
88 COMMUNICATIONS OF THE ACM | JULY 2016 | VOL. 59 | NO. 7

DOI:10.1145/2851485

The universal constant λ, the growth constant
of polyominoes (think Tetris pieces), is
rigorously proved to be greater than 4.

BY GILL BAREQUET, GÜNTER ROTE, AND MIRA SHALAH

What is λ? The universal constant λ arises in the study
of three completely unrelated fields: combinatorics,
percolation, and branched polymers. In combinatorics,
analysis of self-avoiding walks (SAWs, or non-self-
intersecting lattice paths starting at the origin, counted
by lattice units), simple polygons or self-avoiding
polygons (SAPs, or closed SAWs, counted by either
perimeter or area), and “polyominoes” (SAPs possibly
with holes, or edge-connected sets of lattice squares,
counted by area) are all related. In statistical physics,
SAWs and SAPs play a significant role in percolation
processes and in the collapse transition that branched
polymers undergo when being heated. A collection
edited by Guttmann15 gives an excellent review of all

these topics and the connections be-
tween them. In this article, we describe
our effort to prove that the growth con-
stant (or asymptotic growth rate, also
called the “connective constant”) of
polyominoes is strictly greater than 4.
To this aim, we exploited to the maxi-
mum possible computer resources

λ > 4
An Improved
Lower Bound
on the Growth
Constant of
Polyominoes

 key insights
 ! Direct access to large shared RAM is

useful for scientific computations, as well
as for big-data applications.

 ! The growth constant of polyominoes is
provably strictly greater than 4.

 ! The “proof” of this bound is an
eigenvector of a giant matrix Q that
can be verified as corresponding to the
claimed bound—an eigenvalue of Q.

contributed articles

JULY 2016 | VOL. 59 | NO. 7 | COMMUNICATIONS OF THE ACM 89

I
M

A
G

E
 B

Y
 R

A
D

A
C

H
Y

N
S

K
Y

I
 S

E
R

H
I

I

available to us. We eventually obtained
a computer-generated proof that was
verified by other programs implement-
ed independently. We start with a brief
introduction of the three research areas.

Enumerative combinatorics. Imagine
a two-dimensional grid of square cells.
A polyomino is a connected set of cells,
where connectivity is along the sides of
cells but not through corners; see Fig-
ure 1 for examples of small polyomi-
noes. Polyominoes were popularized in
the pioneering book by Golomb13 and
by Martin Gardner’s columns in Scien-
tific American; counting polyominoes
by size became a popular and fascinat-
ing combinatorial problem. The size of
a polyomino is the number of its cells.

Figure 2 shows a puzzle game with

polyominoes of sizes 5–8 cells. In
this article, we consider “fixed” poly-
ominoes; two such polyominoes are
considered identical if one can be ob-
tained from the other by a translation,
while rotations and flipping are not
allowed. The number of polyominoes
of size n is usually denoted as A(n). No
formula is known for this number, but
researchers have suggested efficient
backtracking26,27 and transfer-matrix9,18
algorithms for computing A(n) for a giv-
en value of n. The latter algorithm was
adapted in Barequet et al.5 and also in
this work for polyominoes on so-called
twisted cylinders.

To date, the sequence A(n) has been
determined up to n = 56 by a parallel
computation on a Hewlett Packard

server cluster using 64 processors.18
The exact value of the growth constant
of the sequence λ = limn→∞ A(n + 1)/A(n)
continues to be elusive. Incidentally, in
the square lattice, the growth constant
is very close to the “coordination num-
ber,” or the number of neighbors of
each cell in the lattice (4 in our case).
In this work we reveal (rigorously)
the leading decimal digit of λ. It is 4.
Moreover, we establish that λ is strictly
greater than the coordination number.

Percolation processes. In physics,
chemistry, and materials science, per-
colation theory deals with the move-
ment and filtering of fluids through
porous materials. Giving it a math-
ematical model, the theory describes
the behavior of connected clusters in

90 COMMUNICATIONS OF THE ACM | JULY 2016 | VOL. 59 | NO. 7

contributed articles

rate in the sense of the limit λ = limn→∞
A(n + 1)/A(n) exists.

By using interpolation methods,
Sykes and Glen29 estimated in 1976
that λ = 4.06 ± 0.02. This estimate was
refined several times based on heuris-
tic extrapolation from the increasing
number of known values of A(n). The
most accurate estimate—4.0625696
± 0.0000005—was given by Jensen18
in 2003. Before carrying out this proj-
ect, the best proven bounds on λ
were roughly 3.9801 from below5
and 4.6496 from above.20 λ has thus
always been an elusive constant, of
which not even a single significant
digit was known. Our goal was to raise
the lower bound on λ over the barrier
of 4, and thus reveal its first decimal
digit and prove that λ ≠ 4. The current
improvement of the lower bound on λ
to 4.0025 also cuts the difference be-
tween the known lower bound and the
estimated value of λ by approximately
25%—from 0.0825 to 0.0600.

