-
ence of gene × gene interactions has been demonstrated in
type 1 diabetes [7], type 2 diabetes [8], inflammatory bowel
diseases [4] and prostate and breast cancer [18, 1]. Why does
one then not routinely scan for pairs of interacting SNPs?
The first, computational reason is that the number of pairs
of SNPs is extremely large, in the order of 1010 to 1014,
and is hence not amenable to a straightforward solution by
exhaustive enumeration. Testing each of these pairs for as-
sociation with the phenotype leads directly to the second,
the statistical reason. When performing billions of tests, one
has to correct for multiple hypothesis testing, in order to re-
duce the number of false positives, which in turn may lead
to a loss in power.

Our focus in this article is on the first of these two reasons,
the computational burden caused by the gigantic number
of candidate pairs in two-locus mapping. We present an
algorithm for efficiently retrieving the top h scoring pairs
among all pairs of SNPs, assuming binary phenotypes and
the difference-in-correlation [9] as the association criterion.
Unlike earlier approaches to this problem, the runtime of
our algorithm is subquadratic in the number of SNPs.

There are various ways of defining measures of statistical
dependence between a pair of SNPs and a binary pheno-
type. One common strategy is to use a logistic regression
model between a SNP pair and the phenotype and to check
whether the interaction term coefficient differs significantly
from zero. Another measure is the difference in correlation,
that is we search for the SNPs whose correlation maximally
differs between cases and controls [9]. The latter strategy is
the one for which we develop a subquadratic algorithm here.

Previous work on two-locus association mapping can be
broadly divided into the following four categories.

First, there are approaches that exhaustively consider all
SNP pairs, for instance in linear or logistic regression, or
multifactorial dimension reduction [15]. Due to the large
number of candidate pairs, these studies usually only con-
sider tens to hundreds of SNPs.

Second, one may proceed in a two-step procedure, in which
one first performs a one-locus association study, and then
performs an exhaustive pairwise search between the most
significant SNPs from the one-locus mapping [11, 21].

Third, there are approaches, such as genetic algorithms [13,
17], which efficiently return local optima of the function that
scores the importance of SNP pairs, but they are incomplete
in the sense that they do not necessarily find the best pairs.

Fourth, there are recently published data mining methods
such as FastAnova [20] and TEAM [19], which are able to
prune a fraction of the computations, but their running time
still scales as Ω(n2m), where n is the number of SNPs and
m is the number of individuals in the sample. To the best of
our knowledge, our method is the first one which overcomes
the runtime bottleneck of 2-Locus GWAS of being quadratic
in the number of SNPs.

The remainder of this article is organized as follows. In
Section 2, we formalize our optimization problem and give
an overview of our strategy. In Section 3, we describe the
algorithm of [14] for finding the most correlated pair in a set
of binary variables. We then present a similar algorithm for
the least correlated pair, and, based on that, an algorithm
for the pair of variables with maximum difference in corre-
lation between two different sets of measurements (see Sec-
tion 5). Next, we describe how to extend this last algorithm
to real-valued variables and to Pearson’s correlation coeffi-
cient measure (Section 6), and discuss strategies on how to
set the parameters of this approach (Sections 7.1 and 7.2).
Lastly, we evaluate performance in a series of experiments
on synthetic and real-world data (Section 8).

2. PROBLEM STATEMENT
The goal of 2-locus genome-wide association studies (2L-

GWAS) is to find pairs of Single Nucleotide Polymorphisms
(SNPs) that jointly determine a phenotypical trait. As com-
mon in clinical genetics, we assume that traits are binary.

We assume that we are given an (m1 + m2) × n matrix
D of m1 +m2 patients with n SNPs, where each SNP takes
values in {0, 1, 2}. This matrix consists of two submatrices
A and B, of size m1×n and m2×n, respectively. A is the set
of m1 cases with phenotype 1, B the set of m2 controls with
phenotype 0. Each SNP is a (m1 + m2) × 1 column vector
of D. We seek pairs of SNPs whose statistical dependence
with the phenotype is maximally different between cases and
controls.

Let P : {0, 1, 2}m × {0, 1, 2}m → R be a measure of cor-
relation between two vectors (SNPs). Given a matrix C, let
PC(i, j) denote the value of P with input the columns i, j.
Our optimization problem is then to find the pair

argmax
i,j

|PA(i, j) − PB(i, j)|. (1)

Assuming that P can be computed in linear time, as is al-
ways the case in practice, the problem can be trivially solved
in time O(n2(m1 +m2)). Without any assumptions on the
function P it is not clear that one can do much better. Un-
fortunately, such a running time greatly limits the size of
SNP collections that can be studied in practice. For exam-
ple, we had to use a cluster of one thousand CPUs for several
days in order to solve the problem for 850k SNPs to achieve
a ground truth for our experiments.

Our starting point is the seminal work of Paturi et al.
for the “Light Bulb Problem” [14], showing that for binary

matrices, i.e., with elements in {0, 1}, one can find the near-
est pair of columns in L1 distance in time O(n1+γ), where
γ < 1 depends on the difference in distance between the
closest and second closest pairs. We first show that in this
same setting it is possible to find the pair described in equa-
tion (1), with guarantees on time and recall similar to those
of [14]. To do this, we exploit heavily both the fact that the
data is binary and the linearity of the L1-distance. Both
of these assumptions, though, are not ideal for SNP data,
where data is typically ternary, i.e., the entries of D are in
{0, 1, 2}, and a commonly used P is Pearson’s correlation
coefficient [9]. To address these issues we employ Locality
Sensitive Hashing (LSH) to transform the original SNP data
into binary data which preserve the original angles. While
this transformation, in the worst case, can somewhat distort
the Pearson correlation of two SNPs, we show that a modifi-
cation of our algorithm completely eliminates this problem,
without incurring a significant computational penalty.

