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Abstract. A polyiamond is an edge-connected set of cells on the tri-
angular lattice. In this paper we provide an improved lower bound on
the asymptotic growth constant of polyiamonds, proving that it is at
least 2.8424. The proof of the new bound is based on a concatenation
argument and on elementary calculus. We also suggest a nontrivial ex-
tension of this method for improving the bound further. However, the
proposed extension is based on an unproven (yet very reasonable) as-
sumption.
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1 Introduction

A polyomino of size n is an edge-connected set of n cells on the square lattice Z2.
Similarly, a polyiamond of size n is an edge-connected set of n cells on the
two-dimensional triangular lattice. Fized polyiamonds are considered distinct if
they have different shapes or orientations. In this paper we consider only fixed
polyiamonds, and so we refer to them in the sequel simply as “polyiamonds.”
Figure 1 shows polyiamonds of size up to 5.

In general, a connected set of cells on a lattice is called a lattice animal. The
fundamental combinatorial problem concerning lattice animals is “How many
animals with n cells are there?” The study of lattice animals began in parallel
more than half a century ago in two different communities. In statistical physics,
Temperley [21] investigated the mechanics of macro-molecules, and Broadbent
and Hammersley [7] studied percolation processes. In mathematics, Harary [12]
composed a list of unsolved problems in the enumeration of graphs, and Eden [8]
analyzed cell growth problems. Since then, counting animals has attracted much
attention in the literature. However, despite serious efforts over the last 50 years,
counting polyominoes is still far from being solved, and is considered [2] one of
the long-standing open problems in combinatorial geometry.

The symbol A(n) usually denotes the number of polyominoes of size n; See
sequence A001168 in the On-line Encyclopedia of Integer Sequences (OEIS) [1].

* Work on this paper by all authors has been supported in part by ISF Grant 575/15.
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Since no analytic formula for the number of animals is yet known for any nontriv-
ial lattice, a great portion of the research has so far focused on efficient algorithms
for counting animals on lattices, primarily on the square lattice. Elements of the
sequence A(n) are currently known up to n = 56 [13]. The growth constant of
polyominoes was also treated extensively in the literature, and a few asymp-
totic results are known. Klarner [14] showed that the limit A := lim,, o, {/A(n)
exists, and the main problem so far has been to evaluate this constant. The
convergence of A(n + 1)/A(n) to A (as n—o0) was proven only three decades
later by Madras [17], using a novel pattern-frequency argument. The best-known
lower and upper bounds on A are 4.0025 [5] and 4.6496 [15], respectively. It is
widely believed (see, e.g., [9,10]) that A ~ 4.06, and the currently best estimate,
A = 4.0625696 + 0.0000005, is due to Jensen [13].

In the same manner, let T'(n) denote the number of polyiamonds of size n
(sequence A001420 in the OEIS). Elements of the sequence T'(n) were computed
up to n = 75 [11, p. 479] using a transfer-matrix algorithm by Jensen [ibid.,
p. 173], adapting his original polyomino-counting algorithm [13]. Earlier counts
were given by Lunnon [16] up to size 16, by Sykes and Glen [20] up to size 22,
and by Aleksandrowicz and Barequet [3] (extending Redelmeier’s polyomino-
counting algorithm [19]) up to size 31.

Similarly to polyominoes, the limits lim, ., {/T(n) and lim, ., T(n +
1)/T(n) exist and are equal. Let, then, Ay = lim,,_,o, {/T'(n) denote the growth
constant of polyiamonds. Klarner [14, p. 857] showed that Ay > 2.13 by taking
the square root of 4.54, a lower bound he computed for the growth constant of
animals on the rhomboidal lattice, using the fact that a rhombus is made of two
neighboring equilateral triangles. This bound is also mentioned by Lunnon [16,
p. 98]. Rands and Welsh [18] used renewal sequences in order to show that

A > (T(n)/(2(1+ Ar))) /" (1)

for any n € N. Substituting the easy upper bound? Ay < 4 in the right-hand
side of this relation, and knowing at that time elements of the sequence T'(n)
for 1 <n <20 only (data provided by Sykes and Glen [20]), they used T'(20) =

! Note that in this reference the lattice is called “honeycomb” (hexagonal) and the
terms should be doubled. The reason for this is that the authors actually count clus-
ters of vertices on the hexagonal lattice, whose connectivity is the same as that of
cells on the triangular lattice, with no distinction between the two possible orienta-
tions of the latter cells. This is why polyiamonds are often regarded in the literature
as site animals on the hexagonal lattice, and polyhexes (cell animals on the hexag-
onal lattice) are regarded as site animals on the triangular lattice, which sometimes
causes confusion.

