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Abstract

In this paper we develop a theoretical framework for computing the explicit formula enumerating polycubes
with n cubes that span n−k dimensions, for a fixed k and variable n. Besides the fundamental importance
of knowing the number of these simple combinatorial objects, known as proper polycubes, such formulae are
central in the literature of statistical physics in the study of percolation processes and collapse of branched
polymers. We use this framework to prove the known, yet unproven conjecture about the general form of the
formula for a varying k, and implement a computer program which reaffirmed the known formulae for k = 2
and k = 3, and proved rigorously, for the first time, the formulae for k = 4 and k = 5.

1 Introduction

A d-dimensional polycube of size n is a connected set of n cubes in d dimensions, where connectivity is through
(d−1)-dimensional faces. Two fixed polycubes are considered the same if one can be obtained by a translation of
the other. We consider here only fixed polycubes, so we will omit this adjective throughout the paper. A polycube
is said to be proper in d dimensions if the convex hull of the centers of its cubes is d-dimensional. Following
Lunnon [16], we let DX(n, d) denote the number of fixed polycubes of size n that are proper in d dimensions.
Similarly, we denote by DT(n, d) the number of fixed tree polycubes (polycubes whose cell-adjacency graph is
a tree) of size n which are proper in d dimensions. Despite the simplicity of their definition, computing the
functions DX(n, d) and DT(n, d) has shown to be an extremely difficult task.

Enumeration of polycubes and computing their asymptotic growth rate are important problems in combina-
torics and discrete geometry, originating in statistical physics [9]. While in the mathematical literature these
objects are called polycubes (polyominoes in two dimensions), they are usually referred to as lattice animals in
the literature of statistical physics, where they play a fundamental role in the analysis of percolation processes
and collapse of branched polymers. To-date, no formula is known for Ad(n), the number of fixed polycubes
of size n in d dimensions, for any fixed value of d, let alone in the general case. Counting polyominoes is a
long-standing problem. The number of polyominoes, A2(n), is currently known up to n = 56 [12]. Tabulations
of counts of polycubes in higher dimensions appear in the mathematics literature [1, 15, 16] as well as in the
statistical-physics literature [10, 11, 19]. The main interest in the function DX stems from the fact that Ad(n)
can be easily computed using the formula

Ad(n) =

d∑
i=0

(
d

i

)
DX(n, i)

given originally by Lunnon [16]. The formula is proved by noting that every proper i-dimensional polycube can
be embedded in the d-dimensional space in exactly

(
d
i

)
different ways (according to the choice of dimensions for

the polycube to occupy). Also, if n ≤ d, the polycube simply cannot occupy all the dimensions (since a polycube
of size n can occupy at most n− 1 dimensions), and so DX(n, d) = 0 in this case. Hence, in a matrix listing the
values of DX, the top-right triangular half and the main diagonal contain only 0s. This gives rise to the question
of whether a pattern can be found in the sequences DX(n, n − k), where k < n is the ordinal number of the
diagonal. Obviously, if a simple formula is found for DX(n, n − k) for every k, this will yield a simple formula
for Ad(n) (using Lunnon’s formula). Lunnon’s formula has been widely used in the statistical-physics literature
on lattice animals, and is called a “partition formula,” where the partition is usually according to a few more
parameters (attributes of the polycubes). The earliest references for this, that we are aware of, are from the
1960s.

The growth-rate limit of polycubes has also attracted much attention in the literature. Klarner [13] showed
in a seminal work the existence of the limit λ2 = limn→∞

n
√
A2(n). Only 32 years later, Madras [18] proved the
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convergence of the sequence (A2(n + 1)/A2(n))∞n=1 to λ2, the growth rate limit of polyominoes (also known as
Kalrner’s constant or the growth constant of polyominoes). The exact value of λ2 has remained elusive till these
days. The currently best known lower and upper bounds on λ2 are roughly 4.0025 [7] and 4.5685 [5], respectively.
In fact, this leading decimal digit of λ was revealed [7] quite recently, after remaining illusive for over 50 years.
In d > 2 dimensions, λd, the growth constant of the number of d-dimensional polycubes, also exists [18]. It was
proven [8] that λd = 2ed − o(d); moreover, λd was estimated (2d − 3)e + O(1/d). In [2] it was shown that λTd ,
the growth constant of tree polycubes is also 2ed− o(d), and was estimated at (2d− 3.5)e+O(1/d).

Significant progress in estimating λd has been obtained along the years in the literature of statistical physics,
although the computations usually relied on unproven assumptions and on formulae for DX(n, n−k) which were
interpolated empirically from known values of Ad(n).

Peard and Gaunt [21] predicted that the diagonal formula DX(n, n−k) has the pattern 2n−2k+1nn−2k−1gk(n)
(for k > 1), where gk(n) is a polynomial in n. In fact, k has to be a root of gk(n) since DX(n, 0) = 0 for n > 1.
Therefore, the expected form is 2n−2k+1nn−2k−1(n − k)hk(n), where hk(n) is a polynomial in n, and explicit
formulae for hk(n) for k ≤ 6 were conjectured [21]. Luther and Mertens [17] later conjectured a formula for
k = 7. After a careful inspection of the polynomials, which revealed that the leading coefficient of hk(n) has the
form 2k−1/(k − 1)!, Asinowski et. al. [3] refined the conjectured formula to

DX(n, n− k) =
2n−knn−2k−1(n− k)

(k − 1)!
Pc(n),

where Pc(n) is a monic polynomial in n. It has also been conjectured [8, 17] that the degree of Pc(n) is 3k − 4.
In this paper, we prove this refined conjecture rigorously.