3. THE MOST CORRELATED PAIR
We first discuss how to solve the problem captured by (1)

when the matrices of interest are binary and the correlation
P of two columns in D (that is, of two SNPs) is defined
as the fraction of rows in which they take the same value,
i.e. it is equal to 1 minus their L1 distance divided by their
dimension. The binary assumption is valid for SNPs in in-
bred species, as all their SNPs are homozygous and can be
represented by a two-state variable, but this definition of
correlation, as far as we know, has not been used in biolog-
ical studies yet.

Given a binary matrix D, let PD(i, j) denote the corre-
lation of column pair {i, j} in D, i.e., the fraction of rows
in which columns i and j take the same value. Let p1 and
p2 denote the highest (greatest) and second highest correla-
tions present across all pairs. In a breakthrough 1989 paper,
Paturi, Rajasekaran, and Reif [14] gave a subquadratic al-
gorithm for finding

argmax
i,j

PD(i, j).

Specifically, the running time of their algorithm is Õ(n1+γ),

where γ = log p1/ log p2 < 1 and the Õ(·) notation sup-
presses (log n)q factors for any finite q > 0. Since the results
of [14] are the starting ground for our work, we begin with a
few words about how and why the algorithm in [14] works.
To simplify the exposition we assume, for now, that p1, p2
are given to us as part of the input. We will later see how this
assumption can be removed. The algorithm uses a sample-
size parameter k = k(n, γ) = O(log n). The choice of k is
discussed later.

Algorithm CO

1. Appropriately set the sample-size parameter k.

2. Let t = nγ log n, where γ = log p1/ log p2.

3. To succeed with probability 1 − 1/poly(n), repeat t
times:

(a) Select k distinct rows of D uniformly at random,
to form a k × n matrix R.

(b) Partition the columns of R into (no more than
2k) equivalence classes E1, E2, . . . , Eℓ.

(c) For every pair of columns {i, j} that end up in the
same equivalence class, increment (after perhaps
creating) the corresponding counter Cij by 1.

4. Report the pair of columns with maximum counter.

Intuitively, the parameter k is chosen so that we expect
to increase a linear number of counters in each round, i.e.,

E

[

ℓ
∑

i=1

(

|Ei|

2

)]

= Θ(n) .

The parameter t is chosen so as to ensure that with prob-
ability 1 − 1/poly(n) after t iterations the most correlated
pair has increased its associated counter more times than
the second most correlated pair.

4. THE LEAST CORRELATED PAIR
Our first step is to give a subquadratic algorithm for find-

ing

argmin
i,j

PD(i, j). (2)

We will need the following definition.

Definition 1. Given a matrix D, let D denote the ma-
trix that results by complementing its elements.

Given a matrix D with m rows and n columns let p1 and p2
denote the lowest (smallest) and second lowest correlations

present in D. The running time of our algorithm is Õ(n1+γ),
where γ = log(1−p1)/ log(1−p2). Our algorithm for finding
its least correlated pair of columns is

Algorithm AC

1. Let U be the m × 2n matrix that results by concate-
nating D and D row-wise.

2. Find the most correlated pair of columns in U among
those pairs of columns in which exactly one of the two
columns comes from each of D,D.

The correctness of algorithm AC comes from observing that
for every pair of columns i, j in U in which one column comes
from D and one from D we have PU (i, j) = 1− PD(i, j).

The crucial observation that makes the above interesting
is the following.

Observation 1. Step 2 of AC can be carried out using a
small modification of CO. Namely, each time we are about
to increment a counter Cij in CO we check whether exactly
one of each of i, j come from matrices D,D.

5. THE MOST DIFFERENT PAIR
The ideas underlying our algorithm for finding the least

correlated pair can be adapted to solve the problem of find-
ing

argmax
i,j

|PA(i, j) − PB(i, j)| (3)

for any two m × n binary matrices A,B. Note that now
the two matrices are required to not only have the same
number of columns, but also the same number of rows (m1 =
m2 = m). We later discuss how to avoid this requirement by
employing randomization. Our main tool is the following.

Lemma 1. For two m× n matrices A,B let

{x, y} = argmax
i,j

PA(i, j) − PB(i, j) .

Let S be an arbitrary subset of {1, 2, . . . , n} and let B′ be
the matrix that results by complementing all columns of B
that belong in S. Let C be the 2m × n matrix that results
by concatenating A and B′, column-wise. Let P = P(S)
consist of those pairs of columns of C that have exactly one
element from S. If {x, y} ∈ P, then

{x, y} = argmax
i,j∈P

PC(i, j) .

Proof of Lemma 1. We will first do some calculations
which allow for matrices A and B to have m1 and m2 rows,
respectively, where m1 and m2 can be different. Consider
any two pairs of columns S, T ∈ P . Assume that the columns
in pair S agree on s1 rows of A and s2 rows of B. Similarly,
assume that the columns in pair T agree on t1 rows of A
and t2 rows of B.