This easy upper bound, based on an idea of Eden [8] was described by Lunnon [16,
p. 98]. Every polyiamond P can be built according to a set of n—1 “instructions”
taken from a superset of size 2(n—1). Each instruction tells us how to choose a lattice
cell ¢, neighboring a cell already in P, and add ¢ to P. (Some of these instruction
sets are illegal, and some other sets produce the same polyiamonds, but this only

2(n—1)) 1/n — 4.

helps.) Hence, A\r < limy,— o0 ( "



173,338,962 to show that Ay > (7(20)/10)/2° ~ 2.3011.% Nowadays, since we
know T'(n) up to n = 75,* we can obtain, using the same method, that Ay >
(T(75)/10)/7 ~ 2.7714. We can even do slightly better than that. Substituting
in Equation (1) the upper bound Ay < 3.6050 we obtained elsewhere [6], we see
that Ay > (T(75)/(2(1 + 3.6050)))'/7 ~ 2.7744. However, we can still improve
on this.

Based on existing data, it is believed [20] (but has never been proven) that
Ar = 3.044+0.02. In this paper we improve the lower bound on A7, showing that
Ar > 2.8424. The new lower bound is obtained by combining a concatenation
argument with elementary calculus.

2 Preliminaries

We orient the triangular lattice as is shown in Figure 2(a), and define a lexico-
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Fig. 2. Polyiamonds on the triangular lattice

graphic order on the cells of the lattice as follows: A triangle t; is smaller than
triangle to # 1 if the lattice column of ¢; is to the left of the column of ¢5, or if
t1,to are in the same column and ¢y lies below t5. Triangles that look like a “left
arrow” (Figure 2(b)) are of Type 1, and triangles that look like a “right arrow”
(Figure 2(c)) are of Type 2. In addition, let 77 (n) be the number of polyiamonds
of size n whose largest (top-right) triangle is of Type 1, and let T5(n) be the
number of polyiamonds of size n whose largest triangle is of Type 2.

Let z(n) (0 < z(n) < 1) denote the fraction of polyiamonds of Type 1 out of
all polyiamonds of size n, that is, 71 (n) = z(n)T(n) and Ta(n) = (1—x(n))T(n).
In addition, let y(n) = Tz(n)/T1(n) = (1 — x2(n))/x(n) denote the ratio between
polyiamonds of Type 2 and polyiamonds of Type 1 (all of size n).

3 We wonder why Rands and Welsh did not use T'(22) = 1,456,891, 547 (which was
also available in their reference [20]) to show that Ar > (T(22)/10)/?? ~ 2.3500.
4 7(75) = 15,936, 363, 137, 225, 733, 301, 433, 441, 827, 683, 823.



A concatenation of two polyiamonds Py, Ps is the union of P; and a translated
copy of Py, so that the largest triangle of P is attached to the smallest triangle
of P,, and all cells of P; are smaller than the translates of cells of P,. We use a
concatenation argument in order to improve the lower bound on Ar.

3 The Bound

Our proof of a lower bound on Ap uses the division of polyiamonds into Type 1
and Type 2, but does not employ the asymptotic proportion between the two

types.

Theorem 1. Ay > 2.8424.

Proof. First note that by rotational symmetry, the number of polyiamonds of
size n, whose smallest (bottom-left) triangle is of Type 2, is T (n). Similarly, the
number of polyiamonds, whose smallest triangle is of Type 1, is Ta(n).

