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ABSTRACT
It is a well-established fact that the witness complex is closely
related to the restricted Delaunay triangulation in low di-
mensions. Specifically, it has been proved that the witness
complex coincides with the restricted Delaunay triangula-
tion on curves, and is still a subset of it on surfaces, un-
der mild sampling assumptions. Unfortunately, these re-
sults do not extend to higher-dimensional manifolds, even
under stronger sampling conditions. In this paper, we show
how the sets of witnesses and landmarks can be enriched,
so that the nice relations that exist between both complexes
still hold on higher-dimensional manifolds. We also use our
structural results to devise an algorithm that reconstructs
manifolds of any arbitrary dimension or co-dimension at dif-
ferent scales. The algorithm combines a farthest-point re-
finement scheme with a vertex pumping strategy. It is very
simple conceptually, and does not require the input point
sample W to be sparse. Its time complexity is bounded by
c(d)|W |2, where c(d) is a constant depending solely on the
dimension d of the ambient space.

Categories and Subject Descriptors: I.3.5 [Computer
Graphics]: Curve, surface, solid, and object representations

General Terms: Algorithms, Theory.

Keywords: Witness complex, restricted Delaunay triangu-
lation, manifold reconstruction, sampling conditions.

1. INTRODUCTION
A number of areas of Science and Engineering deal with

point clouds lying on submanifolds of Euclidean spaces. Such
data can be either collected through measurements of nat-
ural phenomena, or generated by simulations. Given a fi-
nite set of sample points W , presumably drawn from an un-
known manifold S, the goal is to retrieve some information
about S from W . This manifold learning problem, which
is at the core of non-linear dimensionality reduction tech-
niques [25 27], finds applications in many areas, including
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machine learning [4], pattern recognition [26], scientific vi-
sualization [28], image or signal processing [22], and neural
computation [16]. The nature of the sought-for information
is very application-dependent, and sometimes it is enough
to inquire about the topological invariants of the manifold,
a case in which techniques such as topological persistence
[8 13 29] offer a nice mathematical framework. However,
in many situations it is desirable to construct a simplicial
complex with the same topological type as the manifold, and
close to it geometrically.

This problem has received a lot of attention from the com-
putational geometry community, which proposed elegant so-
lutions in low dimensions, based on the use of the Delaunay
triangulation D(W ) of the input point set W – see [6] for a
survey. In these methods, the output complex is extracted
from D(W ), and it is equal or close to DS(W ), the Delau-
nay triangulation of W restricted to the manifold S. What
makes the Delaunay-based approach attractive is that, not
only does it behave well on practical examples, but its per-
formance is guaranteed by a sound theoretical framework.
Indeed, the restricted Delaunay triangulation is known to
provide good topological and geometric approximations of
smooth or Lipschitz curves in the plane and surfaces in 3-
space, under mild sampling conditions [1 2 5].

Generalizing these ideas to arbitrary dimensions and co-
dimensions is difficult however, because a given point set W
may sample well various manifolds with different homotopy
types, as illustrated in Figure 1. To overcome this issue, it
has been suggested to strengthen the sampling conditions,
so that they can be satisfied by only one class of manifolds
sharing the same topological invariants [12 17 20]. In some
sense, this is like choosing arbitrarily between the possible
reconstructions, and ignoring the rest of the information car-
ried by the input. Moreover, the new sets of conditions on
the input are so strict that they are hardly satisfiable in
practice, thereby making the contributions rather theoreti-
cal. Yet [12 17 20] contain a wealth of relevant ideas and
results, some of which are used in this paper.

A different and very promising approach [7 9 21 23], rem-
iniscent of topological persistence, builds a one-parameter
family of complexes that approximate S at various scales.
The claim is that, for sufficiently dense W , the family con-
tains a long sequence of complexes carrying the same ho-
motopy type as S. In fact, there can be several such se-
quences, each one corresponding to a plausible reconstruc-
tion – see Figure 1. Therefore, performing a reconstruction
on W boils down to finding the long stable sequences in the



Figure 1: A helical curve drawn on a torus (top).
Any dense sampling of the curve is also a dense
sampling of the torus. To deal with this ambiguity,
the algorithm of [21] builds a sequence of complexes
(bottom) approximating the input at various scales,
and maintains their Betti numbers (top).

one-parameter family of complexes. This approach to re-
construction stands in sharp contrast with previous work in
the area. In [7 9 23], the family of complexes is derived
from the α-offsets of the input W , where α ranges from zero
to infinity. The theoretical guarantees of [7] hold in a very
wide setting, since W is assumed to be a sufficiently dense
sampling of a general compact set. In [21], the family is
given by the witness complex of L relative to W , or CW (L)
for short, where L is a subset of W constructed iteratively,
starting with L = ∅, and inserting each time the point of W
lying furthest away from L. It is known that CW (L) coin-
cides with DS(L) on smooth curves, and is still included in
it on smooth surfaces [3 21]. The assumptions on L in [21]
are more stringent than the ones on W , but this is not an
issue since L is generated by the algorithm. Unfortunately,
the structural results of [3 21] do not hold in higher dimen-
sions, which makes it very unlikely that the algorithm works
on any manifold S of dimension greater than two. The rea-
son is that the normals of DS(L) can be arbitrarily wrong if
DS(L) contains badly-shaped simplices, called slivers [12].
As a consequence, CW (L) may not be included in DS(L),
which may not be homotopy equivalent to S [24]. This is
true even if W and L satisfy strong sampling conditions,
such as being arbitrarily dense uniform samples of S.

In this paper, we show how to enrich W and L in or-
der to make the structural results of [3 21] hold for higher-
dimensional manifolds. To each point p ∈ L we assign a
non-negative weight ω(p), so that DS(L) and CW (L) are
now replaced by their weighted versions, DS

ω(L) and CW
ω (L).

The idea of assigning weights to the vertices comes from [10],
where it was used to remove slivers from 3-dimensional De-
launay triangulations. This sliver removal technique was
extended to higher dimensions by Cheng et al. [12], who

showed that, under sufficient sampling conditions on L, there
exists a distribution of weights ω such that DS

ω(L) is homeo-
morphic to S. Our main result is that, for the same distribu-
tion of weights and under similar conditions on L, CW

ω (L) is
included in DS

ω(L), for all W ⊆ S. Combined with the fact
that CS

ω (L) contains DS
ω(L), we get that CS

ω (L) = DS
ω(L),

which is homeomorphic to S. This is a generalization of the
result of [3] to higher-dimensional manifolds. It is not quite
practical since W has to be equal to S. In the more realistic
case where W is a finite subset of S, we enlarge it by replac-
ing its points by balls of radius ζ. For sufficiently large ζ, this

enlarged set W ζ contains S, and hence DS
ω(L) ⊆ CW ζ

ω (L).

And if ζ is not too large, then CW ζ

ω (L) is still included in

DS
ω(L). Thus, we obtain CW ζ

ω (L) = DS
ω(L) under sufficient

conditions on W, L, ζ. Here again, the condition on L is
stringent, but the one on W is mild.

These structural results suggest combining the method of
[21] with the sliver exudation technique of [10], in order to
make it work on higher-dimensional manifolds. Our com-
bination is the simplest possible: at each iteration of the
algorithm, we insert a new point p in L, compute its best

possible weight, and update CW ζ

ω (L). This algorithm is very
simple conceptually, and to some extent it can be viewed as
a dynamic version of the algorithm of [12], where the Delau-
nay triangulation of W would be constructed progressively
as the weights of the points of W are computed. This raises a
number of questions, such as whether the weight assignment
process removes all the slivers from the vicinity of DS

ω(L),
since some of the weights are assigned in early stages of the
course of the algorithm. We prove that all slivers are in-

deed removed at some point, and that consequently CW ζ

ω (L)
is homeomorphic to S, provided that W is a dense enough
sampling of S.