Using Cayley trees, it can be shown (see, e.g. [8]) that

DX(n, n− 1) = 2n−1nn−3

(sequence A127670 in The Online Encyclopedia of Integer Sequences [20]). Barequet et al. [8] proved rigorously,
for the first time, that

DX(n, n− 2) = 2n−3nn−5(n− 2)(2n2 − 6n+ 9)

(sequence A171860). The proof uses a case analysis of the possible structures of spanning trees of the polycubes,
and the various ways in which cycles can be formed in their cell-adjacency graphs. Similarly, Asinowski et al. [3]
proved that

DX(n, n− 3) = 2n−6nn−7(n− 3)(12n5 − 104n4 + 360n3 − 679n2 + 1122n− 1560)/3

again, by counting spanning trees of polycubes, yet the reasoning and the calculations were significantly more
involved. The inclusion-exclusion principle was applied in the proof in order to count correctly polycubes whose
cell-adjacency graphs contained certain subgraphs, so-called “distinguished structures.” In comparison with the
case k = 2, the number of such structures for k = 3 is substantially higher, and the ways in which they can appear
in spanning trees are much more varied. The latter proof provided a better understanding of the difficulties that
one would face in applying this technique to higher values of k. The number of distinguished structures grows
rapidly, the inclusion relations between them are much more complicated, and the ways in which they will be
connected by forests are much more varied. This will yield a large number of terms in the inclusion-exclusion
analysis. As anticipated [3], carrying this approach beyond k=3 would create a case analysis beyond the patience
of a human, making it totally impractical to manually achieve a similar proof for k > 3.

In this paper we create a theoretical set-up for proving the formula for DX(n, n − k), for a fixed value of k.
Our method fully automates the manual method presented in [8, 3], allowing the case analysis to be made by a
computer. For this nontrivial generalization we prove a few key observations about polycubes that are proper in
n−k dimensions. We also provide a general characterization of distinguished structures, and design algorithms
that produce, analyze, and enumerate them automatically, even for complex structures, forests, and cycles that
do not appear in the case k=3. Using our implementation of this method, we find the explicit formula (which
has never been proven before) for DT(n, n − 4), DX(n, n − 4), DT(n, n − 5) and DX(n, n − 5), stated in the
following theorems.

Theorem 1 DT(n, n− 4) = 2n−7nn−9(n− 4)(8n8 − 140n7 + 1010n6 − 3913n5 + 9201n4 − 15662n3 + 34500n2 −
120552n+ 221760)/6.

Theorem 2 DX(n, n− 4) = 2n−7nn−9(n− 4)(8n8 − 128n7 + 828n6 − 2930n5 + 7404n4 − 17523n3 + 41527n2 −
114302n+ 204960)/6.
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(a) Polycube P (b) Adjacency graph γ(P ) (c) The spanning trees of γ(P )

Figure 1: A polycube P , the corresponding adjacency graph γ(P ), and the spanning trees of γ(P ).

Theorem 3 DT(n, n−5) = 2n−9nn−11(n−5)(240n11−6480n10+73640n9−461232n8+1778615n7−4707195n6+
11632070n5 − 41919528n4 + 158857920n3 − 483329520n2 + 1481660640n− 2863123200)/360.

Theorem 4 DX(n, n−5)2n−12nn−11(n−5)(240n11−6000n10 +62240n9−356232n8 +1335320n7−4062240n6 +
12397445n5 − 42322743n4 + 150403080n3 − 535510740n2 + 1923269040n− 3731495040)

2 Definitions and Notations

Integer Partition. A partition of a positive integer m is a way of writing m as the sum of one or more positive
integers, i.e., m =

∑
i ai. Two sums that differ only in the order of their summands are considered the same,

and so we choose the canonic representation of a partition to be the list of its summands in nondecreasing order.
Let Π(m) denote the set of all the partitions of the positive integer m. For example, there are two partitions
of the integer 2 and three partitions of the integer 3: Π(2) = {1 + 1, 2} and Π(3) = {1 + 1 + 1, 1 + 2, 3}. For
a partition p, we denote by |p| the number of summands in p, and by p[i] the ith summand of p. Also, we

let psum =
∑|p|
i=1 p[i] denote the sum of the elements of p and π(p) denote the number of essentially-different

permutations of the summands of p. For example, π(1, 1, 1) = 1, and π(1, 2) = 2 (there are two different
permutations of its summands: 1, 2 and 2, 1). When p1 and p2 are two partitions, we will say that p1 contains
p2, denoting this relation by p2 � p1, if there is a subpartition p∗1 of p1 (an ordered subset of the elements of p1),
such that |p∗1| = |p2| and p2[i] ≤ p∗1[i] for all 1 ≤ i ≤ |p2|. For example, 2 � 1 + 2, but 2 � 1 + 1 + 1.