We proceed with a concatenation argument tailored to the specific case of
the triangular lattice. Interestingly, not all pairs of polyiamonds of size n can
be concatenated. In addition, there exist many polyiamonds of size 2n which
cannot be represented as the concatenation of two polyiamonds of size n. Let us
count carefully the amount of pairs of polyiamonds that can be concatenated.

(a) Two polyiamonds (b) Vertical concatenation (c) Horizontal concatenation
Two attachments of Type-1 and Type-2 triangles

(d) Two polyiamonds (e) Vertical concatenation
A single attachment of Type-2 and Type-1 triangles

Fig. 3. Possible concatenations of polyiamonds



— Polyiamonds, whose largest triangle is of Type 1, can be concatenated only
to polyiamonds whose smallest triangle is of Type 2, and this can be done in
two different ways (see Figures 3(a—c)). There are 2(T1(n))? concatenations
of this kind.

— Polyiamonds, whose largest triangle is of Type 2, can be concatenated, in
a single way, only to polylamonds whose smallest triangle is of Type 1 (see
Figures 3(d,e)). There are (T5(n))? concatenations of this kind.

Altogether, we have 2(Ty(n))? + (Tz(n))? possible concatenations, and, as argued

above,
2(T1(n))* + (Ta(n))* < T(2n). (2)

Let us now find an efficient lower bound on the number of concatenations.
Equation (2) can be rewritten as T'(2n) > 2(x(n)T(n))? + ((1 — z(n))T(n))? =
(32%(n) — 2z(n) 4+ 1)T?(n). Elementary calculus shows that the function f(z) =
322 — 22 + 1 assumes its minimum at x = 1/3 and that f(1/3) = 2/3. Hence,

§T2(n) < T(2n).

By simple manipulations of this relation, we obtain that

()" < (Gren) .

This implies that the sequence (%T(kz))l/k, (%T(2k¢))1/(2k), (2T (4k)) 1/(4k), ... s
monotone increasing for any value of k, and, as a subsequence of ((%T(n))l/n>,
1

it converges to Ar too. Therefore, any term of the form (%T(n)) /™ is a lower

bound on Ar. In particular, Ay > (27(75))"/7 ~ 2.8424. 0

4 Convergence, Interval Containment, and Monotonicity

First, we show a simple relation between the number of polyiamonds of Type 2
of size n and the number of polyiamonds of Type 1 of size n+1,

Observation 2 Ty(n) =Ti(n+ 1) (for alln € N).

This simple observation follows from the fact that if the largest triangle ¢ of
a polyiamond P is of Type 1, then the only possible neighboring triangle of ¢
within P is the triangle immediately below it, and so, removing ¢ from P will not
break P into two parts. This implies a bijection between Type-1 polyiamonds of
size n+1 and Type-2 polyiamonds of size n.

An immediate consequence is that y(n) = T (n + 1)/T1(n), a fact which we
will use later frequently (see, e.g., the proof of Theorem 4(ii) below).

Next, we prove the convergence of the sequences (T1(n + 1)/T1(n)), x(n),
and y(n), and find their limits.



Observation 3 The sequence (T1(n+ 1)/T1(n))>2, converges.

Indeed, polyiamonds of Type 1 fulfill all the premises of Madras’s Ratio Limit
Theorem [17, Thm. 2.2]. (A more detailed explanation is given in the full version
of the paper.) Hence, the limit lim,, ., T1(n + 1)/T1(n) exists and is equal to
some constant p, whose value is specified (indirectly) in the following theorem.

Theorem 4. (i) p= Ap; (i) lim y(n) = Ap; (i) li_>m z(n) =1/(Ar +1).
n—0o0 n oo

Proof.
(i) Omn the one hand, by Madras [17] we know that the limit Ay := lim,,_, o T (n+
1)/T(n) exists. On the other hand, we have that

Tn+1) Tin+1)+Thn+1) Tin+1)+Ti(n+2)

T(n) T (n) + T (n) T (n) +T1 (n + 1)
T (n+2
1 + Tign—&-l; 1 + 1% _
T1(n) n—oo L1 o
moan Tl wtl

(Note that the convergence in the last step relies on the fact that the sequence
(Th(n+1)/T1(n)) has a limit p.) Hence, = Ar.

y(n) N T1 (TL) N T1 (n) n:; H= )\T'
) oD T 1 1
= T(n) ~ Ti(n) +y(m)Ti(n) 1+ y(n) noe Ap 1 m

Now, we show relations between bounds on the entire sequence (x(n)) and
bounds on the entire sequence (y(n)) = (T(n+ 1)/T(n)).