Our assumption on W is much less stringent than the one
used in [12], which makes our algorithm more practical. On
the other hand, our assumption that S is a smooth man-
ifold is stronger than the one of [7], but we get stronger

guarantees, namely CW ζ

ω (L) is homeomorphic to S, whereas
the complex of [7] is only homotopy equivalent to S. Ob-
serve also that the witness complex is always embedded in
the ambient space Rd, which is not the case of the nerve
of an offset. This is important if one wants to do fur-
ther processing on the reconstruction. By considering the
α-shape of W instead of the nerve of its α-offset, the au-
thors of [7] get rid of this issue. Nevertheless, they cannot
get rid of the so-called curse of dimensionality because, as
α varies from zero to infinity, the α-complex spans the en-
tire d-dimensional Delaunay triangulation of W , whose size

is Θ
“

|W |dd/2e
”

. In contrast, the witness complex can be

maintained by considering only the κ(d) nearest neighbors
in L of each point of W , which reduces the time complex-
ity of our algorithm to O

`

c(d)|W |2
´

, where κ(d) and c(d)
are constants depending solely on d. This is worse than the
bound of [12] (c(d)|W | log |W |) since we cannot benefit from
the sparseness assumption on W , which is essential for the
correctness of the algorithm of [12].

The outline of the paper is as follows: after recalling the
necessary background in Section 2, we present our main
structural result (Theorem 3.1) in Section 3, and we intro-
duce our reconstruction algorithm in Section 4.



2. BACKGROUND AND DEFINITIONS

2.1 Manifolds and samples
The ambient space is Rd, d ≥ 3, equipped with the usual

Euclidean norm ‖p‖ =
q

Pd
i=1 p2

i . All manifolds considered

in this paper are compact closed submanifolds of Rd, of di-
mension two or more. The case of curves has already been
addressed1 in [21]. The reach of a manifold S, or rch(S) for
short, is the minimum distance of a point on S to the medial
axis of S. All manifolds in this paper are assumed to have
a positive reach. This is equivalent to saying that they are
C1-continuous, and that their normal vector field satisfies a
Lipschitz condition.

Given a (finite or infinite) subset L of a manifold S, and a
positive parameter ε, L is an ε-sample of S if every point of
S is at Euclidean distance at most ε to L, and L is ε-sparse
if the pairwise Euclidean distances between the points of L
are at least ε. Note that an ε-sparse sample of a compact set
is always finite. Parameter ε is sometimes made adaptative
in the literature [1], its value depending on the distance to
the medial axis of the manifold.

2.2 Simplex shape
Given k + 1 points p0, · · · , pk ∈ Rd, [p0, · · · , pk] denotes

the k-simplex of vertices p0, · · · , pk. The geometric realiza-
tion of this simplex is the convex hull of p0, · · · , pk, which
has dimension k if the vertices are affinely independent. Fol-
lowing [11], we call sliver measure of [p0, · · · , pk] the ratio2:

%([p0, · · · , pk]) =
vol([p0, · · · , pk])

min{‖pi − pj‖, 0 ≤ i < j ≤ k}k
, (1)

where vol([p0, · · · , pk]) denotes the volume of the convex hull
of p0, · · · , pk in Rk. In the special case where k = 1, we have
%([p0, p1]) = 1 for any edge [p0, p1]. We extend the notion of
sliver measure to the case k = 0 by imposing %([p0]) = 1 for
any vertex p0. Given %̄ ≥ 0, simplex [p0, · · · , pk] is said to be
a %̄-sliver if %([p0, · · · , pk]) < %̄k

/k!. For sufficiently small %̄,
this means that the volume of the simplex is small compared
to the volume of the diametral k-ball of its shortest edge.
As a result, the simplex is badly-shaped. Note however that
having a large sliver measure does not always mean being
well-shaped. Take an isoceles triangle t of base b and height

h ≥ b
√

3
2

. Its sliver measure is %(t) = h·b
2b2

= h
2b

. Reducing b
while keeping h constant makes t arbitrarily skinny but %(t)
arbitrarily large – t is called a dagger in the literature [10].
Parameter %̄ is called the sliver bound in the sequel.

2.3 Weighted points, Delaunay triangulation,
and witness complex

Given a finite point set L ⊂ Rd, a distribution of weights
on L is a non-negative real-valued function ω : L → [0,∞).

The quantity maxu∈L,v∈L\{u}
ω(u)

‖u−v‖ is called the relative

amplitude of ω. Given p ∈ Rd, the weighted distance from p
to some weighted point v ∈ L is ‖p − v‖2 − ω(v)2. This is
actually not a metric, since it is not symmetric. Whenever

1The results of [21] apply to Lipschitz curves in the plane,
but they can be extended to smooth curves in higher dimen-
sions in a straightforward manner.
2This definition generalizes the one of [10] to higher dimen-
sions. It departs from the definition of [12], which intro-
duced a bug in the proof of Lemma 10 of the same paper.

the relative amplitude of ω is less than 1
2
, the points of L

have non-empty cells in the weighted Voronoi diagram of L,
and in fact each point of L belongs to its own cell [10].

Given a finite point set L ⊂ Rd, and a distribution of
weights ω on L, we denote by Dω(L) the weighted Delaunay
triangulation of L [19]. For any simplex σ of Dω(L), Vω(σ)
denotes the face of the weighted Voronoi diagram of L that
is dual to σ. Moreover, given any subset X of Rd, we call
DX

ω (L) the weighted Delaunay triangulation of L restricted
to X. In the special case where all the weights are equal,
Dω(L) coincides with the standard Euclidean Delaunay tri-
angulation, and is therefore noted D(L). Similarly, Vω(σ)
becomes V(σ), and DX

ω (L) becomes DX(L).

Definition 2.1. Let W, L ⊆ Rd be such that L is finite,
and let ω be a distribution of weights on L.
• Given a point w ∈ W and a simplex σ = [p0, · · · , pk] with
vertices in L, w ω-witnesses σ if p0, · · · , pk are among the
k + 1 nearest neighbors of w in the weighted metric, that is,
∀i ∈ {0, · · · , k}, ∀q ∈ L \ {p0, · · · , pk}, ‖w− pi‖

2 −ω(pi)
2 ≤

‖w − q‖2 − ω(q)2.
• The ω-witness complex of L relative to W , or CW

ω (L) for
short, is the maximum abstract simplicial complex with ver-
tices in L, whose faces are ω-witnessed by points of W .

This definition comes from [14 15]. From now on, W will
be referred to as the set of witnesses, and L as the set of
landmarks. In the special case where all the weights are
equal, CW

ω (L) coincides with the witness complex for the
standard Euclidean norm, and is therefore noted CW (L).

Given a distribution of weights ω on L, for any simplex
σ = [p0, · · · , pk] of DW

ω (L) and any point w ∈ W lying on
the weighted Voronoi face dual to σ, we have that w is a ω-
witness of σ and that ‖w−pi‖

2−ω(pi)
2 = ‖w−pj‖

2−ω(pj)
2

∀i, j ∈ {0, · · · , k}. Hence, w is also a ω-witness of all the
subsimplices of σ, which therefore belong to CW

ω (L).

Corollary 2.2. For any W, L ⊆ Rd with L finite, for
any ω : L → [0,∞), DW

ω (L) ⊆ CW
ω (L).

DW
ω (L) is sometimes called the strong witness complex of L

relative to W in the literature [15]. Given a distribution of
weights ω on L, we say that the weighted points of L lie
in general position if no point of Rd is equidistant to d + 2
points of L in the weighted metric, and if no d+1 points on
the convex hull of L are coplanar. Under this assumption,
every simplex of Dω(L) has dimension at most d.

Theorem 2.3 (Thm. 2 and §3 of [14]). Let W, L ⊆
Rd be such that L is finite. Let also ω be any distribution
of weights on L, such that the weighted point set L lies in
general position. Let σ be a simplex with vertices in L. If
σ and all its subsimplices are ω-witnessed by points of W ,
then σ belongs to Dω(L). In other words, CW

ω (L) is a sub-
complex of Dω(L). Moreover, the dual weighted Voronoi face
of σ intersects the convex hull of the ω-witnesses of σ and
its subsimplices.

It is always possible to perturb the points of L or their
weights infinitesimally, so as to make them lie in general
position. Therefore, in the rest of the paper we assume im-
plicitely that the weighted point set L is in general position.

