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The universal constant λ, the growth constant 
of polyominoes (think Tetris pieces), is 
rigorously proved to be greater than 4. 

BY GILL BAREQUET, GÜNTER ROTE, AND MIRA SHALAH 

What is λ? The universal constant λ arises in the study 
of three completely unrelated fields: combinatorics, 
percolation, and branched polymers. In combinatorics, 
analysis of self-avoiding walks (SAWs, or non-self-
intersecting lattice paths starting at the origin, counted 
by lattice units), simple polygons or self-avoiding 
polygons (SAPs, or closed SAWs, counted by either 
perimeter or area), and “polyominoes” (SAPs possibly 
with holes, or edge-connected sets of lattice squares, 
counted by area) are all related. In statistical physics, 
SAWs and SAPs play a significant role in percolation 
processes and in the collapse transition that branched 
polymers undergo when being heated. A collection 
edited by Guttmann15 gives an excellent review of all 

these topics and the connections be-
tween them. In this article, we describe 
our effort to prove that the growth con-
stant (or asymptotic growth rate, also 
called the “connective constant”) of 
polyominoes is strictly greater than 4. 
To this aim, we exploited to the maxi-
mum possible computer resources 
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 key insights
 ! Direct access to large shared RAM is 

useful for scientific computations, as well 
as for big-data applications. 

 ! The growth constant of polyominoes is 
provably strictly greater than 4. 

 ! The “proof” of this bound is an 
eigenvector of a giant matrix Q that 
can be verified as corresponding to the 
claimed bound—an eigenvalue of Q. 
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available to us. We eventually obtained 
a computer-generated proof that was 
verified by other programs implement-
ed independently. We start with a brief 
introduction of the three research areas. 

Enumerative combinatorics. Imagine 
a two-dimensional grid of square cells. 
A polyomino is a connected set of cells, 
where connectivity is along the sides of 
cells but not through corners; see Fig-
ure 1 for examples of small polyomi-
noes. Polyominoes were popularized in 
the pioneering book by Golomb13 and 
by Martin Gardner’s columns in Scien-
tific American; counting polyominoes 
by size became a popular and fascinat-
ing combinatorial problem. The size of 
a polyomino is the number of its cells. 

Figure 2 shows a puzzle game with 

polyominoes of sizes 5–8 cells. In 
this article, we consider “fixed” poly-
ominoes; two such polyominoes are 
considered identical if one can be ob-
tained from the other by a translation, 
while rotations and flipping are not 
allowed. The number of polyominoes 
of size n is usually denoted as A(n). No 
formula is known for this number, but 
researchers have suggested efficient 
backtracking26,27 and transfer-matrix9,18 
algorithms for computing A(n) for a giv-
en value of n. The latter algorithm was 
adapted in Barequet et al.5 and also in 
this work for polyominoes on so-called 
twisted cylinders. 

To date, the sequence A(n) has been 
determined up to n = 56 by a parallel 
computation on a Hewlett Packard 

server cluster using 64 processors.18 
The exact value of the growth constant 
of the sequence λ = limn→∞ A(n + 1)/A(n) 
continues to be elusive. Incidentally, in 
the square lattice, the growth constant 
is very close to the “coordination num-
ber,” or the number of neighbors of 
each cell in the lattice (4 in our case). 
In this work we reveal (rigorously) 
the leading decimal digit of λ. It is 4. 
Moreover, we establish that λ is strictly 
greater than the coordination number. 

Percolation processes. In physics, 
chemistry, and materials science, per-
colation theory deals with the move-
ment and filtering of fluids through 
porous materials. Giving it a math-
ematical model, the theory describes 
the behavior of connected clusters in 
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rate in the sense of the limit λ = limn→∞ 
A(n + 1)/A(n) exists. 

By using interpolation methods, 
Sykes and Glen29 estimated in 1976 
that λ = 4.06 ± 0.02. This estimate was 
refined several times based on heuris-
tic extrapolation from the increasing 
number of known values of A(n). The 
most accurate estimate—4.0625696 
± 0.0000005—was given by Jensen18 
in 2003. Before carrying out this proj-
ect, the best proven bounds on λ 
were roughly 3.9801 from below5 
and 4.6496 from above.20 λ has thus 
always been an elusive constant, of 
which not even a single significant 
digit was known. Our goal was to raise 
the lower bound on λ over the barrier 
of 4, and thus reveal its first decimal 
digit and prove that λ ≠ 4. The current 
improvement of the lower bound on λ 
to 4.0025 also cuts the difference be-
tween the known lower bound and the 
estimated value of λ by approximately 
25%—from 0.0825 to 0.0600. 