Theorem 5. Let d, e be two constants.
(i) x(n) > 1/d for alln € N «— T'(n+1)/T(n) < d—1 for alln € N;
(ii) x(n) <1/e for alln € N «— T(n+1)/T(n) > e—1 for alln € N.
Proof.

(i) First,

L mm 1
d Ti(n)+Ti(n+1) — d

Ti(n+1) < des

) - Ti(n) T1(n)

Second,
Tn+1) Tiln+1)+Ti(n+2) 14+Ti(n+2)/Ti(n+1)
Tn) — Tin)+Ti(n+1)  Ti(n)/Ti(n+1)+1
1+(d-1)
“1/(d-1)+1

d—1.

(ii) The proof is completely analogous to that of item (i). O



Finally, we observe the relation between the directions of monotonicity (if
exist) of the sequences (x(n)) and (y(n)).

Observation 6 If any of the two sequences (x(n)) and (y(n)) is monotone, then
the other sequence is also monotone but in the opposite direction.

Indeed, this follows immediately from the equality y(n) = (1 —xz(n))/x(n) =
1/x(n) — 1. The available data suggest that (z(n)) be monotone decreasing and
that (y(n)) be monotone increasing. Note that the monotonicity of 2(n) (or y(n))
neither implies, nor is implied by, the monotonicity of (T'(n + 1)/T(n)).

5 Conditional Lower Bounds

Let L(n) denote the number of animals on a lattice £. It is widely believed (but
has never been proven) that asymptotically

L(n) ~ Cen™% Xz, (3)

where C, 0., and A are constants which depend on £.° If this were true, then
it would guarantee the existence of the limit A\r, := lim, o, L(n 4+ 1)/L(n), the
growth constant of animals on the lattice £. As was mentioned in the introduc-
tion, the existence of this limit was proven by Madras [17] without assuming
the relation in Equation (3). Furthermore, it is widely believed that the “ratio
sequence” (L(n+1)/L(n)) is monotone increasing.% Available data (numbers of
animals on various lattices) support this belief, but it was unfortunately never
proven. Such monotonicity of the ratio sequence would imply that the entire
sequence lies below its limit. (In fact, this may be the case even without mono-
tonicity.) Consequently, every element of the ratio sequence would be a lower
bound on the growth constant of animals on L. In particular, it would imply the
lower bound A > T'(75)/(74) ~ 2.9959, only 0.05 short of the estimated value.

Another plausible direction for setting a lower bound on Ap would be to
prove that the entire sequence (T'(n+1)/T'(n)) lies below some constant ¢ > Ar,
that is, T'(n 4+ 1)/T'(n) < ¢ for all n € N. As we demonstrate at the end of this
section, proving this relation for any arbitrary constant ¢, even a very large one,
would improve the lower bound on Ar, provided in Section 3.

In the proof of Theorem 1, we considered the three possible kinds of concate-
nations of the largest and the smallest triangles in two polyiamonds of size n. In

® In fact, it is widely believed (but not proven) that the constant @ is common to all
lattices in the same dimension. In particular, there is evidence that § = 1 for all
lattices in two dimensions.