In C, the correlation of the columns in S is

s1 +m2 − s2
m1 +m2

=
s1 − s2
m1 +m2

+
m2

m1 +m2

while the correlation of the columns in T is

t1 +m2 − t2
m1 +m2

=
t1 − t2

m1 +m2
+

m2

m1 +m2
.

If m1 = m2 = m, we see that ordering the elements of P by
their correlation in matrix C is the same as ordering them
by their correlation gap in matrices A,B. In fact, the two
are related by an affine transformation.

In order to ensure that when applying Lemma 1 the sought-
after pair of columns {x, y} is considered, we could try to
take different random samples of columns S from C. Alter-
natively, we can simply consider a twice as large matrix

D =

(

A A
B B

)

and let P consist of those pairs of columns in D that have
exactly one column from amongst the first n. Then

{x, y} = argmax
i,j∈P

PD(i, j) .

Thus, by applying algorithm CO to D we will find the
pair maximizing PA(i, j) − PB(i, j). Reversing the roles of
A,B, i.e., applying CO to the matrix

E =

(

A A
B B

)

we find the pair maximizing PB(i, j)−PA(i, j). A single com-
parison then gives us the maximizer of |PA(i, j) − PB(i, j)|.

5.1 Unequal size matrices
When the two matrices A,B have m1 6= m2 rows, respec-

tively, the proof of Lemma 1 fails. In particular, if m1 ≫ m2

then, complemented or not, the elements of B have small in-
fluence in the correlation of columns in C.

To overcome this problem we “enrich” the smaller of the
two matrices by repeating some of its rows. Specifically, if
m1/m2 > 1, we append l = ⌊m1/m2⌋− 1 identical copies of
B and a random sample of m1 − (l+ 1)m2 rows of B. If we
are lucky and m1/m2 is integer, then it is clear that every

column pair has exactly the same correlation in the resulting
matrix as it did in B. If m1/m2 is not integer, correlations
are only preserved in expectation. Nevertheless, the associ-
ated variance is reasonable as the fraction of random rows
in the resulting matrix is always less than 1/2. Finally, in
the more interesting biological setting where we use LSH
functions, we show how to completely overcome this issue.

6. NON-BINARY DATA
So far, our algorithm applies to binary data and a correla-

tion measure which is the probability of two binary variables
being identical. Next, we will show how these ideas can be
expanded to handle arbitrary real-valued vectors and Pear-
son’s correlation coefficient. For this, we need to introduce
the Locality Sensitive Hash functions (LSH) of [3].

To hash a collection of vectors in R
m, we choose a spheri-

cally random vector ~r ∈ R
m (by taking its coordinates to be

m independent N(0, 1) random variables) and define a hash
function h~r as follows:

h~r(~u) =

{

1 if ~r · ~u ≥ 0

0 if ~r · ~u < 0
(4)

Fact 1. For any pair of vectors ~v, ~u, Pr[hr(~u) = hr(~v)] =
1− θ(~u,~v)/π, where θ is the angle between the two vectors.

Fact 1 states that the probability that a uniformly random
hyperplane separates two vectors is proportional to their an-
gle. Thus, the smaller the angle, the larger the probability
that two vectors will hash to the same value. If we hash
our input vectors with s independent random hyperplanes,
each input vector becomes a (hash) vector in {0, 1}s, and
the expected L1 distance of two hash vectors is proportional
to the angle between the corresponding input vectors. It is
clear that as s grows, this (random) L1 distance becomes a
better and better estimator of the angle between the original
vectors. Therefore, the algorithms developed in the previous
sections applied on the hash vectors, are randomized algo-
rithms for finding the pairs with largest, smallest and “most
different” angles.

To handle Pearson’s correlation coefficient we exploit its
close relation with the cosine function and, therefore, with
the angle between vector pairs.

6.1 Pearson’s correlation coefficient
Pearson’s correlation coefficient of two random variables

u, v is equal to

ρ =
cov(v, u)

σvσu
, (5)

i.e., their covariance divided by the product of their standard
deviations. Given d samples of each random variable, orga-
nized as d-dimensional vectors ~u,~v, an equivalent definition
(see [16]) is:

ρ = cos(~v − v̄, ~u− ū), (6)

where ū = 1µu and v̄ = 1µv, where µu and µv are the mean
values of ~u and ~v, respectively.

In view of (6), we see that when seeking the pair of SNPs
that are “most different” in terms of Pearson’s correlation
coefficient between cases and controls, we are simply seeking
the pair of SNP vectors whose cosine is most different. We
approximate this cosine by the angle of the vectors ~v− v̄ and

~u− ū, i.e., we apply the methods of the previous section to
them. The reason this works is as follows.

When a pair of vectors has different cosine between the
two data sets it must also have some difference in angle be-
tween them. Luckily, the absolute value of the derivative of
the arccos function is lower-bounded by 1 and stays close
to 1 in most of [−1,+1] (of course, if it equaled 1 through-
out, the replacement of cosine by angle would be exact.) In
particular, in [−0.85, 0.85] this derivative stays bounded by
2, meaning that for pairs whose cosine in both data sets is
in this range, their probability of being placed in different
buckets is distorted by no more than a factor of 2.