Computer-Assisted Proofs
Our proof relies heavily on computer
calculations, thus raising questions
about its credibility and reliabil-
ity. There are two complementary ap-
proaches for addressing this issue:
formally verified computations and
certified computations.

Formally verified computing. In this
paradigm, a program is accompanied
by a correctness proof that is refined
to such a degree of detail and formal-
ity it can be checked mechanically
by a computer. This approach and,
more generally, formally verified
“mathematics,” has become feasible
for industry-level software, as well
as for mathematics far beyond toy
problems due to big advances in re-
cent years; see the review by Avigad
and Harrison.2 One highlight is the
formally verified proof by Gonthier14

of the Four-Color Theorem, whose
original proof by Appel and Haken1 in
1977 already relied on computer as-
sistance and was the prime instance
of discussion about the validity and
appropriateness of computer meth-
ods in mathematical proofs. (Inci-
dentally, one step in Gonthier’s proof
also involves polyominoes.) Another
example is the verification of Hales’s
proof21 of the Kepler conjecture, which
states the face-centered cubic pack-

random graphs. Suppose a unit of liq-
uid L is poured on top of some porous
material M. What is the chance L makes
its way through M and reaches the
bottom? An idealized mathematical
model of this process is a two- or three-
dimensional grid of vertices (“sites”)
connected with edges (“bonds”), where
each bond is independently open (or
closed) for liquid flow with some prob-
ability µ. In 1957, Broadbent and Ham-
mersley8 asked, for a fixed value of µ
and for the size of the grid tending to
infinity, what is the probability that a
path consisting of open bonds exists
from the top to the bottom. They es-
sentially investigated solute diffusing
through solvent, molecules penetrat-

ing a porous solid, and similar process-
es, representing space as a lattice with
two distinct types of cells.

In the literature of statistical physics,
fixed polyominoes are usually called
“strongly embedded lattice animals,”
and in that context, the analogue of
the growth rate of polyominoes is the
growth constant of lattice animals.
The terms high and low “temperature”
mean high and low “density” of clus-
ters, respectively, and the term “free
energy” corresponds to the natural
logarithm of the growth constant. Lat-
tice animals were used for computing
the mean cluster density in percolation
processes, as in Gaunt et al.,12 particu-
larly in processes involving fluid flow in
random media. Sykes and Glen29 were
the first to observe that A(n), the total
number of connected clusters of size n,
grows asymptotically like Cλnnθ, where
λ is Klarner’s constant and C, θ are two
other fixed values.

Collapse of branched polymers. An-
other important topic in statistical
physics is the existence of a collapse
transition of branched polymers in
dilute solution at a high temperature.
In physics, a “field” is an entity each of
whose points has a value that depends
on location and time. Lubensky and
Isaacson22 developed a field theory of
branched polymers in the dilute limit,
using statistics of (bond) lattice ani-
mals (important in the theory of perco-
lation) to imply when a solvent is good
or bad for a polymer. Derrida and Herr-
mann10 investigated two-dimensional
branched polymers by looking at lat-
tice animals on a square lattice and
studying their free energy. Flesia et al.11
made the connection between collapse
processes to percolation theory, relat-
ing the growth constant of strongly em-
bedded site animals to the free energy
in the processes. Several models of
branched polymers in dilute solution
were considered by Madras et al.,24
proving bounds on the growth con-
stants for each such model.

Brief History. Determining the exact
value of λ (or even setting good bounds
on it) is a notably difficult problem in
enumerative combinatorics. In 1967,
Klarner19 showed that the limit λ =
limn→∞ A(n)1/n exists. Since then, λ has
been called “Klarner’s constant.” Only
in 1999, Madras23 proved the stronger
statement that the asymptotic growth

Figure 2. A solitaire game involving six
polyominoes of size 5 (pentominoes),
two of size 6 (hexominoes), two of
size 7 (heptominoes), and one of size 8
(an octomino). The challenge is to tile
the 8×8 square box with the polyominoes.

Figure 1. The single monomino (A(1) = 1),
the two dominoes (A(2) = 2), the A(3) = 6
triominoes, and the A(4) = 19 tetrominoes
(Tetris pieces).