Computer-Assisted Proofs 
Our proof relies heavily on computer 
calculations, thus raising questions 
about its credibility and reliabil-
ity. There are two complementary ap-
proaches for addressing this issue: 
formally verified computations and 
certified computations. 

Formally verified computing. In this 
paradigm, a program is accompanied 
by a correctness proof that is refined 
to such a degree of detail and formal-
ity it can be checked mechanically 
by a computer. This approach and, 
more generally, formally verified 
“mathematics,” has become feasible 
for industry-level software, as well 
as for mathematics far beyond toy 
problems due to big advances in re-
cent years; see the review by Avigad 
and Harrison.2 One highlight is the 
formally verified proof by Gonthier14 

of the Four-Color Theorem, whose 
original proof by Appel and Haken1 in 
1977 already relied on computer as-
sistance and was the prime instance 
of discussion about the validity and 
appropriateness of computer meth-
ods in mathematical proofs. (Inci-
dentally, one step in Gonthier’s proof 
also involves polyominoes.) Another 
example is the verification of Hales’s 
proof21 of the Kepler conjecture, which 
states the face-centered cubic pack-

random graphs. Suppose a unit of liq-
uid L is poured on top of some porous 
material M. What is the chance L makes 
its way through M and reaches the 
bottom? An idealized mathematical 
model of this process is a two- or three-
dimensional grid of vertices (“sites”) 
connected with edges (“bonds”), where 
each bond is independently open (or 
closed) for liquid flow with some prob-
ability µ. In 1957, Broadbent and Ham-
mersley8 asked, for a fixed value of µ 
and for the size of the grid tending to 
infinity, what is the probability that a 
path consisting of open bonds exists 
from the top to the bottom. They es-
sentially investigated solute diffusing 
through solvent, molecules penetrat-

ing a porous solid, and similar process-
es, representing space as a lattice with 
two distinct types of cells. 

In the literature of statistical physics, 
fixed polyominoes are usually called 
“strongly embedded lattice animals,” 
and in that context, the analogue of 
the growth rate of polyominoes is the 
growth constant of lattice animals. 
The terms high and low “temperature” 
mean high and low “density” of clus-
ters, respectively, and the term “free 
energy” corresponds to the natural 
logarithm of the growth constant. Lat-
tice animals were used for computing 
the mean cluster density in percolation 
processes, as in Gaunt et al.,12 particu-
larly in processes involving fluid flow in 
random media. Sykes and Glen29 were 
the first to observe that A(n), the total 
number of connected clusters of size n, 
grows asymptotically like Cλnnθ, where 
λ is Klarner’s constant and C, θ are two 
other fixed values. 

Collapse of branched polymers. An-
other important topic in statistical 
physics is the existence of a collapse 
transition of branched polymers in 
dilute solution at a high temperature. 
In physics, a “field” is an entity each of 
whose points has a value that depends 
on location and time. Lubensky and 
Isaacson22 developed a field theory of 
branched polymers in the dilute limit, 
using statistics of (bond) lattice ani-
mals (important in the theory of perco-
lation) to imply when a solvent is good 
or bad for a polymer. Derrida and Herr-
mann10 investigated two-dimensional 
branched polymers by looking at lat-
tice animals on a square lattice and 
studying their free energy. Flesia et al.11 
made the connection between collapse 
processes to percolation theory, relat-
ing the growth constant of strongly em-
bedded site animals to the free energy 
in the processes. Several models of 
branched polymers in dilute solution 
were considered by Madras et al.,24 
proving bounds on the growth con-
stants for each such model. 

Brief History. Determining the exact 
value of λ (or even setting good bounds 
on it) is a notably difficult problem in 
enumerative combinatorics. In 1967, 
Klarner19 showed that the limit λ = 
limn→∞ A(n)1/n exists. Since then, λ has 
been called “Klarner’s constant.” Only 
in 1999, Madras23 proved the stronger 
statement that the asymptotic growth 

Figure 2. A solitaire game involving six 
polyominoes of size 5 (pentominoes),  
two of size 6 (hexominoes), two of  
size 7 (heptominoes), and one of size 8  
(an octomino). The challenge is to tile  
the 8×8 square box with the polyominoes. 