On 1- and 2-dimensional manifolds, the unweighted wit-
ness complex is closely related to the unweighted restricted
Delaunay triangulation [3 21], which provides good topolog-
ical and geometric approximations [1 2]. However, as proved



in [24], these properties do not extend to higher-dimensional
manifolds, even under stronger sampling conditions:

Theorem 2.4 (see [24]). For any positive constant µ <
1/3, there exists a closed and compact hypersurface S of pos-
itive reach in R4, and an Ω(ε)-sparse O(ε)-sample L of S,
with ε = µ rch(S), such that DS(L) is not homotopy equiv-
alent to S. The constants hidden in the Ω and O notations
are absolute and do not depend on µ. In addition, for any
δ > 0, there exists a δ-sample W of S such that CW (L) nei-
ther contains nor is contained in DS(L). Furthermore, W
can be made indifferently finite or infinite.

The proof of this theorem builds on an example of [12, §11].
The intuition is that, when DS(L) contains slivers, it is pos-
sible to make its normals turn by a large angle (say π/2) by
perturbing the points of L infinitesimally. Then, the com-
binatorial structure of DS(L) can change arbitrarily under
small perturbations of S. The consequence is that DS(L)
may not be homotopy equivalent to S, and it may not con-
tain all the simplices of CW (L) either. In addition, as em-
phasized in [21], for any k ≥ 2, the k-simplices of DS(L)
may have arbitrarily small cells in the restricted Voronoi di-
agram of L of order k + 1, which implies that they may not
be witnessed in W if ever W ( S.

2.4 Weighted cocone complex
At any point p on a manifold S, there exist a tangent

space T (p) and a normal space N(p). These two subspaces
of Rd are orthogonal, and their direct sum is Rd. For any
angle value θ ∈ [0, π/2], we call θ-cocone of S at p, or Kθ(p)
for short, the cone of semi-aperture θ around the tangent
space of S at p: Kθ(p) = {q ∈ Rd | ∠(pq, T (p)) ≤ θ}. The
name cocone refers to the fact that Kθ(p) is the complement
of a cone of semi-aperture π

2
− θ around the normal space of

S at p.
Given an angle θ ∈ [0, π/2], a manifold S, a finite point

set L ⊂ S, and a distribution of weights ω : L → [0,∞), the
weighted θ-cocone complex of L, noted Kθ

ω(L), is the subcom-
plex of Dω(L) made of the simplices whose dual weighted
Voronoi faces intersect the θ-cocone of at least one of their
vertices. This means that a simplex [p0, · · · , pk] of Dω(L)
belongs to Kθ

ω(L) if, and only if, its dual weighted Voronoi
face intersects Kθ(p0)∪ · · · ∪Kθ(pk). Note that the cones in
[12] are defined around approximations of the tangent spaces
of S at the points of L. However, the results of [12] hold a
fortiori when the approximations of the tangent spaces are
error-free, which is the case here.

Theorem 2.5 (Lemmas 13, 14, 18 of [12]). For any
sliver bound %̄ > 0, there exists a constant c%̄ > 0 such that,
for any manifold S, for any ε-sparse 2ε-sample L of S with
ε ≤ c%̄ rch(S), and for any ω : L → [0,∞) of relative ampli-

tude less than 1
2
, if K

π/32
ω (L) has no %̄-sliver, then K

π/32
ω (L)

coincides with DS
ω(L), which is homeomorphic to S.

It is also proved in [12] that, for any ω̄ ∈ (0, 1/2), there exists
a distribution of weights ω on L, of relative amplitude at

most ω̄, that removes all %̄-slivers from K
π/32
ω (L). This is

true provided that %̄ is sufficiently small compared to ω̄,
and that ε ≤ c%̄ rch(S) (as in Theorem 2.5, the choice of %̄
influences the bound on ε). The results of [12] hold in fact in
the slightly more general setting where ε is a (non-uniform)
1-Lipschitz function, everywhere bounded by a fraction of
the distance to the medial axis of S – see [12, §13].

2.5 Useful results
The following results, adapted from [12 20], will be used

in the sequel:

Lemma 2.6 (Lemma 6 of [20]). Let S be a manifold,
and let p, q ∈ S be such that ‖p − q‖ < rch(S). Then, the

Euclidean distance from q to T (p) is at most ‖p−q‖2

2 rch(S)
.

Lemma 2.7 (Lemma 2 of [12]). Let S be a manifold
and θ ∈ [0, π/2] an angle value. Let v ∈ S and p ∈ Kθ(v) be
such that ‖p − v‖ < rch(S). Then, the Euclidean distance

from p to S is at most
“

sin θ + ‖p−v‖
2 rch(S)

”

‖p − v‖.

Lemma 2.8 (Lemma 3 of [12]). Let S be a manifold
and θ ∈ [0, π/2) an angle value. Let L be an ε-sample of
S, with ε < 4

9
(1 − sin θ)2 rch(S). For any ω : L → [0,∞)

of relative amplitude less than 1
2
, for any v ∈ L and any

p ∈ Kθ(v) ∩ Vω(v), we have ‖p − v‖ ≤ 3ε
1−sin θ

.

3. STRUCTURAL RESULTS
In this section, ω̄ ∈ (0, 1/2) and %̄ > 0 are fixed constants.

For any k ≥ 0, we define c1(k) = 4 (1 + 2ω̄ + k(1 + 3ω̄)) and
c2(k) = 4 (3 + 6ω̄ + 2k(1 + 3ω̄)). Let S be a manifold in Rd,
W a (finite or infinite) δ-sample of S in Rd, and L a (finite) ε-
sparse ε-sample of W , for two parameters δ, ε to be specified
later on. Note that L is an (ε + δ)-sample of S. According
to Theorem 2.4, CW (L) may not coincide with DS(L), even
under strong assumptions on δ, ε. Specifically:
• some simplices of DS(L) may not belong to CW (L) if W

does not span S entirely. Our solution to this problem is
to enlarge the set of witnesses, in order to make it cover
S. More precisely, we dilate W by a ball of radius ζ
centered at the origin, so that the set of witnesses is now
W ζ =

S

w∈W B(w, ζ). For ζ ≥ δ, this set contains S,

hence DS
ω(L) ⊆ DW ζ

ω (L) ⊆ CW ζ

ω (L).
• some simplices of CW (L) may not belong to DS(L) if

the latter contains %̄-slivers. To remedy this problem,
we assign non-negative weights to the landmarks, so that
DS(L) and CW (L) are now replaced by their weighted
versions, DS

ω(L) and CW
ω (L). Given any angle value θ ∈

(0, π/2), our main structural result (Theorem 3.1) states
that, under sufficient conditions on δ, ε, ζ, Kθ

ω(L) con-

tains CW ζ

ω (L) for any ω : L → [0,∞) of relative ampli-

tude at most ω̄. Therefore, CW ζ

ω (L) ⊆ DS
ω(L) whenever

θ ≤ π
32

and ω removes all %̄-slivers from K
π/32
ω (L), by The-

orem 2.5.

Theorem 3.1. Given any angle value θ ∈ (0, π/2), if δ, ε, ζ
satisfy the following conditions:

H1 5
2(1−ω̄2) sin θ

δ ≤ ε ≤ 5(1−ω̄2) sin θ

(2(1−ω̄2) sin θ+5c2(d))2
rch(S),

H2 ζ ∈
h

δ, 2(1−ω̄2) sin θ
5

ε
i

,

then DS
ω(L) ⊆ DW ζ

ω (L) ⊆ CW ζ

ω (L) ⊆ Kθ
ω(L) for any dis-

tribution of weights ω on L of relative amplitude at most
ω̄. If in addition θ ≤ π/32, ε ≤ c%̄ rch(S), and ω is such

that K
π/32
ω (L) contains no %̄-sliver3, then Theorem 2.5 im-

plies that DW ζ

ω (L) = CW ζ

ω (L) = K
π/32
ω (L) = DS

ω(L), which
is homeomorphic to S.

3As mentioned after Theorem 2.5, such distributions of
weights exist, provided that %̄ is sufficiently small.