JULY 2016 | VOL. 59 | NO. 7 | COMMUNICATIONS OF THE ACM 91

contributed articles

ing of spheres is the densest possible.
This proof, in addition to involving
extensive case enumerations at differ-
ent levels, is also very complicated in
the interaction between the various
parts. In August 2014, a team headed
by Hales announced the completion
of the Flyspeck project, constructing a
formal proof of Kepler’s conjecture.16
Yet another example is the proof by
Tucker30 for Lorenz’s conjecture (num-
ber 14 in Smale’s list of challenging
problems for the 21st century). The
conjecture states that Lorenz’s system
of three differential equations, pro-
viding a model for atmospheric con-
vection, supports a strange attractor.
Tucker (page 104)30 described the run
of a parallel ODE solver several times
on different computer setups, obtain-
ing similar results.

Certified Computation. This tech-
nique is based on the idea it may be
easier to check a given answer for cor-
rectness than come up with such an
answer from scratch. The prototype
example is the solution of an equa-
tion like 3x3 − 4x2 − 5x + 2 = 0. While
it may be a challenge to find the solu-
tion x = 2, it is straightforward to sub-
stitute the solution into the equation
and check whether it is fulfilled. The
result is trustworthy not because it is
accompanied by a formal proof but
because it is so simple to check, much
simpler than the algorithm (perhaps
Newton iteration in this case) used to
solve the problem in the first place.
In addition to the solution itself, it
may be required that a certifying al-
gorithm provide a certificate in order
to facilitate the checking procedure.25
Developing such certificates and com-
puting them without excessive over-
head may require algorithmic innova-
tions (see the first sidebar “Certified
Computations”).

In our case, the result computed
by our program can be interpreted
as the eigenvalue of a giant matrix
Q, which is not explicitly stored but
implicitly defined through an itera-
tion procedure. The certificate is a
vector v that is a good-enough ap-
proximation of the corresponding ei-
genvector. From this vector, one can
compute certified bounds on the ei-
genvalue in a rather straightforward
way by comparing the vector v to the
product Qv.

These two approaches comple-
ment each other; a simpler check-
ing procedure is more amenable to a
formal proof and verification proce-
dure. However, we did not go to such
lengths; a formal verification of the
program would have made sense only
in the context of a full verification that
includes also the human-readable

parts of the proof. We instead used
traditional methods of ensuring pro-
gram correctness of the certificate-
checking program.

Twisted Cylinders
A “twisted cylinder” is a half-infinite
wraparound spiral-like square lattice
(see Figure 3). We denote the perim-

A certifying algorithm not only produces the result but also justifies its correctness by
supplying a certificate that makes it easy to check the result. In contrast with formally
verified computation, correctness is established for a particular instance of the
problem and a concrete result. Here, we illustrate this concept with a few examples; see
the survey by McConnell et al.25 for a thorough treatment.

The greatest common divisor. The greatest common divisor of two numbers can be
found through the ancient Euclidean algorithm. For example, the greatest common
divisor of 880215 and 244035 is 15. Checking that 15 is indeed a common divisor is
rather easy, but not clear is that 15 is the greatest. Luckily, the “extended” Euclidean
algorithm provides a certificate: two integers p = −7571 and q = 27308, such that
880215p + 244035q = 15. This proves any common divisor of 880215 and 244035 must
divide 15. No number greater than 15 can thus divide 880215 and 244035.

Systems of linear equations and inequalities. Consider the three equations 4x − 3y
+ z = 2, 3x − y + z = 3, and x − 7y – z = 4 in three unknowns x, y, z. It is straightforward
to verify any proposed solution; however, the equations have no solution. Multiplying
them by 4, −5, −1, respectively, and adding them up leads to the contradiction 0 = −11.
The three multipliers thus provide an easy-to-check certificate for the answer. Such
multipliers can always be found for an unsolvable linear system and can be computed
as a by-product of the usual solution algorithms. A well-known extension of this
example is linear programming, the optimization of a linear objective function subject
to linear equations and inequalities, where an optimality certificate is provided by the
dual solution.

Testing a graph for 3-connectedness. Certifying that a graph is not 3-connected is
straightforward. The certificate consists of two vertices whose removal disconnects the
graph into several pieces. It has been known since 1973 that a graph can be tested for
3-connectedness in linear time,17 but all algorithms for this task are complicated. While
providing a certificate in the negative case is easy, defining an easy-to-check certificate
in the positive case and finding such a certificate in linear time has required graph-
theoretic and algorithmic innovations.28 This example illustrates that certifiability
is not primarily an issue of running time. All algorithms, for constructing, as well
as for checking, the certificate, run in linear time, just like classical non-certifying
algorithms. The crucial distinction is that the short certificate-checking program is by
far simpler than the construction algorithm.