Of course, a factor of 2 would still be a huge systematic er-
ror in our context, but there is a simple remedy. Namely, we
change the role of the CO algorithm and its variants: instead
of using them as methods to find directly the top-scoring
pairs by keeping track of the (biased) associated counters we
use them as filtering algorithms that simply propose “poten-
tially interesting” pairs to examine. Specifically, for every
pair co-occurrence, instead of incrementing a counter and
ultimately evaluate pairs by the value of their counters, we
measure and evaluate directly the exact Pearson’s correla-
tion coefficient “on the fly”. (To speed things up one can
use a bit-vector to make sure they only measure each pair
at most once. As we will see, this is hardly necessary as the
majority of pairs that ever co-occur, do so exactly once.)

Finally, the a priori valid concern regarding pairs of SNPs
whose cosine might be very close to ±1 (and for which,
thus, the distortion resulting from replacing cosines by an-
gles could be arbitrary) is not borne out by the data. The
reason is that the “most different” pairs end up having a
difference in cosine of at least 0.7 which puts their angle dif-
ference very well within the near-linear regime of the arccos
function.

6.2 Number of hyperplanes used
In order to binarize the SNP data via LSH, we map both

the case vectors and the control vectors into {0, 1}s using
s independent random vectors for each. Clearly, the more
hyperplanes we use, the better the approximation of the
correlation of the SNPs in our dataset. While, theoreti-
cally, s = Θ(log n) suffices, in practice the correct number
of hyperplanes to use is domain-dependent and has to do
with parameters like the initial dimension of the vectors and
their distribution. As a rule of thumb in our experiments,
since the number of individuals was rather small, we took
s = max{m1,m2}. Note now that since the binarized data
for cases and controls are of the same dimension, we do not
run into the class-size imbalance problem mentioned in Sec-
tion 5.1.

7. PRACTICAL CONSIDERATIONS

7.1 Running CO in practice
Since p1 and p2 are not known a priori, in order to run the

algorithm one must replace γ by an estimate γ̂. In that case,
CO is guaranteed to return a pair with correlation strictly
larger than κ = p1(1 − 1/γ̂). (So, it will return the most
correlated pair, when p2 ≤ κ.) In practice, one can run
the algorithm multiple times with γ̂ and check whether the
returned pair changes. If that happens, then the estimate for
γ needs to be increased. Note that since the exponent will
increase, the running time expended prior to the increase

is completely dominated (and can therefore be absorbed) in
the new exponent. As we will see in Section 7.2, though,
in practice there seem to be much more effective ways to
address this issue that avoid estimating γ altogether.

7.2 Running AC in practice
As can be easily seen, the modified version of the CO

algorithm from Section 3 is at the heart of our approach. To
implement it efficiently, in each iteration, after we partition
the columns into equivalence classes (buckets), we further
partition the columns in each bucket into two equivalence
classes, depending on if they were complemented or not. We
then increment the counters of all pairs going across the two
partitions. In this way, the additional running time after we
partition the columns into buckets Eℓ is proportional only
to the number of counters we actually increment, not

∑

E2
ℓ .

We now discuss how we choose our row-sample size k and
how we choose the number of iterations to run. In short: we
don’t. That is, while one can use the (analogues of the) the-
oretical estimates from [14] for setting k and t these turn out
to be too conservative in practice. Moreover, to overcome
the need to know p1, p2 in order to set t, entails an additional
burden to the running time as we run multiple iterations of
the algorithm, effectively searching for p1, p2. Instead, we
tune both parameters “on the fly”, i.e., in a data-dependent
way, using the same underlying logic as [14] but applied in
a much more fine-grained manner.

7.2.1 Row-sample size
We introduce an adaptive strategy that adjusts k at the

end of each iteration i of the algorithm based on the number,
Ci, of SNP pairs that were examined during iteration i. In
particular, we introduce a parameter called Target=Θ(n)
and we adjust k with the aim that Target/2 ≤ Ci ≤ 2Target.
We initialize Target to a sufficiently small value, so as not
too risk too many co-occurrences in the first iteration. From
then on, if Ci < Target/2 we increment k, whereas if Ci >
2 · Target we decrement k.

As for the exact value of Target itself, while in [14], the
sample size k corresponds to Target = n, in practice we
found that setting Target to about one order of magnitude
less, achieved the same quality of solutions with significantly
fewer computations. We discuss this further in Section 7.3.

7.2.2 Returning top h pairs
In running CO as a subroutine for AC we have it report

not just the pair of columns with maximum correlation but
in fact the top-h pairs. We then measure the actual Pear-
son’s correlation boost for these pairs and consider whether
we should report them. For this, we maintain a heap of size h
which we update whenever an unmeasured pair with higher
correlation than the current heap minimum is discovered. In
our experiments h ranges from 10 to a few thousands, mak-
ing its maintenance a minor fraction of the overall running
time.

7.2.3 Number of iterations
When we are interested in reporting the “top-h” pairs we

keep track of the top-2h pairs discovered at the end of each
iteration of the algorithm. We stop at iteration t if in the
last t/2 iterations, there was no change in the set of top-2h
pairs.