H1 requires that W is dense compared to L, which must be
dense compared to rch(S). This is very similar in spirit to
the condition of [21]. H2 bounds the dilation parameter ζ.
The smaller the angle θ of semi-aperture of the cocones,
the smaller ε must be for Kθ

ω(L) to contain DS
ω(L), and the

smaller ζ must be for Kθ
ω(L) to contain CW ζ

ω (L). Condition

ζ ≥ δ ensures that DS
ω(L) ⊆ CW ζ

ω (L).
In the special case where W = S (which implies δ = 0)

and ζ = 0, H2 and the left-hand side of H1 become void,
and the theorem states that CS

ω (L) coincides with DS
ω(L) for

a suitable distribution of weights ω : L → [0,∞), provided
that L is an ε-sparse ε-sample of S, for a small enough ε.
This is an extension of the result of Attali et al. [3] to higher
dimensions, with an additional sparseness condition on L.
This condition is mandatory for the existence of a suitable
ω on manifolds of dimension three or higher [10 12]. The
general case of Theorem 3.1 allows to have W ( S, which is
more practical.

Another useful property, stated as Theorem 3.2 below,
is that the weighted witness complex actually includes the
weighted cocone complex, for any distribution of weights of
relative amplitude at most ω̄, provided that ζ is sufficiently
large compared to ε. Note that this condition on ζ is incom-
patible4 with H2: as a consequence, two different values of
ζ have to be used in order to bound Kθ

ω(L), as emphasized
in our algorithm – see Section 4.

Theorem 3.2. If θ ≤ π
32

, and if δ, ε satisfy Condition

H1 of Theorem 3.1, then, for any ζ ≥ 7 sin θ
2(1−sin θ)

ε, for any

ω : L → [0,∞) of relative amplitude at most ω̄, Kθ
ω(L) ⊆

DW ζ

ω (L) ⊆ CW ζ

ω (L).

The rest of Section 3 is devoted to the proofs of Theorems
3.1 and 3.2, and we give an overview below.

Overview of the proofs
The proof of Theorem 3.1 is given in Section 3.1. Showing

that DS
ω(L) ⊆ DW ζ

ω (L) ⊆ CW ζ

ω (L) is in fact easy: since W
is a δ-sample of S, W ζ contains S whenever ζ ≥ δ, which
is guaranteed by H2; it follows immediately that DS

ω(L) ⊆

DW ζ

ω (L), which by Corollary 2.2 is included in CW ζ

ω (L) for

any ω : L → [0,∞). Showing that CW ζ

ω (L) ⊆ Kθ
ω(L) re-

quires more work, but the core argument is very simple,
namely: the Euclidean distances between a point of S and
its k nearest landmarks in the weighted metric are bounded
(Lemma 3.4). From this fact we derive some bounds on

the Euclidean distances between the simplices of CW ζ

ω (L)
and their ω-witnesses (Lemma 3.5). These bounds are then
used to show that the ω-witnesses of a simplex σ lie in the
θ-cocones of the vertices of σ, from which we deduce that

CW ζ

ω (L) ⊆ Kθ
ω(L) (Lemma 3.6).

The proof of Theorem 3.2 is given in Section 3.2. In-
tuitively, if L is a sufficiently dense sampling of S, then,
for any simplex σ ∈ Kθ

ω(L) and any vertex v of σ such
that Vω(σ) ∩ Kθ(v) 6= ∅, the points of Vω(σ) ∩ Kθ(v) lie
close to T (v) and hence close to S. Therefore, they be-
long to W ζ whenever ζ is large enough, which implies that

σ ∈ DW ζ

ω (L) ⊆ CW ζ

ω (L).

4Indeed, the upper bound on ζ in H2 is always smaller than
the lower bound on ζ in Theorem 3.2.

3.1 Proof of Theorem 3.1
As explained above, all we have to do is to show that,

whenever Conditions H1–H2 are satisfied, CW ζ

ω (L) is in-
cluded in Kθ

ω(L) for any ω : L → [0,∞) of relative amplitude
at most ω̄. We will use the following bound on the weights:

Lemma 3.3. Under Condition H1 of Theorem 3.1, for
any v ∈ L and any ω : L → [0,∞) of relative amplitude
at most ω̄, ω(v) is at most 2ω̄(ε + δ).

Proof. Let v ∈ L, and let Sv be the connected com-
ponent of S containing v. Consider the cell V(v) of v in
the unweighted Voronoi diagram of L. Since L is an (ε+ δ)-
sample of S, Sv∩V(v) is contained in the ball B(v) of center
v and radius ε + δ. By H1, the radius of this ball is at most
rch(S), hence we have Sv∩B(v) ( Sv. This implies that the
boundary of V(v) intersects Sv. Let p be a point of inter-
section. There is a point u ∈ L such that ‖p−u‖ = ‖p− v‖,
which is at most ε + δ. Hence, ‖v − u‖ ≤ 2(ε + δ). We
deduce that ω(v) ≤ ω̄‖v − u‖ ≤ 2ω̄(ε + δ), since ω̄ bounds
the relative amplitude of ω.

Here is now the core argument of the proof of Theorem 3.1:

Lemma 3.4. Under Condition H1 of Theorem 3.1, for
any ω : L → [0,∞) of relative amplitude at most ω̄, for
any p ∈ S, and for any k ≤ d, the Euclidean distance be-
tween p and its (k + 1)th nearest landmark in the weighted
metric is at most rk = (1 + 2ω̄ + 2k(1 + 3ω̄)) (ε + δ).

Proof. The proof is by induction on k. Assume first
that k = 0. Let v1 ∈ L be the nearest neighbor of p in the
weighted metric, and u ∈ L the nearest neighbor of p in the
Euclidean metric. Observe that u may or may not be equal
to v1. Since L is an (ε+δ)-sample of S, ‖p−u‖ is at most ε+
δ. Moreover, we have ‖p−v1‖

2−ω(v1)
2 ≤ ‖p−u‖2−ω(u)2,

which gives ‖p−v1‖
2 ≤ ‖p−u‖2+ω(v1)

2−ω(u)2 ≤ (ε+δ)2+
ω(v1)

2 − ω(u)2. Note that −ω(u)2 is non-positive, and that
ω(v1)

2 is at most 4ω̄2(ε + δ)2, by Lemma 3.3. Therefore,
‖p − v1‖

2 ≤ (1 + 4ω̄2)(ε + δ)2 ≤ (1 + 2ω̄)2(ε + δ)2, which
proves the lemma in the case k = 0.

Assume now that k ≥ 1, and that the result holds up to
k− 1. Let v1, · · · , vk denote the k nearest landmarks of p in
the weighted metric. By induction, we have {v1, · · · , vk} ⊂
B (p, rk−1). Moreover, by the case k = 0 above, for any
i ≤ k we have S ∩ Vω(vi) ⊆ B(vi, (1 + 2ω̄)(ε + δ)), which
is included in B(p, rk−1 + (1 + 2ω̄)(ε + δ)). Let Sp be the
connected component of S that contains p. It follows from
H1 that rk−1 + (1 + 2ω̄)(ε + δ) ≤ rch(S), hence we have
S ∩ B(p, rk−1 + (1 + 2ω̄)(ε + δ)) ( Sp, which implies two
things: first, v1, · · · , vk belong to Sp; second, their weighted
Voronoi cells do not cover Sp entirely. As a consequence,

Sp must intersect the boundary of
Sk

i=1(S ∩ Vω(vi)). Let q
be a point of intersection: q lies on the bisector hyperplane
between some vi and some point v ∈ L \ {v1, · · · , vk}, i.e.
q ∈ Vω(vi) ∩ Vω(v). By the case k = 0 above, ‖q − vi‖
and ‖q − v‖ are at most (1 + 2ω̄)(ε + δ). Moreover, we
have ‖p − vi‖ ≤ rk−1, by induction. Therefore, ‖p − v‖ ≤
‖p − vi‖ + ‖vi − q‖ + ‖q − v‖ ≤ rk−1 + 2(1 + 2ω̄)(ε + δ).
Since v ∈ L\{v1, · · · , vk}, we have ‖p−vk+1‖

2−ω(vk+1)
2 ≤

‖p−v‖2−ω(v)2, where vk+1 is the (k+1)th nearest landmark
of p in the weighted metric. Hence, ‖p − vk+1‖

2 ≤ ‖p −
v‖2 + ω(vk+1)

2 ≤ (‖p − v‖ + ω(vk+1))
2, which is at most

(rk−1+2(1+2ω̄)(ε+δ)+2ω̄(ε+δ))2 = r2
k, by Lemma 3.3.