Comparison with the class NP. There is some analogy between a certifying
algorithm and the complexity class NP. For membership in NP, it is necessary only
to have a certificate by which correctness of a solution can be checked in polynomial
time. It does not matter how difficult it is to come up with the solution and find the
certificate. In contrast with a certifying algorithm, the criterion for the checker is not
simplicity but more clear-cut—running time. Another difference is that only “positive”
answers to the problem need to be certified.

Certified Computations

Figure 3. A twisted cylinder of perimeter W = 5.

W = 5

1

3

4

5

6

7

8

2

2

92 COMMUNICATIONS OF THE ACM | JULY 2016 | VOL. 59 | NO. 7

contributed articles

tion of a Motzkin path and the sidebar
for the relation between states and
Motzkin paths. Such a path connects
the integer grid points (0,0) and (n,0)
with n steps, consisting only of steps
taken from {(1,1), (1,0), (1,−1)} and
not going under the x axis. Asymptoti-
cally, Mn ∼ 3nn−3/2, and MW thus increas-
es roughly by a factor of 3 when W is
incremented by 1.

The number of polyominoes with
n cells that have state s as the bound-
ary equals the number of paths the
automaton can take from the starting
state to s, involving n transitions in
which a cell is added to the polyomi-
no. We compute these numbers in a
dynamic-programming recursion.

Method
In 2004, a sequential program that
computes λW for any perimeter was
developed by Ares Ribó as part of her
Ph.D. thesis under the supervision
of author Günter Rote. The program
first computes the endpoints of the
outgoing edges from all states of the
automaton and saves them in two
long arrays succ0 and succ1 that cor-
respond to adding an empty or an oc-
cupied cell. Both arrays are of length
M := MW+1. Two successive iteration
vectors, which contain the number of
polyominoes corresponding to each
boundary, are stored as two arrays yold
and ynew of numbers, also of length M.
The four arrays are indexed from 0 to
M − 1. After initializing yold := (1,0,0,…),
each iteration computes the new ver-
sion of y through a very simple loop:

yold := (1,0,0,…);
repeat till convergence:
 ynew[0] := 0;
 for s := 1,…,M − 1:
(∗) ynew[s] := ynew[succ0[s]]
 + yold[succ1[s]];
 yold := ynew;

The pointer succ0[s] may be null, in
which case the corresponding zero en-
try (ynew[0]) is used.

As explained earlier, each index s
represents a state. The states are en-
coded by Motzkin paths, and these
paths can be mapped to numbers s be-
tween 0 and M − 1 in a bijective man-
ner. See the online appendix for more.

In the iteration (∗), the vector ynew
depends on itself, but this does not

eter or “width” of the twisted cylinder
by W. Like in the plane, one can count
polyominoes on a twisted cylinder of
width W and study their growth con-
stant, λW. Barequet et al. proved the
sequence (λW) is monotone increas-
ing5 and converges to λ.3 The bigger
W is thus the better (higher) the lower
bound λW on λ gets.

Analyzing the growth constant of
polyominoes is more convenient on a
twisted cylinder than in the plane. The
reason is we want to build up polyomi-
noes incrementally by considering one
square at a time. On a twisted cylin-
der, this can be done in a uniform way,
without having to jump to a new row
from time to time. Imagine we walk
along the spiral order of squares and
at each square decide whether or not
to add it to the polyomino. The size of
a polyomino is the number of positive
decisions we make along the way.

The crucial observation is no matter
how big the polyominoes get, they can
be characterized in a finite number of
ways that depends only on W. All one
needs to remember is the structure of
the last W squares of the twisted cyl-
inder (the “boundary” of the polyomi-
no) and how they are interconnected
through cells that were considered

before the boundary. This structure
provides enough information for the
continuation of the process; when-
ever a new square is considered and
a decision is taken about whether or
not to add it to the polyomino, the
boundary is updated accordingly.
This update is similar to the compu-
tation of connected components in
a bi-level image by a row-wise scan.
In this way, the growth of polyomi-
noes on a twisted cylinder can be mod-
eled by a finite-state automaton whose
states are all possible boundaries.
Every state of this automaton has
two outgoing edges that correspond
to whether or not the next square is
added to the polyomino. A slight vari-
ation of this automaton can be seen
in action in a video animation.7 See
the online appendix for more on au-
tomata for modeling polyominoes on
twisted cylinders. See also the second
sidebar “Representing Boundaries as
Motzkin Paths.”

The number of states of the au-
tomaton that models the growth of
polyominoes on a twisted cylinder of
perimeter W is large4,5—the (W + 1)st
Motzkin number MW+1. The nth Motz-
kin number Mn counts Motzkin paths
of length n; see Figure 4 for an illustra-

Figure 4. A Motzkin path of length 7.