Graph Isomorphism. Let G = (VG, EG) and H = (VH , EH) be two directed edge-labeled graphs with respective
edge labelsWG andWH , such that |VG| ≤ |VH |. G is said to be isomorphic toH if there is a bijection f : VG → VH
such that

• If for u, v ∈ VG, (u, v) ∈ EG, then (f(u), f(v)) ∈ EH ; and

• If for e1 = (u1, v1), e2 = (u2, v2) ∈ EG, the labels of e1 and e2 are equal, then the labels of (f(u1), f(v1))
and (f(u2), f(v2)) are equal.

An automorphism of G is a form of symmetry in which G is mapped into itself while preserving the conditions
above.

3 Overview of the Method

Denote by Pn the set of proper polycubes of size n in n−k dimensions. (The value of k is fixed, therefore we
omit it from the notation.) Let P ∈ Pn, and let γ(P ) denote the directed edge-labeled graph that is constructed
as follows: The vertices of γ(P ) correspond to the cells of P ; two vertices of γ(P ) are connected by an edge if
the corresponding cells of P are adjacent; an edge has label i (1 ≤ i ≤ n − k) if the corresponding cells have
different i-coordinate (their common (d − 1)-dimensional face is perpendicular to the xi axis); The direction of
the edge is from the lower to the higher cell. (with respect to the xi direction.) See Figure 1 for an example.

Since P 7→ γ(P ) is an injection, it suffices to count the graphs obtained from the members of Pn in this way.
We shall count these graphs by counting their spanning trees. A spanning tree of γ(P ) has n−1 edges labeled
by numbers from the set {1, 2, ..., n − k}; all these labels are present because the polycube is proper in n−k
dimensions. Hence, n−k edges of the spanning tree are labeled with the labels 1, 2, ..., n− k, and the remaining
k−1 edges are labeled with repeated labels from the same set. Observation 6 characterizes all the different
possibilities of repeated edge-labels in the spanning tree of a proper polycube.
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Observation 5 Let i be a positive integer, and let p ∈ Π(i) be a partition of i. Let pr = i + |p|. Then,
i+ 1 ≤ pr ≤ 2i. This follows from the fact that 1 ≤ |p| ≤ i.

Observation 6 There is a bijection between the possibilities of repeated edge-labels and the partitions of the

integer k−1. Specifically, each partition p =
∑|p|
i=1 ai ∈ Π(k − 1) corresponds to the possibility of having |p|

different repeated labels in the spanning tree (and pr repeated labels in total), such that the ith repeated label
appears ai+1 times. In such case, we will say that the tree is labeled according to p.

Observation 7 Every label must occur an even number of times in any cycle of γ(P ).

A clear consequence of Observation 6 is that a tree can have at most 2(k − 1) repeated edge labels, in such
case the repeated labels appear in k − 1 pairs. In addition, the number of cycles in γ(P ) and the length of each
such cycle are bounded from above due to the limited multiplicity of labels.

In order to compute |Pn|, we consider all the possible directed edge-labeled trees of size n with edge labels as
observed, and count only those that represent valid polycubes. In the next section we characterize all substruc-
tures that are present in some of these trees due to the fact that the number of cells is greater than the number
of dimensions. By analyzing these substructures, we will be able to compute how many of these trees actually
represent polycubes. Then, we develop formulae for the numbers of all possible spanning trees of the polycubes,
and then derive the actual number of polycubes.

3.1 Counting

Lemma 8 [3, Lemma 7] [8, Lemma 2] The number of directed trees with n vertices and n−1 distinct edge labels
1, ..., n− 1 is 2n−1nn−3, for n ≥ 2.

Our approach is to count polycubes by enumerating spanning trees of their adjacency graphs. In order to apply
Lemma 8 to counting spanning trees of polycubes, we shall distinguished between the repeated labels in a tree.
As explained in the previous chapter, a spanning tree T of γ(P ), for a polycube P ∈ Pn, must be labeled
according to some partition p ∈ Π(k − 1). Let us then denote by `1, . . . `|p| the repeated labels of T such that `i
appears p[i] times in T . We will distinguish between the edges of T labeled with `i by relabeling them with the

labels `i, `
′
i, ..., `i

′(p[i]−1) (see, e.g. Figure 1 (c)). However, in γ(P ), the repeated labels are not distinguished. The

trees that can be obtained by exchanging (permuting) `i, `
′
i, . . . , `

′(p[i])
i (for every `i), are, in fact, also spanning

trees of γ(P ).
As a result, after enumerating all the spanning trees that correspond to valid polycubes, every polycubes will

be represented by exactly
∏|p|
j=1(p[j] !) spanning trees. Therefore, dealing with the multiplicity in the counting

caused by distinguishing the repeated labels will be straightforward.
Let, then, Tp denote the number of directed trees with n vertices that are labeled according to p ∈ Π(k − 1).

Recall again that repeated labels in trees are distinguished.

Corollary 9 Tp = π(p)
(
n−k
|p|
)
2n−1nn−3.