7.3 Runtime complexity
After centering the data (an operation linear in the size of

the data) we compute for each (centered) column its inner
product with s = O(log n) random vectors. At this point, we
have a new binary dataset and the real work of our algorithm
begins, proceeding in iterations. The work in each iteration
can be partitioned into two parts. In the first part we take
a random sample of k = O(log n) rows (individuals) and
place them into buckets depending on their k-bit vector.
In the second part, pairs that lie in the same bucket are
examined. Therefore, if we examine t ∼ n1+γ pairs in total
during the execution of the algorithm, where γ > 0, the
total number of operations by the algorithm is bounded by
O(n(s2+nγ)). Since, typically, γ ≥ 1/2, we see that the total
number of examined pairs is a good proxy for the algorithm’s
running time. Indeed, in practice, the relationship between
the number of discovered pairs and the actual running time
is essentially the same across a large span of data sets, data
sizes, and recall levels.

8. EXPERIMENTAL RESULTS
We have run experiments on four different data sets. These

include both binary and ternary SNPs and both real and
synthetic data. All experiments were performed either on a
single MacPro OS X 10.6 with 16 GB RAM when this was
feasible, or using a cluster of 1,000 CPUs, when we needed
to scale appropriately.

8.1 Experimental setting
To avoid unfairness in comparisons that result from im-

plementation, hardware, and programming issues, we have
focused in our experiments on the key quantity that deter-
mines the asymptotic behavior of all relevant algorithms:
the number of pairs whose joint statistical behavior is ever
examined. So, for example, for brute force this is

(

n
2

)

. In our
algorithm we will see that the relevant exponent is often sig-
nificantly lower and gets to about n3/2 for real-life massive
data sets.

It is important to point out that the running time of our
algorithm is linear in this quantity while, at the same time,
as is clear by the algorithm’s description, all other sampling,
binning, and embedding operations are dwarfed by the step
of actually measuring the joint behavior of pairs that fall in
the same bucket.

Comparison partners: To quantify the quality of our
results both in terms of runtime and accuracy, we compare it
to i) a brute-force enumeration of all pairs and ii) a two-stage
filtering procedure, in which we employ exhaustive enumer-
ation on the subset of top-scoring SNPs from a one-locus
association mapping. In order to be able to compute the
brute-force approach, we ran experiments on a cluster of
1,000 CPUs, some of which took several days. This brute-
force served as a reference and ground truth for evaluating
the quality of the results of our algorithm.

We also evaluate the performance of our algorithm by
comparing it to the common two-stage filtering procedure,
that is applying brute force on a carefully selected subset
of the SNPs. To select the SNPs we ranked them based on
their correlation with class membership and retain only the
top-ranking SNPs, ranging from 10% to 50% (0.1 to 0.5) of
all SNPs. Then we run an exhaustive search on all pairs of
SNPs from this subset.

Evaluation We compared our novel algorithm to its com-
parison partners based on the following criteria:

• the speed up factor, that is, the total speed up com-
pared to brute force in terms of CPU time.

• the exponent (1+γ) of the number of pairs our algo-

rithm examined. Our method considers (n(1+γ)) pairs
compared to the n2 pairs computed in brute-force.

• the recall among the top-h pairs (where h ∈ {10, 100,
500, 1k, 10k}) returned by our algorithm. This is the
percentage of the top pairs found by brute force that
were also detected by our algorithm.

8.2 Datasets
In our experiments, we used the following datasets:
Full-genome scale real human data: For 850k SNPs

from real human data set (dbGap [10]) and 100 individuals
in cases and controls (respectively), we used a cluster of 1000
machines for more than 3 days in order to discover by brute
force the top 10k pairs as a reference.

Synthetic human data: This is a human data set (ternary
SNPs) generated by the simulator Hapsample (Wright et al.,
2007) which is publicly accessible from the website
http://www.hapsample.org. It consists of 95k SNPs, with
200 cases and 200 controls.

Besides the original dataset we also created smaller datasets
by keeping a random sample of 30k and 50k SNPs, while al-
ways maintaining all 200 cases and 200 controls for each
SNP. On all these datasets we ran brute force enumeration,
and the two-stage filtering approach as well.

Real binary data from USC We do as above, for 50k,
100k and 210k SNPs of the genome of a real inbred organ-
ism [2]. While our ground truth is the top 1k pairs for the
first two smaller sizes of SNP collections, for the largest one
is the top 10k. Here the initial number of individuals in
cases and controls is 80 and 86 and we transform them (via
hashing with appropriate number of random hyper planes)
into matrices with 100 rows each, before we run our method.

Synthetic binary data: We also generated synthetic
binary data with 200 cases and 200 controls. We generated
one dataset with 10k, 50k and 100k SNPs each. The SNPs
were drawn randomly from a uniform Binomial distribution.
We refer to these datasets as NOISE datasets.

8.3 Results
Key to experiments: For each input, we run our al-

gorithm with different “allowances” on the total number of
pairs to measure. We report this allowance as “Pairs” in
the table below. Since pairs can be suggested for measure-
ment multiple times, we also report the total number of
such “Measurements” proposed. As one can see, these two
numbers are quite close, suggesting that it is probably not
worthwhile to try to keep track of which pairs have already
been measured. To highlight the asymptotic nature of our
improvements, we write this number of measurements as
nβ and report the value of β for each experiment. Finally,
the remaining columns are our recall fraction relative to the
ground truth as computed by Brute Force.