Using Lemma 3.4, we can bound the Euclidean distances

between the simplices of CW ζ

ω (L) and their ω-witnesses. Our
bounds depend on quantities c1(k), c2(k), defined at the top
of Section 3:

Lemma 3.5. Under Conditions H1–H2 of Theorem 3.1,
for any ω : L → [0,∞) of relative amplitude at most ω̄, for

any k-simplex σ of CW ζ

ω (L) (k ≤ d), and for any vertex v of
σ, we have:
(i) for any ω-witness c ∈ W ζ of σ, ‖c − v‖ ≤ c1(k) ε,
(ii) for any subsimplex σ′ ⊆ σ and any ω-witness c′ ∈ W ζ

of σ′, ‖c′ − v‖ ≤ c2(k) ε.

Proof. Let σ be a k-simplex of CW ζ

ω (L). By definition,
there is a point c ∈ W ζ that ω-witnesses σ. This means that
the vertices of σ are the (k+1) nearest landmarks of c in the
weighted metric. Unfortunately, we cannot apply Lemma
3.4 directly to bound the Euclidean distance between c and
its (k+1) nearest landmarks in the weighted metric, because
c may not belong to S. However, since c ∈ W ζ , there is
some point w ∈ W ⊆ S such that c ∈ B(w, ζ). By Lemma
3.4, the ball B(w, rk) contains at least (k + 1) landmarks.
Thus, at least one landmark u in B(w, rk) does not belong to
the k nearest landmarks of c in the weighted metric. This
means that, for any l ≤ k + 1, ‖c − vl‖

2 − ω(vl)
2 ≤ ‖c −

u‖2 − ω(u)2, where vl denotes the lth nearest landmark of
c in the weighted metric. It follows that ‖c − vl‖

2 ≤ ‖c −
u‖2 + ω(vl)

2 −ω(u)2 ≤ (‖c−u‖+ ω(vl))
2, which by Lemma

3.3 is at most (‖c − u‖ + 2ω̄(ε + δ))2. Since ‖c − u‖ ≤
‖c−w‖+‖w−u‖ ≤ ζ+rk, we get ‖c−vl‖ ≤ ζ+rk+2ω̄(ε+δ),
which by H1–H2 is bounded by c1(k) ε. Since this is true
for any l ≤ k +1, the Euclidean distance between c and any
vertex of σ is at most c1(k) ε. This proves (i).

Let σ′ be any subsimplex of σ. Since σ belongs to CW ζ

ω (L),
σ′ is ω-witnessed by some point c′ ∈ W ζ . Let w′ ∈ W ⊆ S
be such that c′ ∈ B(w′, ζ). According to Lemma 3.4, the
Euclidean distance between w′ and its nearest landmark u′

in the weighted metric is at most r0 = (1+2ω̄)(ε+δ). Hence,
‖c′ − u′‖ ≤ ζ + r0. Let v′

1 be the nearest landmark of c′ in
the weighted metric. We have ‖c′ − v′

1‖
2 ≤ ‖c′ − u′‖2 +

ω(v′
1)

2 − ω(u′)2 ≤ (‖c′ − u′‖ + ω(v′
1))

2, which is at most
(ζ +r0 +2ω̄(ε+δ))2, by Lemma 3.3. Since c′ ω-witnesses σ′,
v′
1 is a vertex of σ′ and hence also a vertex of σ. Thus, for

any vertex v of σ, we have ‖c′ − v‖ ≤ ‖c′ − v′
1‖ + ‖v′

1 − v‖,
which by (i) is at most ζ + r0 + 2ω̄(ε + δ) + 2c1(k) ε. This
quantity is bounded by c2(k) ε, since under H1–H2 δ and ζ
are at most ε. This proves (ii).

We can now show that CW ζ

ω (L) ⊆ Kθ
ω(L), which concludes

the proof of Theorem 3.1:

Lemma 3.6. Under Conditions H1–H2 of Theorem 3.1,
for any distribution of weights ω : L → [0,∞) of relative

amplitude at most ω̄, for any k-simplex σ of CW ζ

ω (L) (k ≤
d), and for any vertex v of σ, Vω(σ) ∩ Kθ(v) 6= ∅. As a

consequence, CW ζ

ω (L) ⊆ Kθ
ω(L).

Proof. Let σ be a k-simplex of CW ζ

ω (L), and let v ∈ L
be any vertex of σ. If k = 0, then σ = [v]. Since the relative
amplitude of ω is at most ω̄ < 1

2
, v belongs to its weighted

Voronoi cell Vω(v). And since v belongs to Kθ(v), we have
Vω(v) ∩ Kθ(v) 6= ∅, which proves the lemma in the case
k = 0.

Assume now that 1 ≤ k ≤ d. By Lemma 3.5 (ii), for
any simplex σ′ ⊆ σ, for any ω-witness c′ of σ′, we have
‖c′ − v‖ ≤ c2(k) ε ≤ c2(d) ε. Since c′ ∈ W ζ , there is a
point w′ ∈ W ⊆ S such that ‖w′ − c′‖ ≤ ζ, which implies
that ‖w′ − v‖ ≤ ε (c2(d) + ζ/ε). This quantity is at most
rch(S), by H1–H2, hence the Euclidean distance from w′

to T (v) is at most ε2

2 rch(S)
(c2(d) + ζ/ε)2, by Lemma 2.6. It

follows that the Euclidean distance from c′ to T (v) is at most

ζ + ε2

2 rch(S)
(c2(d) + ζ/ε)2. This holds for any ω-witness c′ ∈

W ζ of any simplex σ′ ⊆ σ. Since σ is a simplex of CW ζ

ω (L),
Theorem 2.3 tells us that σ belongs to Dω(L), and that the
dual weighted Voronoi face of σ intersects the convex hull of
the ω-witnesses of the subsimplices of σ. Let p be a point of
intersection. Since the ω-witnesses of the subsimplices of σ

do not lie farther than ζ + ε2

2 rch(S)
(c2(d) + ζ/ε)2 from T (v),

neither does p, which belongs to their convex hull.
Let us now give a lower bound on ‖p−v‖, which will allow

us to conclude afterwards. Since the dimension k of σ is at
least one, σ has at least two vertices. Hence, there exists at
least one point u ∈ L\{v} such that ‖p−v‖2−ω(v)2 = ‖p−
u‖2−ω(u)2, which gives ‖p−v‖2 = ‖p−u‖2+ω(v)2−ω(u)2.
Since ω̄ bounds the relative amplitude of ω, we have ω(u)2 ≤
ω̄2‖u − v‖2. Moreover, ω(v)2 is non-negative. Hence, ‖p −
v‖2 ≥ ‖p − u‖2 − ω̄2‖u − v‖2. By the triangle inequality,
we obtain ‖p − v‖2 ≥ (‖p − v‖ − ‖u − v‖)2 − ω̄2‖u − v‖2,
which gives ‖p − v‖ ≥ 1

2
(1 − ω̄2)‖u − v‖. This implies that

‖p − v‖ ≥ 1
2
(1 − ω̄2)ε, since L is ε-sparse.

To conclude, p is at most ζ + ε2

2 rch(S)
(c2(d) + ζ/ε)2 away

from T (v), and at least 1
2
(1 − ω̄2)ε away from v, in the

Euclidean metric. Therefore, sin ∠(vp, T (v)) ≤ 2ζ
(1−ω̄2)ε

+
ε

(1−ω̄2)rch(S)
(c2(d) + ζ/ε)2 , which is at most sin θ, by H1–

H2. As a consequence, p belongs to Kθ(v). Now, recall that
p is a point of Vω(σ). Hence, Vω(σ) ∩ Kθ(v) 6= ∅, which
means that σ is a simplex of Kθ

ω(L). Since this is true for

any k-simplex σ of CW ζ

ω (L) (k ≤ d), and since, by Theorem

2.3, CW ζ

ω (L) is included in Dω(L), which has no simplex of
dimension greater than d because the weighted point set L

lies in general position, CW ζ

ω (L) is included in Kθ
ω(L).