3.2 Distinguished Structures

3.3 Generation

In the reasoning below we shall consider several small structures, which may be contained in the spanning trees
that we count. These structures are interesting for the following reason. For each directed edge-labeled tree, we
can attempt to build its corresponding polycube. Two things may happen:

(a) Cells may coincide (Figures 2(a,d)). A tree with overlapping cells is invalid and does not correspond to a
valid polycube; and

(b) Two cells which are not connected by a tree edge may be adjacent (Figures 2(b,e)). Such a tree corresponds
to a polycube which has cycles in its cell-adjacency graph, and therefore, its spanning tree is not unique.

Similarly to Observation 7, for every label on the path between two vertices that correspond to coinciding cells,
repetitions of this label occur an even number of times on this path, and a structure that leads to a non-existing
adjacency results in an (even) cycle with one edge removed.

In order to count correctly, we will consider several small structures, contained in the trees we count, which
cause the problems above. Following [3], we will refer to such structures as distinguished structure. A distinguished
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Figure 2: (a–f) A few distinguished structures for k = 4 (note that (f) is disconnected); (g) A cycle structure. A
dotted line is drawn between every pair of neighboring cells and around every pair of coinciding cells.

structure is a subtree that is “responsible” for the presence of two coinciding or adjacent cells, as explained above.
More precisely, a distinguished structure is the union of all paths (edges and incident vertices) that run between
two coinciding or adjacent cells. Every such path uses up some repeated labels. Therefore, the number of their
occurrences in the trees that we count is limited. The enumeration of the distinguished structures is, thus, a
finite task.

Let DSk denote the set of distinguished structures in n−k dimensions. The above characterization of distin-
guished structures allows for the design of an algorithm for producing DSk. We hereafter refer to the size of a
tree as the number of its vertices. The algorithm begins with generating all “free trees” (non-isomorphic trees)
of size bound from above by 3k − 2, the value specified in Lemma ?? (In fact, this bound is only needed for the
implementation in software in order to set a limit to the computation.) Then, it labels every free tree T of size
t according to every partition p ∈ ∪k−1

i=1 Π(i) so as to obtain a directed edge-labeled tree T ′. and then checking
whether T ′ contains coinciding or neighboring cells by a simple depth-first traversal that starts from an arbitrary
node and assigns every other node its appropriate coordinate. If such cells are found, T ′ is added to DSk if it is
not isomorphic to any structure σ ∈ DSk of size t, and at least one of the following conditions holds:

1. T ′ contains two coinciding or neighboring cells which are connected by a path of length t−1 (see, e.g.,
Figures 2(a,b,d,e));

2. T ′ is isomorphic to the union of d1, ..., dm ∈ DSk, such that the isomorphic copies of d1, ..., dm in T ′ cover
all its edges (see, e.g., Figures 2(c,g)).

It may happen that a distinguished structure is disconnected. Disconnected distinguished structures (see
Fig. 2(f)) are generated by checking if every collection of edge-connected structures in DSk yields a single
disconnected structure labeled according to some p ∈ ∪k−1

i=1 Π(i).

Lemma 10 Let σ∗ ∈ DSk be a distinguished structure of size n∗ that is composed of k∗ connected components,
and labeled according to p∗ ∈ ∪k−1

i=2 Π(i). Then, p∗r ≤ n∗ − k∗ ≤ p∗r + p∗sum.

Proof. The first inequality n∗−k∗ ≥ p∗r states that the number of edges in σ∗ is at least the number of repeated
labels implied by the partition p∗. In fact, this condition is necessary for p∗ to label σ∗. The second inequality
is true since it may happen that σ∗ contain edges labeled with unique labels (labels each on which appears only
once in σ∗), besides the p∗r edges labeled with the p∗r repeated labels. The number of unique labels in σ∗ is
bounded by p∗sum because every repeated label `i (with repetition p∗[i] + 1) can add at most p∗[i] unique edge
labels to σ∗.

�

3.3.1 Enumeration

Let us now turn to the enumeration of occurrences (i.e. isomorphic copies) of distinguished structures in directed
trees with edge labels as explained earlier.

Lemma 11 Let σ be a distinguished structure composed of k∗ ≥ 1 trees s1, ..., sk∗ with a total of n∗ vertices
and distinct edge labels 1, ..., n∗− k∗. The number of occurrences of σ in trees of size n with distinct edge labels
1, ..., n− 1 is

Fn(σ) = (
∏k∗

i=1 |si|)
(n−n∗+k∗−1)!

(n−n∗)! nn−n
∗+k∗−2.
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Proof. We proceed by double counting, enumerating in two ways the different sequences of directed edges that
can be added to a graph composed of the union of n−n∗ vertices and the distinguished structure σ, so as to form
a rooted tree with n vertices.