Figure 1. The single monomino (A(1) = 1), 
the two dominoes (A(2) = 2), the A(3) = 6 
triominoes, and the A(4) = 19 tetrominoes 
(Tetris pieces). 
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ing of spheres is the densest possible. 
This proof, in addition to involving 
extensive case enumerations at differ-
ent levels, is also very complicated in 
the interaction between the various 
parts. In August 2014, a team headed 
by Hales announced the completion 
of the Flyspeck project, constructing a 
formal proof of Kepler’s conjecture.16 
Yet another example is the proof by 
Tucker30 for Lorenz’s conjecture (num-
ber 14 in Smale’s list of challenging 
problems for the 21st century). The 
conjecture states that Lorenz’s system 
of three differential equations, pro-
viding a model for atmospheric con-
vection, supports a strange attractor. 
Tucker (page 104)30 described the run 
of a parallel ODE solver several times 
on different computer setups, obtain-
ing similar results. 

Certified Computation. This tech-
nique is based on the idea it may be 
easier to check a given answer for cor-
rectness than come up with such an 
answer from scratch. The prototype 
example is the solution of an equa-
tion like 3x3 − 4x2 − 5x + 2 = 0. While 
it may be a challenge to find the solu-
tion x = 2, it is straightforward to sub-
stitute the solution into the equation 
and check whether it is fulfilled. The 
result is trustworthy not because it is 
accompanied by a formal proof but 
because it is so simple to check, much 
simpler than the algorithm (perhaps 
Newton iteration in this case) used to 
solve the problem in the first place. 
In addition to the solution itself, it 
may be required that a certifying al-
gorithm provide a certificate in order 
to facilitate the checking procedure.25 
Developing such certificates and com-
puting them without excessive over-
head may require algorithmic innova-
tions (see the first sidebar “Certified 
Computations”). 

In our case, the result computed 
by our program can be interpreted 
as the eigenvalue of a giant matrix 
Q, which is not explicitly stored but 
implicitly defined through an itera-
tion procedure. The certificate is a 
vector v that is a good-enough ap-
proximation of the corresponding ei-
genvector. From this vector, one can 
compute certified bounds on the ei-
genvalue in a rather straightforward 
way by comparing the vector v to the 
product Qv. 

These two approaches comple-
ment each other; a simpler check-
ing procedure is more amenable to a 
formal proof and verification proce-
dure. However, we did not go to such 
lengths; a formal verification of the 
program would have made sense only 
in the context of a full verification that 
includes also the human-readable 

parts of the proof. We instead used 
traditional methods of ensuring pro-
gram correctness of the certificate-
checking program. 

Twisted Cylinders 
A “twisted cylinder” is a half-infinite 
wraparound spiral-like square lattice 
(see Figure 3). We denote the perim-

A certifying algorithm not only produces the result but also justifies its correctness by 
supplying a certificate that makes it easy to check the result. In contrast with formally 
verified computation, correctness is established for a particular instance of the 
problem and a concrete result. Here, we illustrate this concept with a few examples; see 
the survey by McConnell et al.25 for a thorough treatment. 

The greatest common divisor. The greatest common divisor of two numbers can be 
found through the ancient Euclidean algorithm. For example, the greatest common 
divisor of 880215 and 244035 is 15. Checking that 15 is indeed a common divisor is 
rather easy, but not clear is that 15 is the greatest. Luckily, the “extended” Euclidean 
algorithm provides a certificate: two integers p = −7571 and q = 27308, such that 
880215p + 244035q = 15. This proves any common divisor of 880215 and 244035 must 
divide 15. No number greater than 15 can thus divide 880215 and 244035. 

Systems of linear equations and inequalities. Consider the three equations 4x − 3y 
+ z = 2, 3x − y + z = 3, and x − 7y – z = 4 in three unknowns x, y, z. It is straightforward 
to verify any proposed solution; however, the equations have no solution. Multiplying 
them by 4, −5, −1, respectively, and adding them up leads to the contradiction 0 = −11. 
The three multipliers thus provide an easy-to-check certificate for the answer. Such 
multipliers can always be found for an unsolvable linear system and can be computed 
as a by-product of the usual solution algorithms. A well-known extension of this 
example is linear programming, the optimization of a linear objective function subject 
to linear equations and inequalities, where an optimality certificate is provided by the 
dual solution. 