3.2 Proof of Theorem 3.2
Let σ be a simplex of Kθ

ω(L). By definition, the dual
weighted Voronoi face of σ intersects the θ-cocone of at
least one vertex v of σ. Let c be a point of intersection.
Since L is an (ε + δ)-sample of S, with ε + δ < 4

9
(1 −

sin θ)2 rch(S), Lemma 2.8 states that ‖c − v‖ ≤ 3(ε+δ)
1−sin θ

,

which is less than rch(S) since by assumption we have ε +
δ < 1−sin θ

3
rch(S). Therefore, by Lemma 2.7, we have

‖q′ − c‖ ≤ 3(ε+δ)
1−sin θ

“

sin θ + 3(ε+δ)
2(1−sin θ) rch(S)

”

, where q′ is a

point of S closest to c. Since W is a δ-sample of S, there
exists some point w ∈ W such that ‖q′ − w‖ ≤ δ. Hence,

‖c − w‖ ≤ δ + 3(ε+δ)
1−sin θ

“

sin θ + 3(ε+δ)
2(1−sin θ) rch(S)

”

, which is at

most ζ by hypothesis. It follows that c ∈ W ζ , and hence

that σ belongs to DW ζ

ω (L). This concludes the proof of The-
orem 3.2.



4. MANIFOLD RECONSTRUCTION
In this section, we use our structural results in the context

of manifold reconstruction. From now on, we fix ω̄ = 1
4

and
θ = π

32
, and we set %̄ to an arbitrarily small positive value.

We give an overview of the approach in Section 4.1, then
we present the algorithm in Section 4.2, and we prove its
correctness in Section 4.3. Our theoretical guarantees are
discussed in Section 4.4. In Section 4.5, we give some de-
tails on how the various components of the algorithm can
be implemented. These details are then used in Section 4.6
to bound the space and time complexities of the algorithm.

4.1 Overview of the approach
Let W be a finite input point set drawn from some un-

known manifold S, such that W is a δ-sample of S, for some
unknown δ > 0. Imagine we were able to construct an ε-
sparse ε-sample L of W , for some ε ≤ c%̄ rch(S) satisfying
Condition H1 of Theorem 3.1. Then, Theorems 3.1 and

3.2 would guarantee that DS
ω(L) ⊆ CW ζ1

ω (L) ⊆ K
π/32
ω (L) ⊆

CW ζ2

ω (L) for any distribution of weights of relative ampli-

tude at most ω̄, where ζ1 = 2(1−ω̄2) sin θ
5

ε = 3
8

sin π
32

ε and

ζ2 = 7 sin π/32
2(1−sin π/32)

ε. We could then apply the pumping strat-

egy of [10] to CW ζ2

ω (L), which would remove all %̄-slivers

from CW ζ2

ω (L) (and hence from K
π/32
ω (L)) provided that %̄ is

sufficiently small. As a result, CW ζ1

ω (L) would coincide with
DS

ω(L) and be homeomorphic to S, by Theorem 2.5.
Unfortunately, since δ and rch(S) are unknown, finding an

ε ≤ c%̄ rch(S) that provably satisfies H1 can be difficult, if
not impossible. This is why we combine the above approach
with the multi-scale reconstruction scheme of [21], which
generates a monotonic sequence of samples L ⊆ W . Since L
keeps growing during the process, ε keeps decreasing, even-
tually satisfying H1 if δ is small enough. At that stage,

CW ζ1

ω (L) becomes homeomorphic to S, and thus a plateau

appears in the diagram of the Betti numbers of CW ζ1

ω (L),
showing the homology type of S – some examples can be
found in [21].

Note that the only assumption made on the input point set
W is that it is a δ-sample of some manifold, for some small
enough δ. In particular, W is not assumed to be a sparse
δ-sample. As a result, W may well-sample several manifolds
S1, · · · , Sl, as it is the case for instance in the example of
Figure 1. In such a situation, the values δ1, · · · , δl for which
W is a δi-sample of Si differ, and they generate distinct

plateaus in the diagram of the Betti numbers of CW ζ1

ω (L) –
see Figure 1.

4.2 The algorithm
The input is a finite point set W ⊂ Rd. Initially, L = ∅

and ε = ζ1 = ζ2 = +∞.
At each iteration, the point p ∈ W lying furthest away5

from L in the Euclidean metric is inserted in L and pumped.
Specifically, once p has been appended to L, its weight ω(p)
is set to zero, and ε is set to maxw∈W minv∈L ‖w − v‖.

CW ζ1

ω (L) and CW ζ2

ω (L) are updated accordingly, ζ1 and ζ2

being defined as in Section 4.1. Then, p is pumped: the
pumping procedure Pump(p) determines the weight ωp of
p that maximizes the minimum sliver measure among the

5At the first iteration, since L is empty, p is chosen arbitrar-
ily in W .

simplices of the star of p in CW ζ2

ω (L). After the pumping,

ω(p) is increased to ωp, and CW ζ1

ω (L), CW ζ2

ω (L) are updated.
The algorithm terminates when L = W . The output is the

one-parameter family of complexes CW ζ1

ω (L) built through-
out the process. It is in fact sufficient to output the diagram
of their Betti numbers, computed on the fly using the per-
sistence algorithm of [29]. With this diagram, the user can
determine the scale at which to process the data: it is then
easy to generate the corresponding subset of weighted land-
marks (the points of W have been sorted according to their
order of insertion in L, and their weights have been stored)
and to rebuild its weighted witness complex relative to W ζ1 .

Input: W ⊂ Rd finite.
Init: Let L := ∅; ε := +∞; ζ1 := +∞; ζ2 := +∞;
While L ( W do

Let p := argmaxw∈W minv∈L ‖w − v‖;
// p is chosen arbitrarily in W if L = ∅
L := L ∪ {p}; ω(p) := 0;
ε := maxw∈W minv∈L ‖w − v‖;

ζ1 := 3
8

sin π
32

ε; ζ2 := 7 sin π/32
2(1−sin π/32)

ε;

Update CW ζ1

ω (L) and CW ζ2

ω (L);
ω(p) := Pump (p);

Update CW ζ1

ω (L) and CW ζ2

ω (L);

End while
Output: the sequence of complexes CW ζ1

ω (L) ob-
tained after every iteration of the While loop.

Figure 2: Pseudo-code of the algorithm.

The pseudo-code of the algorithm is given in Figure 2.

The pumping procedure is the same as in [12], with K
π/32
ω (L)

replaced by CW ζ2

ω (L). Given a point p just inserted in L, of
weight ω(p) = 0, Pump(p) progressively increases the weight
of p up to ω̄ min{‖p − v||, v ∈ L \ {p}}, while maintaining

the star of p in CW ζ2

ω (L). The combinatorial structure of
the star changes only at a finite set of event times. Between
consecutive event times, the minimum sliver measure among
the simplices of the star is constant and therefore computed
once. In the end, the procedure returns an arbitrary value
ωp in the range of weights that maximized the minimum
sliver measure in the star of p.

4.3 Theoretical guarantees
Assume that the input point set W is a δ-sample of some

unknown manifold S. For any i > 0, let L(i), ω(i), ε(i),
ζ1(i), ζ2(i) denote respectively L, ω, ε, ζ1, ζ2 at the end of
the ith iteration of the main loop of the algorithm. Since
L(i) grows with i, ε(i) is a decreasing function of i. More-
over, since the algorithm always inserts in L the point of W
lying furthest away from L, it is easily seen that L(i) is an
ε(i)-sparse ε(i)-sample of W [21, Lemma 4.1].