One way to count these sequences is to add the edges one by one, and to count the number of options available

at each step. There are N =
∏k∗

i=1 |si| possibilities to choose a root for each component si of σ. In the beginning,
we have a forest with n−n∗+k∗ rooted trees. After adding a collection of edges, forming a rooted forest with i
trees, there are n(i− 1) choices for the next edge to add: Its starting vertex can be any one of the n vertices of
the graph, and its ending vertex can be any one of the i−1 roots other than the root of the tree containing the
starting vertex. Therefore, the total number of choices is

N
n−n∗+k∗∏

i=2

n(i− 1) = Nnn−n
∗+k∗−1(n− n∗ + k∗ − 1)!. (1)

An alternative way to count these edge sequences is to start with one of the Fn(S) possible unrooted edge-labeled
trees which contains σ, choose one of its n vertices as a root, and choose one of the (n−n∗)! possible sequences,
say, η, then label the (n−n∗) vertices of the tree according to η (the vertices that do not belong to σ), and “shift”
each vertex-label to the incident edge towards the root, producing an edge-labeled tree. The total number of
sequences that can be formed this way is

nFn(σ)(n− n∗)!. (2)

Finally, we conclude from Equations (1) and (2) that the number of occurrences of σ in unrooted trees with edge
labels 1, ..., n− 1 is

Fn(σ) = N (n− n∗ + k∗ − 1)!

(n− n∗)!
nn−n

∗+k∗−2. (3)

�

Let now Fn(σ) denote the number of occurrences of σ in directed edge-labeled trees of size n.

Corollary 12 Fn(σ) = 2n−n
∗+k∗−1Fn(σ).

Let σ∗ ∈ DSk be a distinguished structure labeled according to p∗ ∈ ∪k−1
i=1 Π(i). Let us denote by Op(σ∗) the

number of occurrences of σ∗ in directed trees of size n that are labeled according to p ∈ Π(k − 1).

Observation 13 If p∗ � p, then Op(σ
∗) = 0.

There are .. steps to compute Op(σ∗):

• Choosing the |p| repeated labels of the tree out of the possible n−k labels.

• Choosing the |p∗| repeated labels of σ∗ out of the |p| repeated labels of the tree.

• Choosing the unique labels of σ∗ (e.g. the label ` in structures (b,c,e,g) in Figure 2) if there are any.

• Calculate the number of essentially-different structures that can be produced out of all the
∏|p∗|
j=1(p∗[j]!)

possible configurations of the repeated labels of σ∗. For example, for structure (a) in Figure 2, all the
configurations yield the same structure, whereas for structure (b) (Figure 2), there are two essentially-
different structures. In the first one, the label i is attached to the head of the edge labeled `, and in the
second one, i′ is attached to its head. For structure (c) (Figure 2), there are six different structures, shown
in Figure 3. This number can be obtained by computing the number of symmetries (automorphisms) of
σ∗.

• Finally, multiplying by Fn(σ∗) completes the calculation of Op(σ∗).

Two detailed examples are given in Appendix A.
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4 Inclusion-Exclusion Graph

When counting the occurrences of a distinguished structure σ ∈ DSk, other distinguished structures which
contain multiple occurrences of σ are counted multiple times. Obviously, if a distinguished structure σb contains
c occurrences of a smaller structure σs, then when counting the occurrences of σs, σb is accounted for c times. The
inclusion-exclusion principle is applied to eliminate this dependency between the different structures; In order to
obtain the number of trees that contain σ as a subtree (using the quantity Op(σ)), we build an inclusion-exclusion
graph IE = (V, E). This graph contains a vertex corresponding to each structure σ ∈ DSk. There is an edge
e = σ1 → σ2 labeled with c if σ1 contains c occurrences of σ2. Hence, the roots R = {v ∈ V : I(v) = ∅} of
the IE graph are all the structures that are not contained in any other structure; in a sense, those are the “big”
structures. Figure 4 shows a subgraph of the IE graph for k = 4.

Let `(e) denote the label of the edge e, h(σ) denote the length of the longest path from σ to a root of the
IE graph, and I(σ2) = {σ1 ∈ V : (σ1, σ2) ∈ E}. Let us denote by Tp(σ) the number of trees of size n labeled
according to p ∈ Π(k−1) that contain σ but no σ′ ∈ I(σ) as a subtree.

Lemma 14 Tp(σ) = Op(σ)−
∑
σ′∈I(σ) `((σ

′, σ))Tp(σ
′).

Proof. By Induction on h(σ).

• The roots of the IE graph σ ∈ R, for which h(σ) = 0, represent distinguished structures that are not
contained in any other structure. Therefore, for any p ∈ Π(k− 1), the number of trees that contain σ as a
subtree equals the number of occurrences of σ in directed trees labeled according to p. Thus, Tp(σ) = Op(σ).

• Induction Hypothesis: Assume that the claim is correct for vertices of height h < h0.

• Induction Step: Let σ ∈ V be at height h0 (h(σ) = h0). Let σ′ ∈ I(σ). The trees that contain σ′ as a
subtree are counted `((σ′, σ))Tp(σ

′) times in Op(σ). Therefore, subtracting `((σ′, σ))Tp(σ
′) from Op(σ)

excludes all the trees that contain σ′ as a subtree. Thus, Tp(σ) = Op(σ)−
∑
σ′∈I(σ) `((σ

′, σ))Tp(σ
′).

�

A simple bottom-up procedure traverses the graph IE, implementing the equation in Lemma (14), and com-
putes, for every structure σ ∈ V, the number of directed edge-labeled trees that contain only s(u) as a subtree.