Testing a graph for 3-connectedness. Certifying that a graph is not 3-connected is 
straightforward. The certificate consists of two vertices whose removal disconnects the 
graph into several pieces. It has been known since 1973 that a graph can be tested for 
3-connectedness in linear time,17 but all algorithms for this task are complicated. While 
providing a certificate in the negative case is easy, defining an easy-to-check certificate 
in the positive case and finding such a certificate in linear time has required graph-
theoretic and algorithmic innovations.28 This example illustrates that certifiability 
is not primarily an issue of running time. All algorithms, for constructing, as well 
as for checking, the certificate, run in linear time, just like classical non-certifying 
algorithms. The crucial distinction is that the short certificate-checking program is by 
far simpler than the construction algorithm. 

Comparison with the class NP. There is some analogy between a certifying 
algorithm and the complexity class NP. For membership in NP, it is necessary only 
to have a certificate by which correctness of a solution can be checked in polynomial 
time. It does not matter how difficult it is to come up with the solution and find the 
certificate. In contrast with a certifying algorithm, the criterion for the checker is not 
simplicity but more clear-cut—running time. Another difference is that only “positive” 
answers to the problem need to be certified. 

Certified Computations

Figure 3. A twisted cylinder of perimeter W = 5. 
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tion of a Motzkin path and the sidebar 
for the relation between states and 
Motzkin paths. Such a path connects 
the integer grid points (0,0) and (n,0) 
with n steps, consisting only of steps 
taken from {(1,1), (1,0), (1,−1)} and 
not going under the x axis. Asymptoti-
cally, Mn ∼ 3nn−3/2, and MW thus increas-
es roughly by a factor of 3 when W is 
incremented by 1. 

The number of polyominoes with 
n cells that have state s as the bound-
ary equals the number of paths the 
automaton can take from the starting 
state to s, involving n transitions in 
which a cell is added to the polyomi-
no. We compute these numbers in a 
dynamic-programming recursion. 

Method
In 2004, a sequential program that 
computes λW for any perimeter was 
developed by Ares Ribó as part of her 
Ph.D. thesis under the supervision 
of author Günter Rote. The program 
first computes the endpoints of the 
outgoing edges from all states of the 
automaton and saves them in two 
long arrays succ0 and succ1 that cor-
respond to adding an empty or an oc-
cupied cell. Both arrays are of length 
M := MW+1. Two successive iteration 
vectors, which contain the number of 
polyominoes corresponding to each 
boundary, are stored as two arrays yold 
and ynew of numbers, also of length M. 
The four arrays are indexed from 0 to 
M − 1. After initializing yold := (1,0,0,…), 
each iteration computes the new ver-
sion of y through a very simple loop: 

yold := (1,0,0,…); 
repeat till convergence: 
 ynew[0] := 0; 
 for s := 1,…,M − 1: 
(∗)  ynew[s] := ynew[succ0[s]] 
   + yold[succ1[s]]; 
 yold := ynew; 

The pointer succ0[s] may be null, in 
which case the corresponding zero en-
try (ynew[0]) is used. 

As explained earlier, each index s 
represents a state. The states are en-
coded by Motzkin paths, and these 
paths can be mapped to numbers s be-
tween 0 and M − 1 in a bijective man-
ner. See the online appendix for more. 

In the iteration (∗), the vector ynew 
depends on itself, but this does not 

eter or “width” of the twisted cylinder 
by W. Like in the plane, one can count 
polyominoes on a twisted cylinder of 
width W and study their growth con-
stant, λW. Barequet et al. proved the 
sequence (λW) is monotone increas-
ing5 and converges to λ.3 The bigger 
W is thus the better (higher) the lower 
bound λW on λ gets. 

Analyzing the growth constant of 
polyominoes is more convenient on a 
twisted cylinder than in the plane. The 
reason is we want to build up polyomi-
noes incrementally by considering one 
square at a time. On a twisted cylin-
der, this can be done in a uniform way, 
without having to jump to a new row 
from time to time. Imagine we walk 
along the spiral order of squares and 
at each square decide whether or not 
to add it to the polyomino. The size of 
a polyomino is the number of positive 
decisions we make along the way. 