Theorem 4.1. CW ζ1(i)

ω(i) (L(i)) coincides with DS
ω(i)(L(i))

and is homeomorphic to S whenever ε(i) ≤ c%̄ rch(S) satis-
fies H1, which eventually happens during the course of the
algorithm if δ is small enough.

The proof of the theorem uses the following intermediate
result, whose proof (omitted here) is roughly the same as in
Section 8 of [12]:



Lemma 4.2. Whenever δ ≤ ε(i) ≤ 2rch(S)
7d−1

− δ, the star of

p(i) in CW ζ2(i)

ω(i) (L(i)) contains no %̄-sliver.

Proof of Theorem 4.1. Let i > 0 be an iteration
such that ε(i) ≤ c%̄ rch(S) satisfies H1. Then, ζ1(i) =
2(1−ω̄2) sin θ

5
ε(i) satisfies H2, and ζ2(i) = 7 sin π/32

2(1−sin π/32)
ε(i)

satisfies the hypothesis of Theorem 3.2. Since W is a δ-
sample of S by assumption, and since L(i) is an ε(i)-sparse
ε(i)-sample of W , Theorems 3.1 and 3.2 imply that DS

ω(i)(L(i)) ⊆

CW ζ1(i)

ω(i) (L(i)) ⊆ K
π/32

ω(i)(L(i)) ⊆ CW ζ2(i)

ω(i) (L(i)). Let us show

that K
π/32

ω(i)(L(i)) contains no %̄-sliver, which by Theorem 2.5

will give the result. In fact, we will prove that CW ζ2(i)

ω(i) (L(i))

contains no %̄-sliver, which is sufficient because K
π/32

ω(i)(L(i)) ⊆

CW ζ2(i)

ω(i) (L(i)). Since ε(i) satisfies H1, we have δ ≤ ε(i) ≤
2rch(S)
7d−1

− δ. Therefore, Lemma 4.2 guarantees that the star

of p(i) in CW ζ2(i)

ω(i) (L(i)) contains no %̄-sliver. However, this

does not mean that CW ζ2(i)

ω(i) (L(i)) itself contains no %̄-sliver,
because some of the points of L(i) were pumped at early
stages of the course of the algorithm, when the assumption
of Lemma 4.2 was not yet satisfied.

Let i0 ≤ i be the first iteration such that ε(i0) ≤
2rch(S)
7d−1

−

δ. For any iteration j between i0 and i, we have ε(j) ≤

ε(i0) ≤ 2rch(S)
7d−1

− δ and ε(j) ≥ ε(i) ≥ δ, hence Lemma 4.2
guarantees that the pumping procedure removes all %̄-slivers

from the star of p(j) in CW ζ2(j)

ω(j) (L(j)) at iteration j. For any

k between j and i, the update of CW ζ2

ω (L) after the pumping
of p(k) may modify the star of p(j). However, since the
pumping of p(k) only increases its weight, the new simplices
in the star of p(j) belong also to the star of p(k), which
contains no %̄-sliver, by Lemma 4.2. Therefore, the star of

p(j) in CW ζ2(i)

ω(i) (L(i)) still contains no %̄-sliver.
Consider now an iteration j ≤ i0 −1. Since ε(j) is greater

than 2rch(S)
7d−1

− δ, we cannot ensure that the star of p(j) in

CW ζ2(j)

ω(j) (L(j)) contains no %̄-sliver. However, we claim that

the points of L(i) that are neighbors of p(j) in CW ζ2(i)

ω(i) (L(i))
were inserted in L on or after iteration i0. Indeed, for any
such neighbor q, there is a point c ∈ W ζ2(i) that ω(i)-
witnesses edge [p(j), q]. According to Lemma 3.5 (i), ‖c −
p(j)‖ and ‖c − q‖ are at most c1(1) ε(i). Hence, we have
‖p(j) − q‖ ≤ ‖p(j) − c‖ + ‖c − q‖ ≤ 2c1(1) ε(i). Now, recall

that L(i0−1) is ε(i0−1)-sparse, where ε(i0−1) > 2rch(S)
7d−1

−δ,

which by H1 is greater than 2c1(1) ε(i). It follows that q
cannot belong to L(i0−1), since p(j) does. Hence, the star of

q in CW ζ2(i)

ω(i) (L(i)) contains no %̄-sliver. Since this is true for

any neighbor q of p(j) in CW ζ2(i)

ω(i) (L(i)), the star of p(j) does
not contain any %̄-sliver either. This concludes the proof of
Theorem 4.1.

4.4 Discussion
Theorem 4.1 guarantees the existence of a plateau in the

diagram of the Betti numbers of CW ζ1

ω (L), but it does not
tell exactly where this plateau is located in the diagram,
because δ and rch(S) are unknown. Nevertheless, it does
give a guarantee on the length of the plateau, which, in
view of H1, is of the order of (a rch(S) − b δ), where a, b are
two constants. Hence, for sufficiently small δ, the plateau is

long enough to be detected by the user or some statistical
method applied in a post-processing step. If W samples
several manifolds, then several plateaus may appear in the
diagram: each one of them shows a plausible reconstruction,
depending on the scale at which the data set W is processed.

Observe that the structural results of Section 3 still hold6

if we relax the assumption on W and allow its points to lie
slightly off the manifold, at a Hausdorff distance of δ. This
gives a deeper meaning to Theorem 4.1, which now guaran-
tees that the algorithm generates a plateau whenever there
exists a manifold S that is well-sampled by L and that passes
close to the points of W . This holds in particular for small
deformations S of the manifold S0 from which the points
of W have been drawn: the consequence is that the topo-
logical features of S0 (connected components, handles, etc.)
are captured progressively by the algorithm, by decreasing
order of size in the ambient space. For instance, if S0 is a
double torus whose handles have significantly different sizes,
then the algorithm first detects the larger handle, generat-
ing a plateau with β0 = β2 = 1 and β1 = 2, then later on
it detects also the smaller handle, generating a new plateau
with β0 = β2 = 1 and β1 = 4. This property, illustrated in
the experimental section of [21], enlarges greatly the range
of applications of our method.

Note finally that our theoretical guarantees still hold if

CW ζ1

ω (L) and CW ζ2

ω (L) are replaced by DW ζ1

ω (L) and DW ζ2

ω (L)
respectively. This means that the algorithm can use indiffer-
ently the weak witness complex or the strong witness com-
plex, with similar theoretical guarantees.

4.5 Details of the implementation
Before we can analyze the complexity of the algorithm,

we need to give some details on how its various components
can be implemented.

4.5.1 Update of the witness complex
Although the algorithm is conceptually simple, its im-

plementation requires to be able to update CW ζ

ω (L), where
ζ ∈ {ζ1, ζ2}. This task is significantly more difficult than
updating CW

ω (L), mainly because W ζ is not finite, which
makes it impossible to perform the ω-witness test of Defini-
tion 2.1 on every single point of W ζ individually. However,
since we are working in Euclidean space Rd, for any w ∈ W
it is actually possible to perform the ω-witness test on the
whole ball B(w, ζ) at once. Each time a point is inserted

in L or its weight is increased, CW ζ

ω (L) is updated by iter-
ating over the points w ∈ W and performing the ω-witness
test on B(w, ζ). This test boils down to intersecting B(w, ζ)
with the weighted Voronoi diagrams of L of orders 1 through
d + 1. In the space of spheres Rd+1, this is equivalent to in-
tersecting a vertical cylinder of base B(w, ζ) with the cells of
an arrangement of |L| hyperplanes, which is a costly opera-
tion. Fortunately, as shown below, we can restrict ourselves
to constructing the arrangement of the hyperplanes of the
κ(d) nearest landmarks of w in the Euclidean metric, where

κ(d) = (2 + 2c1(d))d. This means that we do not actually

maintain CW ζ

ω (L), but another complex C, which might not

contain CW ζ

ω (L) nor be contained in it. Nevertheless,

6W ζ still covers S when ζ ≥ δ, and the proof that CW ζ

ω (L) ⊆
Kθ

ω(L) holds the same, with an additional term δ in the
bounds of Lemmas 3.3 through 3.6.