5 Counting Polycubes

Proper tree polycubes are polycubes P ∈ Pn for which γ(P ) is a tree. The rest of the polycubes P ′ ∈ Pn are
non-tree polycubes for which γ(P ′) contains cycles.

5.1 Trees

Every tree polycube gives rise to a unique spanning tree. For every possibility of repeated labels p ∈ Π(k−1), let
DTp(n) denote the number of proper tree polycubes such that the their corresponding (unique) spanning trees
are labeled according to p. By Corollary 9, the total number of directed trees with n vertices that are labeled
according to p is Tp. Every such tree corresponds to a tree polycube in Pn unless it contains a distinguished
structure as a subtree. (Indeed, it can neither contain a distinguished structure that has coinciding cells because
the latter is illegal, nor can it contain a distinguished structure that has neighboring cells since it is a tree).
Therefore, all the trees that contain a distinguished structure as a subtree must be excluded. Hence, we have

DT(n, n− k) =
∑

p∈Π(k−1)

DTp(n) =
∑

p∈Π(k−1)

Tp −
∑
σ∈DSk

Tp(σ)∏|p|
j=1 p[j]!

(4)

The division by
∏|pi|
j=1(pi[j]!) is because each tree polycube is counted that many times, as discussed earlier.
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Figure 4: A snapshot of the IE graph for k = 4.

5.2 Nontrees

Let σ ∈ DSk be a distinguished structure which contains only adjacent cells and no coinciding cells. Let σc
denote the graph that is constructed by adding to σ all the missing cycle-edges between every pair of adjacent
cells. σc is a cycle structure, or, in short, a cycle. For example, the distinguished structure shown in Figure 2(e)
is a spanning tree of the cycle shown in Figure 2(h). Two cycle structures c1 and c2 are considered distinct if
either c1 is not isomorphic to c2, or c2 is not isomorphic to c1. Let C denote the set of all cycle structures of
polycubes in Pn. C can be found using DSk as described. Note that two different distinguished structures may
be spanning trees of the same cycle structure. For every cycle structure Ci ∈ C, let PCi denote the number of
polycubes P ∈ Pn that contain Ci in their cell-adjacency graph γ(P ). Suppose that a distinguished structure
σ ∈ DSk has c occurrences in Ci. Then, we have that

PCi =
∑

p∈Π(k−1)

Tp(σ)

c
∏|p|
j=1 p[j]!

. (5)

This follows from the definition of Tp(σ). Finally, we reach the desired formula.

DX(n, n− k) = DT(n, n− k) +

|C|∑
i=1

PCi . (6)

Theorem 15 The general pattern of DX(n, n − k), for a fixed k > 0, is 2n−k

(k−1)!n
n−2k−1(n − k)P3k−4(n), where

Pc(n) is a monic polynomial in n of order c.

Proof. From the discussion in Sections 3 and 4 about the terms of the inclusion-exclusion formula and equa-
tions (4), (5) and (6), we conclude that for any p ∈ Π(k − 1), by corollary 9, the degree of Tp is at least n−3,

and that the highest degree of n, namely, n+k−4, is contributed by T(2,2,...,2) =
(
n−k
k−1

)
nn−32n−1: the case in

which there are k−1 pairs of repeated edge-labels, corresponding to the partition p = (1, 1, ..., 1) ∈ Π(k−1). The
degrees of n contributed by Tp′ by all the other partitions p′ ∈ Π(k−1) are smaller than n+k−4.

Now let σ∗ ∈ DSk be a distinguished structure of size n∗, composed of k∗ connected components, and labeled
according to some partition p∗ ∈ ∪k−1

i=1 Π(i). Let u∗ denote the number of unique labels in σ∗. We prove that the
degree of n in Op(σ∗), for any partition p ∈ Π(k − 1) for which p∗ � p, is bounded by n−2k−1 from bellow and
by n+k−5 from above. As a result, since Tp(σ

∗) consists of linear combinations of Op(σ∗) and Op(σ′) for other
structures σ′ ∈ DSk (where the constants ai of the linear combination are a function of k), the degree of n in
Tp(σ

∗) is also bounded by n−2k−1 from bellow and by n+k−5 from above.
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The degree of n in Op(σ∗) is contributed by the following three factors:

•
(
n−k
|p|
)
: This factor corresponds to choosing |p| repeated labels, and clearly contributes |p| powers of n to

Op(σ∗).

• Fn(σ∗): The degree of n contributed by Fn(σ∗) is n−n∗+2k∗−3 (Equation (3)).

• u∗: These u∗ unique labels must be different from the |p∗| repeated labels in σ∗, and naturally, the degree
of n contributed by their choice can be at most u∗.

Upper bound Therefore, the degree of n is bounded from above by the sum of the three factors above:
n−n∗+2k∗−3+u∗+|p|. We now prove that n−n∗+2k∗−3+u∗+|p| ≤ n+k−5:

1. By Lemma 10, n∗−k∗ ≥ p∗r . Moreover, n∗−k∗ = p∗r+u∗, since clearly, the number of edges in σ∗ (n∗−k∗)
equals the total number of edge-labels in it (p∗r + u∗).

2. |p| ≤ k − 1.