Comparison to brute force We ran our method on all
of these four datasets and report results in the following Ta-
bles 1, 2, 4, 5, and 6. Except for the NOISE dataset, our
method achieves high recall rates on all three datasets, up to

100%, and a speed up factor of 10 to 1000 compared to brute
force. The runtime exponent varies for each dataset and
SNP number, but on average it is approximately 3/2, com-
pared to 2 for the brute force approach. Only on the NOISE
dataset, our recall rates are low, owing to the fact that due
to its random character, the correlation differences are here
rather uniform across all pairs. As the performance of our
algorithm depends on the discrepancy in score between the
top pairs and the other pairs, it performs considerably worse
on NOISE.

In making comparisons in this context, it is important
to keep in mind that for any given value of h, the task of
finding the top-h pairs becomes relatively easier as the size
of the dataset, n, increases. This is because with h fixed
and n increasing, the h-th highest ranked pair is more and
more “special” relative to the remaining

(

n
2

)

pairs as n is
increased, i.e., it has higher contrast. As a result, the relative
effort of finding it, expressed as a fraction of

(

n
2

)

, goes down.
This is very well reflected in our experiments, where for a
given recall rate at a given h, the exponent of the number
of measured pairs keeps dropping as the size of the dataset
increases.

Comparison to two-stage approach When we com-
pare our approach to the common two-stage approach [11]
on the hap-sample dataset for 30k, 50k and 95k SNPS (see
Table 3), we observe that the recall rates of this filtering
approach are lower than ours, while we still achieve a signif-
icant speed-up over its runtime.

9. DISCUSSION AND CONCLUSIONS
In this article, we have presented a first subquadratic-

runtime algorithm for SNP-SNP interaction detection. It
renders epistasis detection even on the whole human genome
with order 107 SNPs [5] computationally feasible on a single
PC.

In the current presentation, we have focused on reducing
the computational burden caused by the quadratic number
of candidate pairs. The other burden is that of determining
statistical significance in multiple hypothesis testing. We
can compute p-values for our difference-in-correlation test
statistic based on the null distribution described in [9], and
correct for multiple hypothesis testing, for instance, by Bon-
ferroni correction. Alternatively, we can perform permuta-
tions of the phenotypes and approximate the null distribu-
tion empirically. In future work, we will examine how to
perform this permutation testing more efficiently than just
iteratively applying our current algorithm.

Our plan for future work on the biological side is to apply
the here described algorithm to the Wellcome Trust’s GWA
datasets for various human diseases and to plant phenotypes
from rice, maize and Arabidopsis. On the engineering side,
we will study how to implement the here described algo-
rithm on graphical processing units, to yield an extremely
fast implementation. On the algorithmic side, we will study
the exciting extension to multi-SNP-interaction detection.

SNPs Measurements Exponent Speedup Top 10 Top 100 Top 500 Top 1k Top 10k
845,814 660,788,168 1.48 542 1.0 0.95 0.93 0.91 0.90
845,814 919,392,776 1.51 390 1.0 0.96 0.93 0.93 0.92
845,814 1,194,631,961 1.53 300 0.9 0.94 0.89 0.88 0.88
845,814 2,052,068,774 1.57 175 1.0 0.97 0.97 0.98 0.97

Table 1: Real human dataset

SNPs Measurements Pairs Exponent Speedup Top 10 Top 100 Top 500 Top 1k
30,000 8,699,003 8,220,128 1.55 51 1.00 1.00 0.99 0.93
30,000 14,560,722 13,982,726 1.60 31 1.00 1.00 1.00 0.97

50,000 25,404,287 25,086,963 1.58 50 1.00 1.00 0.99 0.96
50,000 29,721,852 29,301,074 1.59 43 1.00 1.00 1.00 0.98
50,000 55,311,371 54,005,100 1.65 23 1.00 1.00 1.00 0.98
50,000 67,141,119 65,376,171 1.67 19 1.00 1.00 1.00 0.98

95,173 6,725,792 6,711,455 1.37 674 0.80 0.79 0.87 0.86
95,173 13,567,508 13,526,763 1.43 334 0.90 0.91 0.93 0.90
95,173 31,249,917 31,083,315 1.51 145 1.00 1.00 0.96 0.96
95,173 40,225,617 39,965,897 1.53 113 1.00 0.98 0.96 0.98

Table 2: Synthetic human dataset

SNPs Fraction kept Exponent Speedup Top 10 Top 100 Top 500 Top 1k
30,000 0.10 1.49 101 0.80 0.50 0.10 0.05
30,000 0.20 1.62 26 0.80 0.61 0.27 0.14
30,000 0.30 1.70 12 0.90 0.68 0.50 0.31
50,000 0.10 1.52 101 0.90 0.46 0.11 0.06
50,000 0.20 1.64 26 0.90 0.67 0.28 0.15
50,000 0.30 1.72 12 0.90 0.70 0.55 0.36
50,000 0.40 1.77 7 0.90 0.71 0.55 0.36
50,000 0.50 1.81 5 0.90 0.71 0.57 0.48

95,173 0.10 1.54 101 0.40 0.39 0.32 0.16
95,173 0.20 1.66 26 0.40 0.40 0.52 0.38
95,173 0.30 1.73 12 0.40 0.44 0.56 0.52

Table 3: Performance of the two-stage filtering approach on the synthetic human dataset. The second column
is the fraction of SNPs retained after filtering. The remaining columns are as in the experiments with our
algorithm.