Figure 5. The dependence between the different groups of ynew and yold.

yold

GWGW−1G i + 1G iG3G2G1ynew

succ1[s] succ0[s]

GWGW−1G i + 1G iG3G2G1

JULY 2016 | VOL. 59 | NO. 7 | COMMUNICATIONS OF THE ACM 93

contributed articles

cause any problem because succ0[s],
if it is non-null, is always less than s.
There are thus no circular references,
and each entry is set before it is used.
In fact, the states can be partitioned
into groups G1, G2, … , GW; the group
Gi contains the states corresponding
to boundaries in which i is the small-
est index of an occupied cell, or the
boundaries that start with i − 1 empty
cells. The dependence between the
entries of the groups is shown sche-
matically in Figure 5; succ0[s] of an en-
try s ∈ Gi (for 1 ≤ i ≤ W − 1), if it is non-
null, belongs to Gi+1.

At the end, ynew is moved to yold to
start the new iteration. In the itera-
tion (∗), the new vector ynew is a linear
function of the old vector yold and, as
already indicated, can be written as a
linear transformation yold := Qyold. The
nonnegative integer matrix Q is im-
plicitly given through the iteration (∗).
We are interested in the growth rate of
the sequence of vectors yold that is de-
termined by the dominant eigenvalue
λW of Q. It is not difficult to show5 that
after every iteration, λW is contained in
the interval

 mins ynew[s]
yold[s]

 ≤ λw ≤ maxs ynew[s]
yold[s]

. (1)

By the Perron-Frobenius Theorem
about the eigenvalues of nonnegative
matrices, the two bounds converge to
λW, and yold converges to a correspond-
ing eigenvector.

As written, the program calculates
the exact number of polyominoes
of each size and state, provided the
computations are carried out with
precise integer arithmetic. However,
these numbers grow like (λw)n, and the
program can thus not afford to store
them exactly. Instead, we use single-
precision floating-point numbers for
yold and ynew. Even so, the program
must rescale the vector yold from time
to time in order to prevent floating-
point overflow: Whenever the largest
entry exceeds 280 at the end of an iter-
ation, the program divides the whole
vector by 2100. This rescaling does not
affect the convergence of the proc-
ess. The program terminates when
the two bounds are close enough. The
left-hand side of (1) is a lower bound
on λW, which in turn is a lower bound
on λ, and this is our real goal.

Sequential Runs
In 2004, we obtained good approxi-
mations of yold up to W = 22. The pro-
gram required quite a bit of main
memory (RAM) by the standards of
the time. The computation of λ22 ≈

3.9801 took approximately six hours
on a single-processor machine with
32GB of RAM. (Today, the same pro-
gram runs in 20 minutes on a regu-
lar workstation.) By extrapolating
the first 22 values of the sequence λW

The figure here illustrates the representation of polyomino boundaries as Motzkin
paths. The bottom part of the figure shows a partially constructed polyomino on
a twisted cylinder of width 16. The dashed line indicates two adjacent cells that
are connected “around the cylinder,” where such a connection is not immediately
apparent. The boundary cells (top row) are shown in darker gray. The light-gray
cells away from the boundary need not be recorded individually; what matters is the
connectivity among the boundary cells they provide. This connectivity is indicated
in a symbolic code -AAA-B-CC-AA--AA. Boundary cells in the same component are
represented by the same letter, and the character '-' denotes an empty cell. However,
we did not use this code in our program. Instead, we represented a boundary as a
Motzkin path, as shown in the top part of the figure, because this representation
allows for a convenient bijection to successive integers and thus for a compact storage
of the boundary in a vector. Intuitively, the Motzkin path follows the movements of
a stack when reading the code from left to right. Whenever a new component starts
(such as component A in position 2 or component B in position 6), the path moves up.
Whenever a component is temporarily interrupted (such as component A in position
5), the path also moves up. The path moves down when an interrupted component
is resumed (such as component A in positions 11 and 15) or when a component is
completed (positions 7, 10, and 17). The crucial property is that components cannot
cross; that is, a pattern like ..A..B..A..B.. cannot occur. As a consequence of
these rules, the occupied cells correspond to odd levels in the path, and the free cells
correspond to even levels. The correspondence between boundaries and Motzkin
paths was pointed out by Stefan Felsner of the Technische Universität Berlin (private
communication).

Representing Boundaries
as Motzkin Paths

Polyomino boundaries and Motzkin paths.