Therefore, n−n∗+2k∗−3+u∗+ |p| ≤2 n−n∗+2k∗+u∗+k−4. To show that n−n∗+2k∗+u∗+k−4 ≤ n+k−5,
it is enough to show that −n∗ + 2k∗ + u∗ ≤ −1. Multiplying this inequality by −1 we obtain n∗ − 2k∗ − u∗ ≥ 1.
n∗ − 2k∗ − u∗ ≥1 p

∗
r + u∗ − k∗ − u∗ = p∗r − k∗. We now claim that indeed p∗r − k∗ ≥ 1. This is because every

connected component in σ∗ must have at least one pair of coinciding or neighboring cells, and to have such cells
every connected component must have at least two repeated labels, implying that the difference between p∗r (the
total number of repeated labels in σ∗) and k∗ (the number of connected components of σ∗), is bounded from
bellow by 1.

Lower bound Now to show that the degree of n in Op(σ∗) is bounded from bellow by n−2k−1, we prove that
the degree contributed by the first two factors, namely, |p|+n−n∗+2k∗−3, is at least n−2k−1:

1. By Lemma 10, n∗ − k∗ ≤ |p∗|+ 2p∗sum + 1.
2. Since p∗ � p, |p∗|+ 2p∗sum ≤ |p|+ 2psum = |p|+ 2(k−1).

As a result, n∗ − k∗ ≤1,2 |p| + 2(k−1) + 1. Multiplying by −1 we get |p| − n∗ + k∗ ≥ −2k + 1. Therefore,
|p|+ n− n∗ + k∗ − 3 ≥ n− 2k − 2, and since k∗ ≥ 1, |p|+ n− n∗ + 2k∗ − 3 ≥ n− 2k − 1.

In Equation (4), T(2,2,...,2) is divided by 2k−1 (
∏|k−1|
j=1 2). Thus, the coefficient of the highest order of n is

2n−k

(k−1)! . Hence, we obtain a global formula of the form 2n−k

(k−1)! (n
n+k−4 + · · · + cnn−2k), where c is some integer

coefficient. We can now factor out the quantity nn−2k−1 to obtain a formula of the form 2n−k

(k−1)!n
n−2k−1P3k−3(n).

Finally, k must be a root of DX(n, n − k) since a polycube of size n = k cannot span n − k = 0 dimensions
(unless n = k = 1). Factoring out n−k yields the claimed pattern. �

Note that 3k − 3 known values of DX(n, n − k) (for a specific value of k), including the two trivial values
DX(k, 0) = 0 and DX(k+ 1, 1) = 1, suffice for interpolating uniquely P3k−4(n). However, a “physical” argument
(see [17]) implies that as little as k values suffice for interpolating the polynomial. 1 In a nutshell, this argument
is based on the unproven assumption that the “free energy” (log CX(n, d))/n has a well-defined 1/d-expansion
whose coefficients depend on n and are bounded when n tends to infinity. Then, the powers of n in the terms of
the expansion are tuned so as to avoid the explosion of the terms, therby imposing constraints which allow only
k values of DX(n, n− k) to imply the general formula.

6 Results

The method outlined in the proceeding sections was implemented in a parallel C++ program, using Wolfram
Mathematica to simplify the final formulae. All the calculations were performed on a supercomputer with 132
GB of RAM and 20 processors. 2 Our results, summarized in the tables bellow, agree completely with the
formulae conjectured in the literature of statistical physics. The program produced data files which document
the entire computation, serving as proofs of the formulae. This completes the proof of Theorems ??.

1The cited reference actually claims that k + 1 values are needed, not taking into account that k is a root of the polynomial
(except in the first diagonal formula).

2The results reported in our EuroComb 2015 paper were obtained by running the program on a different computer, and thus the
difference in the reported runtimes.
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k = 3

|DS3| 147

|C3| 13

DT(2,2)(n) 2n−6nn−7(n−3)(n−4)(4n4−28n3+97n2−200n+300)

DT3(n) 2n−3nn−7(n−3)(2n2−21n3+106n2−282n+360)/3

DT(n, n−3) 2n−3nn−7(n−3)(2n4−21n3+106n2−282n+ 360)/3∑13
i=1 PCi 2n−6nn−7(n−3)(n−4)(4n3−17n2+11n+70)

DX(n, n− 3) 2n−6nn−7(n− 3)(12n5 − 104n4 + 360n3 − 679n2 + 1122n− 1560)/3

k = 4

|DS4| 8397

|C4| 179

DT(2,2,2)(n) 2n−7nn−9(n−4)(n−5)(n−6)(8n6−84n5+438n4−1543n3+4236n2−9020n+19040)/6

DT2,3(n) 2n−4nn−9(n−4)(n−5)(4n6−56n5+383n4−1654n3+5106n2−10920n+14112)/6

DT4(n) 2n−5nn−9(n−4)(4n6−84n5+851n4−5191n3+20190n2−47552n+53760)/6

DT(n, n−4) 2n−7nn−9(n−4)(8n8−140n7+1010n6−3913n5+9201n4−15662n3+34500n2−120552n+221760)/6∑178
i=0 PCi 2n−7nn−9(n−4)(n−5)(12n6−122n5+373n4+68n3 − 1521n2−578n+3360)/6