The crucial observation is no matter 
how big the polyominoes get, they can 
be characterized in a finite number of 
ways that depends only on W. All one 
needs to remember is the structure of 
the last W squares of the twisted cyl-
inder (the “boundary” of the polyomi-
no) and how they are interconnected 
through cells that were considered 

before the boundary. This structure 
provides enough information for the 
continuation of the process; when-
ever a new square is considered and 
a decision is taken about whether or 
not to add it to the polyomino, the 
boundary is updated accordingly. 
This update is similar to the compu-
tation of connected components in 
a bi-level image by a row-wise scan. 
In this way, the growth of polyomi-
noes on a twisted cylinder can be mod-
eled by a finite-state automaton whose 
states are all possible boundaries. 
Every state of this automaton has 
two outgoing edges that correspond 
to whether or not the next square is 
added to the polyomino. A slight vari-
ation of this automaton can be seen 
in action in a video animation.7 See 
the online appendix for more on au-
tomata for modeling polyominoes on 
twisted cylinders. See also the second 
sidebar “Representing Boundaries as 
Motzkin Paths.”

The number of states of the au-
tomaton that models the growth of 
polyominoes on a twisted cylinder of 
perimeter W is large4,5—the (W + 1)st 
Motzkin number MW+1. The nth Motz-
kin number Mn counts Motzkin paths 
of length n; see Figure 4 for an illustra-

Figure 4. A Motzkin path of length 7. 

Figure 5. The dependence between the different groups of ynew and yold. 

yold

GWGW−1G i + 1G iG3G2G1 . . .. . .ynew

succ1[s] succ0[s]

GWGW−1G i + 1G iG3G2G1 . . .. . .
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cause any problem because succ0[s], 
if it is non-null, is always less than s. 
There are thus no circular references, 
and each entry is set before it is used. 
In fact, the states can be partitioned 
into groups G1, G2, … , GW; the group 
Gi contains the states corresponding 
to boundaries in which i is the small-
est index of an occupied cell, or the 
boundaries that start with i − 1 empty 
cells. The dependence between the 
entries of the groups is shown sche-
matically in Figure 5; succ0[s] of an en-
try s ∈ Gi (for 1 ≤ i ≤ W − 1), if it is non-
null, belongs to Gi+1. 

At the end, ynew is moved to yold to 
start the new iteration. In the itera-
tion (∗), the new vector ynew is a linear 
function of the old vector yold and, as 
already indicated, can be written as a 
linear transformation yold := Qyold. The 
nonnegative integer matrix Q is im-
plicitly given through the iteration (∗). 
We are interested in the growth rate of 
the sequence of vectors yold that is de-
termined by the dominant eigenvalue 
λW of Q. It is not difficult to show5 that 
after every iteration, λW is contained in 
the interval 

 mins ynew[s]
yold[s]

 ≤ λw ≤  maxs ynew[s]
yold[s]

. (1)

By the Perron-Frobenius Theorem 
about the eigenvalues of nonnegative 
matrices, the two bounds converge to 
λW, and yold converges to a correspond-
ing eigenvector. 

As written, the program calculates 
the exact number of polyominoes 
of each size and state, provided the 
computations are carried out with 
precise integer arithmetic. However, 
these numbers grow like (λw)n, and the 
program can thus not afford to store 
them exactly. Instead, we use single-
precision floating-point numbers for 
yold and ynew. Even so, the program 
must rescale the vector yold from time 
to time in order to prevent floating-
point overflow: Whenever the largest 
entry exceeds 280 at the end of an iter-
ation, the program divides the whole 
vector by 2100. This rescaling does not 
affect the convergence of the proc-
ess. The program terminates when 
the two bounds are close enough. The 
left-hand side of (1) is a lower bound 
on λW, which in turn is a lower bound 
on λ, and this is our real goal. 