Lemma 4.3. C(i) coincides with CW ζ(i)

ω(i) (L(i)) whenever
ε(i) satisfies H1.

Proof. Let w be a point of W , and let Λ(w) ⊆ L(i) de-
note the set of its κ(d) nearest landmarks in the Euclidean
metric. For any point c ∈ B(w, ζ(i)) and any positive in-
teger k ≤ d, Lemma 3.5 (i) ensures that the k + 1 nearest
landmarks of c in the weighted metric, p0, · · · , pk, belong to
B(c, c1(d)ε(i)). Since ‖w − c‖ ≤ ζ(i), p0, · · · , pk belong to
B(w, r(i)), where r(i) = ε(i) (c1(d) + ζ(i)/ε(i)). Now, L(i) is
ε(i)-sparse, hence the points of L(i)∩B(w, r(i)) are centers
of pairwise-disjoint balls of radius ε(i)/2. These balls are in-
cluded in B (w, r(i) + ε(i)/2), thus their number is at most

(1 + 2r(i)/ε(i))d = (1 + 2c1(d) + 2ζ(i)/ε(i))d, which is bounded
by κ(d) since ζ(i) ≤ ζ2(i) < ε(i)/2. Therefore, p0, · · · , pk

belong to Λ(w). As a result, in the weighted metric, the
k+1 nearest neighbors of c in Λ(w) are the same as its k+1
nearest neighbors in L(i). Since this is true for any w ∈ W
and any c ∈ B(w, ζ(i)), and since all the balls of radius ζ(i)
centered at the points of W are tested at each update of the

complex, C(i) coincides with CW ζ(i)

ω(i) (L(i)).

It follows from this lemma that our guarantees on the out-

put of the algorithm still hold if CW ζ

ω (L) is replaced by C.
Note also that, since any arrangement of κ(d) hyperplanes

in Rd+1 has O
`

κ(d)d+1
´

= dO(d2) cells [18], each point of

W generates at most dO(d2) simplices in C. It follows that

the size of our complex is bounded by |W |dO(d2). The same
bound clearly holds for the time spent updating C after a
point insertion or a weight increase, provided that the κ(d)

nearest landmarks of a witness can be computed in dO(d2)

time. In practice, we maintain the lists of κ(d) nearest land-
marks of the witnesses in parallel to C. Each time a new
point is inserted in L, the list of each witness is updated
in O(κ(d)) time as we iterate over all the witnesses to up-
date C. Using these lists, we can retrieve the κ(d) nearest

landmarks of any witness in time O(κ(d)) = dO(d2).

4.5.2 Pumping procedure
As mentioned in Section 4.2, only a finite number of events

occur while a point p ∈ L is being pumped. The sequence
of events can be precomputed before the beginning of the
pumping process, by iterating over the points of W that
have p among their κ(d) nearest landmarks. For each such
point w, we detect the sequence of simplices incident to p
that start or stop being ω-witnessed by points of B(w, ζ2) as
the weight of p increases. In the space of spheres Rd+1, this
is equivalent to looking at how the cells of the arrangement
of κ(d) hyperplanes evolve as the hyperplane of p translates
vertically. The number of events that are generated by a
point of W is of the order of the size of the arrangement of
κ(d) hyperplanes in Rd+1, hence the total number of events

is at most |W |dO(d2), and the time spent computing them

is also bounded by |W |dO(d2).
For the sake of efficiency, we need to reduce the size of the

sequence of events to dO(d2) before any further processing.
To this end, we prune out most of the events, keeping only
those involving simplices whose vertices belong to the κ(d)
nearest neighbors of p among L in the Euclidean metric. By

the same argument as above, there are at most dO(d2) such
simplices. Nevertheless, the sequence of events may still be
much larger, because a simplex may appear in or disappear

from the star of p several times7. To bound the total number
of events, for each simplex σ we report only the first time
where σ appears in the star of p and the last time where it
disappears from the star of p. Thus, the number of events
reported per simplex is at most two, which implies that the

total number of events reported is bounded by dO(d2).
Once the sequence of events has been computed and sim-

plified, the pumping procedure iterates over the events. At

each iteration, the weight of p is increased, and CW ζ2

ω (L)
(or rather the complex C of Section 4.5.1) is updated. The
minimum sliver measure in the star of p is computed on the
fly, during the update of C. The number of iterations of
the pumping procedure is precisely the number of events,

bounded by dO(d2). At each iteration, the update of C takes

time at most |W |dO(d2), which also includes the computation
of the minimum sliver measure in the star of p. All in all,
the time complexity of the pumping procedure is bounded

by |W |dO(d2).
The downside is that the pumping procedure works with

a wrong sequence of events, since some events have been dis-
carded during the precomputation. As a result, the pump-
ing process may not remove all the %̄-slivers from the star of
p. Nevertheless, whenever ε(i) ≤ c%̄ rch(S) satisfies H1, no
simplex is discarded during the precomputation phase, by
an argument similar to the one used in the proof of Lemma
4.3. Furthermore, Lemma 4.2 still holds, with exactly the
same proof – described in Section 8 of [12] and omitted here.
Hence, Theorem 4.1 still applies.

4.5.3 Computation of p and ε

At each iteration of the main loop of the algorithm, the
computation of p = argmaxw∈W minv∈L ‖w − v‖ and ε =
maxw∈W minv∈L ‖w − v‖ is done naively by iterating over
the points of W and computing their Euclidean distance to
L. This takes O(|W |) time once the sets of κ(d) nearest
landmarks have been updated.

4.6 Complexity of the algorithm

Theorem 4.4. The space and time complexities of the al-

gorithm are respectively |W |dO(d2) and |W |2dO(d2).

Proof. As reported in Section 4.5.1, the size of the com-

plex maintained by the algorithm never exceeds |W |dO(d2),
therefore the space complexity of the algorithm is at most

|W |dO(d2). At each iteration of the main loop of the algo-
rithm, the computation of p and ε takes O(|W |) time, ac-

cording to Section 4.5.3, and the pumping of p takes |W |dO(d2)

time, by Section 4.5.2. Moreover, each update of CW ζ1

ω (L)

and CW ζ2

ω (L) takes dO(d2) time, by Section 4.5.1. Therefore,
the time spent during each iteration of the main loop of

the algorithm is at most |W |dO(d2). It follows that the time

complexity of the algorithm is bounded by |W |2dO(d2), since
the number of iterations of the main loop of the algorithm
is |W |.

Note that the bounds of Theorem 4.4 do not take into ac-
count the (optional) computation of the Betti numbers of
7The cell of a k-simplex σ in the weighted Voronoi diagram
of L of order k + 1 evolves as the weight of p increases,
and therefore it may intersect W ζ several times during the
process, since W ζ is not convex.



CW ζ1(i)

ω(i) (L(i)) at each iteration of the algorithm, which can
take a time cubic in the size of the complex [29].

5. CONCLUSION
We have proved that the structural properties of the wit-

ness complex on low-dimensional manifolds can be extended
to manifolds of arbitrary dimensions and co-dimensions. To
avoid pathological cases generated by slivers, we have as-
signed weights to the landmarks, so that, for carefully-chosen
distributions of weights, the witness complex is included
in the weighted restricted Delaunay triangulation, which is
homeomorphic to the underlying manifold. Moreover, both
complexes coincide if the set of witnesses is dilated by a
ball of suitable radius. We have also introduced a conceptu-
ally simple reconstruction algorithm, based on the witness
complex, which combines a farthest-point refinement scheme
with a vertex pumping strategy. Using our structural re-
sults, we have proved the correctness of the algorithm when
applied to sufficiently dense samplings of smooth manifolds.
These mild assumptions on the input make the approach rel-
evant on practical data, even though constructing arrange-
ments of hyperplanes is not desirable in practice. We also
believe the approach is generic enough to be applicable to
related problems, such as manifold sampling and meshing.

Note that our structural results still hold in the somewhat
more general setting where W is an adaptive δ-sample of S,
in the sense of [1], and where L is an (ε, κ)-sample of W , in
the sense of [12]. The proofs are roughly the same, with an
additional twist which slightly degrades the constants.
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