DX(n, n−4) 2n−7nn−9(n−4)(8n8−128n7+828n6−2930n5+7404n4−17523n3+41527n2−114302n+204960)/6

k = 5

|DS5| 652060

|C5| 3680

DT(2,2,2,2)(n) 2n−12nn−11
8∏

i=5

(n−i)(16n8−224n7+1560n6−7544n5+29089n4−98032n3+319752n2−819200n+2324880)/3

DT(2,2,3)(n) 2n−8nn−11
7∏

i=5

(n−i)(8n8−140n7+1206n6−6917n5+30322n4−107966n3+333720n2−816696n+1321920)/3

DT(3,3)(n) 2n−7nn−11
6∏

i=5

(n−i)(8n8−168n7+1730n6−11736n5+59912n4−238071n3+722025n2−1517688n+1814400)/9

DT(2,4)(n) 2n−8nn−11
6∏

i=5

(n−i)(8n8−196n7+2338n6−17731n5+95521n4−384154n3+1161728n2−2462976n+2903040)/3

DT(5)(n) 2n−6nn−11(n−5)(4n8−140n7+2375n6−25215n5+183076n4 − 932080n3+3256940n2−7149000n+7560000)/15

DT(n, n−5)
2n−9nn−11(n−5)(240n11−6480n10+73640n9−461232n8+1778615n7−4707195n6+11632070n5−41919528n4

+158857920n3−483329520n2+1481660640n−2863123200)/360∑3679
i=0 PCi

2n−12nn−11(n−5)(n−6)(32n9−568n8+3592n7−8001n6−5009n5+20971n4+98945n3+30014n2−3298664n

+9648576)/3

DX(n, n−5)
2n−12nn−11(n−5)(240n11−6000n10+62240n9−356232n8+1335320n7−4062240n6+12397445n5−42322743n4

+150403080n3−535510740n2+1923269040n−3731495040)

Figure 5: Results for k = 3, 4, 5.
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7 Conclusion

In this paper we present a theoretical setup and an automatic tool for computing the diagonal formula DX(n, n−k)
for any fixed k > 0. Using this setup, we prove the known conjecture about the form of DX(n, n−k) for a general
constant k. As k grows, the number of distinguished structures grows, and the complexity of the calculations
grows as well. We implemented the entire method so that the formulae are obtained completely automatically.
As a byproduct, our software also provides a full proof of the formula: A complete listing of all structures, all
the intermediate computation, a full description of the inclusion-exclusion relations between the structures, and
a detailed account of all the calculations. We applied our method to the cases k ≤ 5, reaffirming the known
formulae for k = 2, 3 and proving rigorously the conjectured formulae for DX(n, n−4) and DX(n, n−5). Running
the program for higher values of k is possible and might be part of future work. However, given that already for
k = 5, the number of distinguished structures surpasses half a million, we do not believe that it will be feasible
to go above k = 7.
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A Computing Op(σ): Examples

We demonstrate the computation of Op(σ) with two of the structures shown in Figure 2. The first structure, σ1, is the
one shown in Figure 2(c). The structure σ1 is labeled according to (3) ∈ Π(2). Therefore, it may appear in trees labeled
according to (2, 3), (4) ∈ Π(3), but not according to (2, 2, 2) ∈ Π(3) since (3) � (2, 2, 2). Let us detail the computation
of O(2,3)(σ1). First, there are

(
n−4
2

)
options to choose the two repeated (and distinguished) labels `1, `2 in the tree. We

multiply by π((2, 3)) = 2 (either `1, `
′
1, `2, `

′
2, `
′′
2 or `1, `

′
1, `
′′
1 , `2, `

′
2). The label i that is repeated three times in σ1 is

determined uniquely. Assume that i is assigned the label `1. There are n−4 options to choose the label `; it is different
from `1, `

′
1, `
′′
1 but may be equal to `2 or `′2. There are three options to choose which label of `1, `

′
1, `
′′
1 is attached to

the head of `, then two possibilities to choose the label that is attached to the tail of `. This number is calculated from
the number of automorphisms of σ1. To complete the computation of O(2,3)(σ1), we multiply by Fn(σ1). The second
structure, σ2, is the one shown in Figure 2(d). The structure σ2 is labeled according to the partition (2, 2) ∈ Π(2). Hence,
it may appear in trees labeled according to (2, 2, 2), (2, 3) ∈ Π(3), but not according to (4) ∈ Π(3) since (2, 2) � (4).
For computing O(2,2,2)(σ2), there are

(
n−4
3

)
options to choose the three repeated labels in the tree. This yields the labels

`1, `
′
1, `2, `

′
2, `3, `

′
3 (note that π((2, 2, 2)) = 1). Then, there are

(
3
2

)
options to choose the repeated labels i, j. Assume that

the chosen labels are `1 and `2. Note the symmetry in this structure: It does not matter if i is assigned the label `1 and
j is assigned the label `2, or vice versa, since the two options yield the same structure. Again, the number of symmetries
of σ2 is calculated from the number of its automorphisms and the computation is completed by multiplying by Fn(σ2).
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