Sequential Runs 
In 2004, we obtained good approxi-
mations of yold up to W = 22. The pro-
gram required quite a bit of main 
memory (RAM) by the standards of 
the time. The computation of λ22 ≈ 

3.9801 took approximately six hours 
on a single-processor machine with 
32GB of RAM. (Today, the same pro-
gram runs in 20 minutes on a regu-
lar workstation.) By extrapolating 
the first 22 values of the sequence λW 

The figure here illustrates the representation of polyomino boundaries as Motzkin 
paths. The bottom part of the figure shows a partially constructed polyomino on 
a twisted cylinder of width 16. The dashed line indicates two adjacent cells that 
are connected “around the cylinder,” where such a connection is not immediately 
apparent. The boundary cells (top row) are shown in darker gray. The light-gray 
cells away from the boundary need not be recorded individually; what matters is the 
connectivity among the boundary cells they provide. This connectivity is indicated 
in a symbolic code -AAA-B-CC-AA--AA. Boundary cells in the same component are 
represented by the same letter, and the character '-' denotes an empty cell. However, 
we did not use this code in our program. Instead, we represented a boundary as a 
Motzkin path, as shown in the top part of the figure, because this representation 
allows for a convenient bijection to successive integers and thus for a compact storage 
of the boundary in a vector. Intuitively, the Motzkin path follows the movements of 
a stack when reading the code from left to right. Whenever a new component starts 
(such as component A in position 2 or component B in position 6), the path moves up. 
Whenever a component is temporarily interrupted (such as component A in position 
5), the path also moves up. The path moves down when an interrupted component 
is resumed (such as component A in positions 11 and 15) or when a component is 
completed (positions 7, 10, and 17). The crucial property is that components cannot 
cross; that is, a pattern like ..A..B..A..B.. cannot occur. As a consequence of 
these rules, the occupied cells correspond to odd levels in the path, and the free cells 
correspond to even levels. The correspondence between boundaries and Motzkin 
paths was pointed out by Stefan Felsner of the Technische Universität Berlin (private 
communication). 

Representing Boundaries 
as Motzkin Paths

Polyomino boundaries and Motzkin paths. 

B C CA A A AA AA --- -- -
code

0

2

3

1

9 12 162 3 4 5 8 10 11 13 14 15761

Motzkin path

9 12 162 3 4 5 8 10 11 13 14 157610 17
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and a few other enhancements allowed 
us to compute λ27 and push the lower 
bound on λ above 4.0. Here are the 
main memory-reduction tricks we used 
(see the online appendix for more): 

Elimination of unreachable states. 
Approximately 11% of all states of the 
automaton are unreachable and do not 
affect the result; 

Bit-streaming of the succ0/1 arrays. 
Instead of storing each entry of these 
arrays in a full word, we allocated just 
the required number of bits and stored 
the entries consecutively in a packed 
manner; in addition, we eliminated all 
the null succ0-pointers (approximately 
11% of all pointers); 

Storing higher groups only once. Ap-
proximately 50% of the states (those not 
in G1) were not needed in the recursion 
(∗); we thus did not keep in memory 
yold[⋅] of the respective entries; 

Recomputing succ0. We computed 
the entries of the succ0 array on-the-fly 
instead of keeping them in memory; and 

Streamlining the successor computa-
tion. Instead of representing a Motzkin 
path by a sequence of W + 1 integers, 
we kept a sequence of W + 1 two-bit 
items we could store in one 8-byte 
word; this representation allowed 
us to use word-level operations and 
look-up tables for a fast mapping 
from paths to numbers. 

To make full use of the parallel ca-
pacities, we used the partition of the 
set of states into groups, as in Fig-
ure 5, such that ynew of all elements 
in a group could be computed inde-
pendently. We also parallelized the 
computation of the succ arrays in 
the preprocessing phase and various 
housekeeping tasks. 

Execution. After 120 iterations, 
the program announced the lower 
bound 4.00064 on λ27, thus breaking 
the 4 barrier. We continued to run 
the program for a few more days. On 
May 23, 2013, after 290 iterations, 
the program reached the stable situ-
ation (observed in a few successive 
tens of iterations) 4.002537727 ≤ λ27  
≤ 4.002542973, establishing the new 
record λ > 4.00253. The total running 
time for the computations leading 
to this result was approximately 36 
hours using approximately 1.5TiB 
of RAM. We had exclusive use of the 
server for a few dozen hours in total, 
spread over several weeks. 

(see Figure 6), we estimated that only 
when we reach W = 27 would we break 
the mythical barrier of 4.0. However, 
as mentioned earlier, the storage 
requirement is proportional to MW, 
and MW increases roughly by a fac-
tor of 3 when W is incremented by 1. 
With this exponential growth of both 
memory consumption and running 
time, the goal of breaking the barrier 
was then out of reach. 