B C CA A A AA AA --- -- -
code

0

2

3

1

9 12 162 3 4 5 8 10 11 13 14 15761

Motzkin path

9 12 162 3 4 5 8 10 11 13 14 157610 17

94 COMMUNICATIONS OF THE ACM | JULY 2016 | VOL. 59 | NO. 7

contributed articles

and a few other enhancements allowed
us to compute λ27 and push the lower
bound on λ above 4.0. Here are the
main memory-reduction tricks we used
(see the online appendix for more):

Elimination of unreachable states.
Approximately 11% of all states of the
automaton are unreachable and do not
affect the result;

Bit-streaming of the succ0/1 arrays.
Instead of storing each entry of these
arrays in a full word, we allocated just
the required number of bits and stored
the entries consecutively in a packed
manner; in addition, we eliminated all
the null succ0-pointers (approximately
11% of all pointers);

Storing higher groups only once. Ap-
proximately 50% of the states (those not
in G1) were not needed in the recursion
(∗); we thus did not keep in memory
yold[⋅] of the respective entries;

Recomputing succ0. We computed
the entries of the succ0 array on-the-fly
instead of keeping them in memory; and

Streamlining the successor computa-
tion. Instead of representing a Motzkin
path by a sequence of W + 1 integers,
we kept a sequence of W + 1 two-bit
items we could store in one 8-byte
word; this representation allowed
us to use word-level operations and
look-up tables for a fast mapping
from paths to numbers.

To make full use of the parallel ca-
pacities, we used the partition of the
set of states into groups, as in Fig-
ure 5, such that ynew of all elements
in a group could be computed inde-
pendently. We also parallelized the
computation of the succ arrays in
the preprocessing phase and various
housekeeping tasks.

Execution. After 120 iterations,
the program announced the lower
bound 4.00064 on λ27, thus breaking
the 4 barrier. We continued to run
the program for a few more days. On
May 23, 2013, after 290 iterations,
the program reached the stable situ-
ation (observed in a few successive
tens of iterations) 4.002537727 ≤ λ27
≤ 4.002542973, establishing the new
record λ > 4.00253. The total running
time for the computations leading
to this result was approximately 36
hours using approximately 1.5TiB
of RAM. We had exclusive use of the
server for a few dozen hours in total,
spread over several weeks.

(see Figure 6), we estimated that only
when we reach W = 27 would we break
the mythical barrier of 4.0. However,
as mentioned earlier, the storage
requirement is proportional to MW,
and MW increases roughly by a fac-
tor of 3 when W is incremented by 1.
With this exponential growth of both
memory consumption and running
time, the goal of breaking the barrier
was then out of reach.

Computing λ27
Environment. In the spring of 2013,
we were granted access to the Hewlett
Packard ProLiant DL980 G7 server of
the Hasso Plattner Institute Future
SOC Lab in Potsdam, Germany (see
Figure 7). This server consists of eight
Intel Xeon X7560 nodes (Intel64 ar-
chitecture), each with eight physical
2.26GHz processors (16 virtual cores),
for a total of 64 processors (128 virtual

cores). Each node was equipped with
256GiB of RAM (and 24MiB of cache
memory) for a total of 2TiB of RAM. Si-
multaneous access by all processors to
the shared main memory was crucial to
project success. Distributed memory
would incur a severe penalty in run-
ning time. The machine ran under the
Ubuntu version of the Gnu/Linux oper-
ating system. We used the C-compiler
gcc with OpenMP 2.0 directives for
parallel processing.

Programming improvements. Since
for W = 27 the finite automaton has M28
≈ 2.1 ⋅ 1011 states, we initially estimated
we would need memory for two 8-byte
arrays (for storing succ0 and succ1) and
two 4-byte arrays (for storing yold and
ynew), all of length M28, for a total of
24 ⋅ 2.1 ⋅ 1011 ≈ 4.6 TiB of RAM, which
exceeded the server’s available capac-
ity. Only a combination of paralleliza-
tion, storage-compression techniques,

Figure 7. Front view of the “supercomputer” we used, a box of approximately 45×35×70 cm.

Figure 6. Extrapolating the sequence λW.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1

1.5

2.5

2

3

4

3.5

W

λW

JULY 2016 | VOL. 59 | NO. 7 | COMMUNICATIONS OF THE ACM 95

contributed articles

Validity and Certification
Our proof depends heavily on com-
puter calculations, raising two issues
about its validity:

Calculations. Reproducing elabo-
rate calculations on a large computer
is difficult; particularly when a compli-
cated parallel computer program is in-
volved, everybody should be skeptical
about the reliability of the results; and

Computations. We performed the
computations with 32-bit floating-
point numbers.