SNPs Measurements Pairs Exponent Speedup Top 10 Top 100 Top 500 Top 1k
10,000 3,102,004 2,944,313 1.62 17 1.00 0.99 0.80 0.60
10,000 3,750,058 3,496,129 1.64 14 1.00 1.00 0.82 0.67
10,000 6,236,283 5,649,158 1.70 9 1.00 1.00 0.90 0.75

50,000 33,507,669 32,325,103 1.60 38 1.00 1.00 1.00 0.99
50,000 22,940,479 22,295,748 1.57 55 1.00 0.99 0.97 0.97

100,000 8,255,645 8,186,657 1.38 606 1.00 0.86 0.82 0.80
100,000 16,556,322 16,372,904 1.44 302 0.90 0.92 0.91 0.90
100,000 39,731,329 39,039,859 1.52 126 1.00 1.00 0.98 0.98
100,000 52,762,001 51,732,700 1.54 95 1.00 1.00 0.99 0.98

Table 4: Random SNP samples from USC dataset

SNPs Measurements Pairs Exponent Speedup Top 10 Top 100 Top 500 Top 1k Top 10k
210,000 18,202,620 18,062,488 1.36 1212 0.90 0.80 0.71 0.71 0.68
210,000 48,844,947 48,384,057 1.44 452 1.00 0.86 0.87 0.86 0.82
210,000 53,260,691 52,724,216 1.45 414 0.80 0.81 0.89 0.88 0.86
210,000 74,054,023 73,044,942 1.48 298 0.90 0.90 0.93 0.93 0.91
210,000 95,844,600 94,598,677 1.50 231 1.00 0.99 0.95 0.94 0.92

Table 5: Entire USC dataset

SNPs Measurements Pairs Exponent Speedup Top 10 Top 100 Top 500 Top 1k
10,000 3,790,269 3,651,534 1.64 14 0.30 0.26 0.20 0.19
10,000 7,619,321 7,082,458 1.72 7 0.60 0.50 0.38 0.38

50,000 15,079,241 14,960,262 1.53 83 0.10 0.12 0.07 0.07
50,000 55,200,578 53,907,259 1.65 23 0.20 0.19 0.18 0.18

100,000 27,253,865 27,143,127 1.49 184 0.00 0.07 0.05 0.04
100,000 39,759,698 39,540,714 1.52 126 0.00 0.07 0.07 0.06

Table 6: NOISE dataset (each entry is 0 or 1 independently, with equal probability).

10. ACKNOWLEDGMENTS
P.A. was visiting the Max Planck Institutes in Tübingen

while this research work was done. The authors would like
to thank Oliver Stegle and Nino Shervashidze for their com-
ments on the final text. P.A. would like to thank Dimitris
Achlioptas for numerous inspiring conversations.

Funding support for the Genome-Wide Association of Schizophre-

nia Study was provided by the National Institute of Mental Health

(R01 MH67257, R01 MH59588, R01 MH59571, R01 MH59565, R01

MH59587, R01 MH60870, R01 MH59566, R01 MH59586, R01 MH61675,

R01 MH60879, R01 MH81800, U01 MH46276, U01 MH46289 U01

MH46318, U01 MH79469, and U01 MH79470) and the genotyping of

samples was provided through the Genetic Association Information

Network (GAIN). The datasets used for the analyses described in this

manuscript were obtained from the database of Genotypes and Phe-

notypes (dbGaP) found at http://www.ncbi.nlm.nih.gov/gap through

dbGaP accession number phs000021.v3.p2. Samples and associated

phenotype data for the Genome-Wide Association of Schizophrenia

Study were provided by the Molecular Genetics of Schizophrenia Col-

laboration (PI: Pablo V. Gejman, Evanston Northwestern Healthcare

(ENH) and Northwestern University, Evanston, IL, USA.

11. REFERENCES
[1] C. E. Aston, D. A. Ralph, D. P. Lalo, S. Manjeshwar,

B. A. Gramling, D. C. DeFreese, A. D. West, D. E.
Branam, L. F. Thompson, M. A. Craft, D. S. Mitchell,
C. D. Shimasaki, J. J. Mulvihill, and E. R. Jupe.
Oligogenic combinations associated with breast cancer
risk in women under 53 years of age. Human Genetics,
116(3):208–221, Feb. 2005.

[2] S. Atwell, Y. S. Huang, B. J. VilhjÃa֒lmsson,
G. Willems, M. Horton, Y. Li, D. Meng, A. Platt,
A. M. Tarone, T. T. Hu, R. Jiang, N. W. Muliyati,
X. Zhang, M. A. Amer, I. Baxter, B. Brachi, J. Chory,
C. Dean, M. Debieu, J. de Meaux, J. R. Ecker,
N. Faure, J. M. Kniskern, J. D. G. Jones, T. Michael,
A. Nemri, F. Roux, D. E. Salt, C. Tang, M. Todesco,
M. B. Traw, D. Weigel, P. Marjoram, J. O. Borevitz,
J. Bergelson, and M. Nordborg. Genome-wide
association study of 107 phenotypes in Arabidopsis
thaliana inbred lines. Nature, 465(7298):627–631, Jun
2010.

[3] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. In STOC, 2002.