Computing λ27 
Environment. In the spring of 2013, 
we were granted access to the Hewlett 
Packard ProLiant DL980 G7 server of 
the Hasso Plattner Institute Future 
SOC Lab in Potsdam, Germany (see 
Figure 7). This server consists of eight 
Intel Xeon X7560 nodes (Intel64 ar-
chitecture), each with eight physical 
2.26GHz processors (16 virtual cores), 
for a total of 64 processors (128 virtual 

cores). Each node was equipped with 
256GiB of RAM (and 24MiB of cache 
memory) for a total of 2TiB of RAM. Si-
multaneous access by all processors to 
the shared main memory was crucial to 
project success. Distributed memory 
would incur a severe penalty in run-
ning time. The machine ran under the 
Ubuntu version of the Gnu/Linux oper-
ating system. We used the C-compiler 
gcc with OpenMP 2.0 directives for 
parallel processing. 

Programming improvements. Since 
for W = 27 the finite automaton has M28 
≈ 2.1 ⋅ 1011 states, we initially estimated 
we would need memory for two 8-byte 
arrays (for storing succ0 and succ1) and 
two 4-byte arrays (for storing yold and 
ynew), all of length M28, for a total of 
24 ⋅ 2.1 ⋅ 1011 ≈ 4.6 TiB of RAM, which 
exceeded the server’s available capac-
ity. Only a combination of paralleliza-
tion, storage-compression techniques, 

Figure 7. Front view of the “supercomputer” we used, a box of approximately 45×35×70 cm. 

Figure 6. Extrapolating the sequence λW. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1

1.5

2.5

2

3

4

3.5

W

λW



JULY 2016  |   VOL.  59  |   NO.  7   |   COMMUNICATIONS OF THE ACM     95

contributed articles

Validity and Certification 
Our proof depends heavily on com-
puter calculations, raising two issues 
about its validity: 

Calculations. Reproducing elabo-
rate calculations on a large computer 
is difficult; particularly when a compli-
cated parallel computer program is in-
volved, everybody should be skeptical 
about the reliability of the results; and 

Computations. We performed the 
computations with 32-bit floating-
point numbers. 

We address these issues in turn. 
What our program was trying to 

compute is an eigenvalue of a ma-
trix. The amount and length of the 
computations are irrelevant to the 
fact that eventually we have stored 
on disk a witness array of floating-
point numbers (the “proof”), approxi-
mately 450GB in size, which is a good 
approximation of the eigenvector 
corresponding to λ27. This array pro-
vides rigorous bounds on the true ei-
genvalue λ27, because the relation (1) 
holds for any vector yold and its succes-
sor vector ynew. To check the proof and 
evaluate the bounds (1), a program 
has to read only the approximate ei-
genvector yold and carry out one itera-
tion (∗). This approach of providing 
simple certificates for the result of 
complicated computations is the phi-
losophy of “certifying algorithms.”25 

To ensure the correctness of our 
checking program, we relied on tradi-
tional methods (such as testing and 
code inspection). Some parts of the 
program (such as reading the data 
from the files) are irrelevant for the 
correctness of the result. The main 
body of the program consists of a 
few simple loops (such as the itera-
tion (∗) and the evaluation of (1)). The 
only technically challenging part of 
the algorithm is the successor com-
putation. For this task, we had two 
programs at our disposal that were 
written independently by two people 
who used different state representa-
tions—and lived in different coun-
tries and did their work several years 
apart. We ran two different checking 
programs based on these procedures, 
giving us additional confidence. We 
also tested explicitly that the two suc-
cessor programs yielded the same re-
sults. Both checking programs ran in 
a purely sequential manner, and the 

running time was approximately 20 
hours each. 

Regarding the accuracy of the cal-
culations, one can analyze how the 
recurrence (∗) produces ynew from 
yold. One finds that each term in the 
lower bound (1) results from the in-
put data (the approximate eigenvec-
tor yold) through at most 26 additions 
of positive numbers for computing 
ynew[s], plus one division, all in single-
precision float. The final minimiza-
tion was error-free. Since we took care 
that no denormalized floating-point 
numbers occurred, the magnitude of 
the numerical errors was comparable 
to the accuracy of floating-point num-
bers, and the accumulated error was 
thus much smaller than the gap we 
opened between our new bound and 
4. By carefully bounding the floating-
point error, we obtained 4.00253176 
as a certified lower bound on λ. In 
particular, we thus now know that the 
leading digit of λ is 4. 
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