We address these issues in turn.
What our program was trying to

compute is an eigenvalue of a ma-
trix. The amount and length of the
computations are irrelevant to the
fact that eventually we have stored
on disk a witness array of floating-
point numbers (the “proof”), approxi-
mately 450GB in size, which is a good
approximation of the eigenvector
corresponding to λ27. This array pro-
vides rigorous bounds on the true ei-
genvalue λ27, because the relation (1)
holds for any vector yold and its succes-
sor vector ynew. To check the proof and
evaluate the bounds (1), a program
has to read only the approximate ei-
genvector yold and carry out one itera-
tion (∗). This approach of providing
simple certificates for the result of
complicated computations is the phi-
losophy of “certifying algorithms.”25

To ensure the correctness of our
checking program, we relied on tradi-
tional methods (such as testing and
code inspection). Some parts of the
program (such as reading the data
from the files) are irrelevant for the
correctness of the result. The main
body of the program consists of a
few simple loops (such as the itera-
tion (∗) and the evaluation of (1)). The
only technically challenging part of
the algorithm is the successor com-
putation. For this task, we had two
programs at our disposal that were
written independently by two people
who used different state representa-
tions—and lived in different coun-
tries and did their work several years
apart. We ran two different checking
programs based on these procedures,
giving us additional confidence. We
also tested explicitly that the two suc-
cessor programs yielded the same re-
sults. Both checking programs ran in
a purely sequential manner, and the

running time was approximately 20
hours each.

Regarding the accuracy of the cal-
culations, one can analyze how the
recurrence (∗) produces ynew from
yold. One finds that each term in the
lower bound (1) results from the in-
put data (the approximate eigenvec-
tor yold) through at most 26 additions
of positive numbers for computing
ynew[s], plus one division, all in single-
precision float. The final minimiza-
tion was error-free. Since we took care
that no denormalized floating-point
numbers occurred, the magnitude of
the numerical errors was comparable
to the accuracy of floating-point num-
bers, and the accumulated error was
thus much smaller than the gap we
opened between our new bound and
4. By carefully bounding the floating-
point error, we obtained 4.00253176
as a certified lower bound on λ. In
particular, we thus now know that the
leading digit of λ is 4.

Acknowledgments
We acknowledge the support of the fa-
cilities and staff of the Hasso Plattner
Institute Future SOC Lab in Potsdam,
Germany, who let us use their Hewlett
Packard ProLiant DL980 G7 server. A
technical version of this article6 was
presented at the 23rd Annual European
Symposium on Algorithms in Patras,
Greece, September 2015.

References
1. Appel, K. and Haken, W. Every planar map is four

colorable. Illinois Journal of Mathematics 21, 3 (Sept.
1977), 429−490 (part I) and 491−567 (part II).

2. Avigad, J. and Harrison, J. Formally verified
mathematics. Commun. ACM 57, 4 (April 2014), 66−75.

3. Aleksandrowicz, G., Asinowski, A., Barequet, G., and
Barequet, R. Formulae for polyominoes on twisted
cylinders. In Proceedings of the Eighth International
Conference on Language and Automata Theory and
Applications, Lecture Notes in Computer Science
8370 (Madrid, Spain, Mar. 10−14). Springer-Verlag,
Heidelberg, New York, Dordrecht, London, 2014, 76–87.

4. Barequet, G. and Moffie, M. On the complexity of Jensen’s
algorithm for counting fixed polyominoes. Journal of
Discrete Algorithms 5, 2 (June 2007), 348−355.

5. Barequet, G., Moffie, M., Ribó, A., and Rote, G. Counting
polyominoes on twisted cylinders. INTEGERS:
Electronic Journal of Combinatorial Number Theory 6
(Sept. 2006), #A22, 37.

6. Barequet, G., Rote, G., and Shalah, M. λ > 4. In
Proceedings of the 23rd Annual European Symposium
on Algorithms Lecture Notes in Computer Science
9294 (Patras, Greece, Sept. 14−16). Springer-Verlag,
Berlin Heidelberg, Germany, 2015, 83−94.

7. Barequet, G. and Shalah, M. Polyominoes on twisted
cylinders. In the Video Review at the 29th Annual
Symposium on Computational Geometry (Rio de
Janeiro, Brazil, June 17–20). ACM Press, New York,
2013, 339−340; http://www.computational-geometry.
org/SoCG-videos/socg13video

8. Broadbent, S.R. and Hammersley, J.M. Percolation
processes: I. Crystals and mazes. Proceedings of the
Cambridge Philosophical Society 53, 3 (July 1957),
629−641.

9. Conway, A. Enumerating 2D percolation series by the
finite-lattice method: Theory. Journal of Physics, A:
Mathematical and General 28, 2 (Jan. 1995), 335−349.