[4] J. H. Cho, D. L. Nicolae, L. H. Gold, C. T. Fields,
M. C. LaBuda, P. M. Rohal, M. R. Pickles, L. Qin,
Y. Fu, J. S. Mann, B. S. Kirschner, E. W. Jabs,
J. Weber, S. B. Hanauer, T. M. Bayless, and S. R.
Brant. Identification of novel susceptibility loci for
inflammatory bowel disease on chromosomes 1p, 3q,
and 4q: evidence for epistasis between 1p and IBD1.

Proceedings of the National Academy of Sciences of
the United States of America, 95(13):7502–7507, June
1998.

[5] T. H. Consortium. A second generation human
haplotype map of over 3.1 million SNPs. Nature,
449(7164):851–61, Oct. 2007.

[6] H. J. Cordell. Epistasis: what it means, what it
doesn’t mean, and statistical methods to detect it in
humans. Hum. Mol. Genet., 11(20):2463–2468, Oct.
2002.

[7] H. J. Cordell. Detecting gene-gene interactions that
underlie human diseases. Nat Rev Genet,
10(6):392–404, June 2009.

[8] N. J. Cox, M. Frigge, D. L. Nicolae, P. Concannon,
C. L. Hanis, G. I. Bell, and A. Kong. Loci on
chromosomes 2 (NIDDM1) and 15 interact to increase
susceptibility to diabetes in mexican americans.
Nature Genetics, 21(2):213–215, Feb. 1999.

[9] T. Kam-Thong, D. Czamara, K. Tsuda, K. Borgwardt,
C. M. Lewis, A. Erhardt-Lehmann, B. Hemmer,
P. Rieckmann, M. Daake, F. Weber, C. Wolf,
A. Ziegler, B. Putz, F. Holsboer, B. Scholkopf, and
B. Muller-Myhsok. EPIBLASTER-fast exhaustive
two-locus epistasis detection strategy using graphical
processing units. Eur J Hum Genet, Dec. 2010.

[10] M. Mailman, M. Feolo, Y. Jin, M. Kimura, K. Tryka,
R. Bagoutdinov, L. Hao, A. Kiang, J. Paschall,
L. Phan, N. Popova, S. Pretel, L. Ziyabari, M. Lee,
Y. Shao, Z. Wang, K. Sirotkin, M. Ward,
M. Kholodov, K. Zbicz, J. Beck, M. Kimelman,
S. Shevelev, D. Preuss, E. Yaschenko, A. Graeff,
J. Ostell, and S. Sherry. The NCBI dbGaP Database
of Genotypes and Phenotypes. Nature Genetics,
39(10):1181–6, 2007.

[11] J. Marchini, P. Donnelly, and L. R. Cardon.
Genome-wide strategies for detecting multiple loci
that influence complex diseases. Nat Genet,
37(4):413–417, Apr. 2005.

[12] S. K. Musani, D. Shriner, N. Liu, R. Feng, C. S.
Coffey, N. Yi, H. K. Tiwari, and D. B. Allison.
Detection of gene x gene interactions in genome-wide
association studies of human population data. Human
Heredity, 63(2):67–84, 2007.

[13] R. Nakamichi, Y. Ukai, and H. Kishino. Detection of
closely linked multiple quantitative trait loci using a
genetic algorithm. Genetics, 158(1):463–475, May
2001.

[14] R. Paturi, S. Rajasekaran, and J. Reif. The light bulb
problem. In Proc. 2nd Annu. Workshop on Comput.
Learning Theory, pages 261 – 268, San Mateo, CA,
1989. Morgan Kaufmann.

[15] M. D. Ritchie, L. W. Hahn, and J. H. Moore. Power of
multifactor dimensionality reduction for detecting
gene-gene interactions in the presence of genotyping
error, missing data, phenocopy, and genetic
heterogeneity. Genetic Epidemiology, 24(2):150–157,
Feb. 2003.

[16] J. L. Rodgers and W. A. Nicewander. Thirteen ways
to look at the correlation coefficient. The American
Statistician, 42, 1988.

[17] Y. Wang, X. Liu, K. Robbins, and R. Rekaya.
AntEpiSeeker: detecting epistatic interactions for
case-control studies using a two-stage ant colony
optimization algorithm. BMC Bioinformatics,
3:117–117, 2010.

[18] J. Xu, C. D. Langefeld, S. L. Zheng, E. M. Gillanders,
B. Chang, S. D. Isaacs, A. H. Williams, K. E. Wiley,
L. Dimitrov, D. A. Meyers, P. C. Walsh, J. M. Trent,
and W. B. Isaacs. Interaction effect of PTEN and
CDKN1B chromosomal regions on prostate cancer
linkage. Human Genetics, 115(3):255–262, Aug. 2004.

[19] X. Zhang, S. Huang, F. Zou, and W. Wang. TEAM:
efficient two-locus epistasis tests in human
genome-wide association study. Bioinformatics
(Oxford, England), 26(12):i217–227, June 2010.

[20] X. Zhang, F. Zou, and W. Wang. Fastanova: an
efficient algorithm for genome-wide association study.
In Proceeding of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 821–829, Las Vegas, Nevada, USA, 2008. ACM.

[21] Y. Zhang and J. S. Liu. Bayesian inference of epistatic
interactions in case-control studies. Nature Genetics,
39(9):1167–1173, September 2007.