10. Derrida, B. and Herrmann, H.J. Collapse of branched
polymers. Journal de Physique 44, 12 (Dec. 1983),
1365−1376.

11. Flesia, S., Gaunt, D.S., Soteros, C.E., and Whittington,
S.G. Statistics of collapsing lattice animals. Journal
of Physics, A: Mathematical and General 27, 17 (Sept.
1994), 5831−5846.

12. Gaunt, D.S., Sykes, M.F., and Ruskin, H. Percolation
processes in d-dimensions. Journal of Physics
A: Mathematical and General 9, 11 (Nov. 1976),
1899−1911.

13. Golomb, S.W. Polyominoes, Second Edition. Princeton
University Press, Princeton, NJ, 1994.

14. Gonthier, G. Formal proof—The four color theorem.
Notices of the AMS 55, 11 (Dec. 2008), 1382−1393.

15. Guttmann, A.J., Ed. Polygons, Polyominoes and
Polycubes, Lecture Notes in Physics 775. Springer,
Heidelberg, Germany, 2009.

16. Hales, T., Solovyev, A., and Le Truong, H. The Flyspeck
Project: Announcement of Completion, Aug. 10,
2014; https://code.google.com/p/flyspeck/wiki/
AnnouncingCompletion

17. Hopcroft, J.E. and Tarjan, R.E. Dividing a graph
into triconnected components. SIAM Journal of
Computing 2, 3 (Sept. 1973), 135−158.

18. Jensen, I. Counting polyominoes: A parallel
implementation for cluster computing. In Proceedings
of the International Conference on Computational
Science, Part III, Lecture Notes in Computer Science,
2659 (Melbourne, Australia, and St. Petersburg,
Russian Federation, June 2−4). Springer-Verlag, Berlin,
Heidelberg, New York, 2003, 203−212.

19. Klarner, D.A. Cell growth problems. Canadian Journal
of Mathematics 19, 4 (1967), 851−863.

20. Klarner, D.A. and Rivest, R.L. A procedure for improving
the upper bound for the number of n-ominoes. Canadian
Journal of Mathematics 25, 3 (Jan. 1973), 585−602.

21. Lagarias, J.C., Ed. The Kepler Conjecture: The Hales-
Ferguson Proof. Springer, New York, 2011.

22. Lubensky, T.C. and Isaacson, J. Statistics of lattice
animals and dilute branched polymers. Physical
Review A 20, 5 (Nov. 1979), 2130−2146.

23. Madras, N. A pattern theorem for lattice clusters.
Annals of Combinatorics 3, 2–4 (June 1999), 357−384.

24. Madras, N., Soteros, C.E., Whittington, S.G., Martin,
J.L., Sykes, M.F., Flesia, S., and Gaunt, D.S. The free
energy of a collapsing branched polymer. Journal of
Physics, A: Mathematical and General 23, 22 (Nov.
1990), 5327−5350.

25. McConnell, R.M., Mehlhorn, K., Näher, S., and
Schweitzer, P. Certifying algorithms. Computer
Science Review 5, 2 (May 2011), 119−161.

26. Mertens, S. and Lautenbacher, M.E. Counting lattice
animals: A parallel attack. Journal of Statistical
Physics 66, 1–2 (Jan. 1992), 669−678.

27. Redelmeier, D.H. Counting polyominoes: Yet another
attack. Discrete Mathematics 36, 3 (Dec. 1981), 191−203.

28. Schmidt, J.M. Contractions, removals and certifying
3-connectivity in linear time, SIAM Journal on
Computing 42, 2 (Mar. 2013), 494−535.

29. Sykes, M.F. and Glen, M. Percolation processes in two
dimensions: I. Low-density series expansions. Journal
of Physics, A: Mathematical and General 9, 1 (Jan.
1976), 87−95.

30. Tucker, W. A rigorous ODE solver and Smale’s 14th
problem. Foundations of Computational Mathematics 2,
1 (Jan. 2002), 53−117.

Gill Barequet (barequet@cs.technion.ac.il) is an associate
professor in and vice dean of the Department of Computer
Science at the Technion - Israel Institute of Technology,
Haifa, Israel.

Günter Rote (rote@inf.fu-berlin.de) is a professor in the
Department of Computer Science at Freie Universität
Berlin, Germany.

Mira Shalah (mshalah@cs.technion.ac.il) is a Ph.D.
student, under the supervision of Gill Barequet, in
the Department of Computer Science at the Technion -
Israel Institute of Technology, Haifa, Israel.

© 2016 ACM 0001-0782/16/07 $15.00