5 Madras [17, Prop. 4.2] proved “almost monotonicity” for all lattices, namely, that
L(n + 2)/L(n) > (L(n + 1)/L(n))?> — I'z/n for all sufficiently large values of n,
where Iz is a constant which depends on L. Note that if I’z = 0, then we have
L(n+2)/L(n+1) > L(n+ 1)/L(n), i.e., that the ratio sequence of £ is monotone

increasing.



fact, more compositions which preserve the lexicographical order of the polyia-
monds can be obtained by using horizontal attachments of Type-1 and Type-2
triangles which are not the largest or smallest triangles in the respective polyi-
amonds. The following cases, shown in Figure 4, are categorized by the type
of extreme triangles (¢1,t3) in a pair of composed polyiamonds, where ¢; is the
largest triangle of the smaller polyiamond and t5 is the smallest triangle of the
larger polyiamond. Therefore, these cases are distinct. In the figure, attached
triangles are colored red, the direction of the attachment is marked by a small
arrow, and an “x” sign marks an area free of triangles of the polyiamonds. The
triangles in gray are the largest (or smallest) in polyiamonds of size less than n,
which are then extended to full size-n polyiamonds. (In Case (c¢), the red and
gray triangles identify.) For the purpose of further computation, let x; denote
the ratio Ty (n—14)/T'(n — i), for : = 0,1, 2,3, and let ¢ be an upper bound on the
sequence (T'(n+1)/T(n)). All compositions below do not appear in the proof of

Theorem 1.
>

X i Q—h> ﬂ

Largest triangle of Type 1 Smallest triangle of Type 1
) Case (1,1) (symmetrically, Case (2,2))
B: : : :ﬂ d’:tt
(b.1)

Largest trlangle of Type 1 Smallest trlangle of Type 2

(b) Case (1,2)

% »

(c.1) (c.2)
Largest triangle of Type 2 Smallest triangle of Type 1

(c) Case (2,1)

Fig. 4. Additional compositions of polyiamonds

(1,1) In this type of composition, each one of the polyiamond types shown in
Figures 4(a.1-a.3) is composed with each one of the types shown in Fig-
ures 4(a.4,a.5). Specifically, the attached triangle in types (a.1) and (a.2,a.3)
is the largest and third largest, respectively, and the attached triangle in
types (a.4,a.5) is the second largest. The number of polyiamonds whose
largest triangle is of Type 1 (Figure 4(a.1)) is T3 (n), and among these polyi-
amonds, the number of polyiamonds shown in Figure 4(a.2) is T1(n — 3).
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1,2

2,1

2,2

One way to see it is that, for every polyiamond of of size n—3 whose largest
triangle (shown in gray) is of Type 1, a column-like polyiamond composed of
three triangles whose largest is of Type 1 is attached to the right of it. With
a similar reasoning, there are To(n—3), T1(n—2), and T2 (n—2) polyiamonds
of the types shown in Figures 4(a.3-a.5), respectively. Hence, the number of
compositions in this category is

(T1(n) + Ty (n — 3) 4+ Ta(n — 3)) (T1(n — 2) + To(n — 2)).

By observation 2, we can substitute To(n — i) by T1(n — i + 1), and by the
definition of x;, replace T1 (n — i) by x;T(n —i). Then, by the definition of ¢,
we have T'(n — i) > T

ct

and we conclude that in this category we have

(20T (n) + 23T (n — 3) + 22T (n — 2)) (x2T(n — 2) + 21T (n — 1))

i) I3 X1 i)

> (w0t 5+ 5) (T +E) T @
Notice that, in principal, the attachment of smaller and larger triangles (of
the two polyiamonds, respectively) can be counted as well. However, in such
cases, higher orders of 1/c would appear in Equation 4. The contribution of
such compositions is relatively insignificant, thus, they are not considered.
In this case, we count attachments of the largest and the third largest trian-
gles in the smaller polyiamonds, and the smallest and third smallest triangles
in the larger polyiamonds; see Figures 4(b.1-b.4). Table 1 lists all possible

Attached Triangles Number of Compositions
(a <> a’,c) T5(n—3)+Ti(n —3)Ta(n — 3)
(b < a b, d) |2T5(n — 3) + 2T1(n — 3)T2(n — 3)
(c »a',c) TZ(n —3) + Ti(n — 3)Ta(n — 3)
(d < a’ b, d) [2TE(n — 3) + 271 (n — 3)Ta(n — 3)

Table 1. Additional compositions in Case (1,2)

attachments and their corresponding numbers of compositions. To sum up,
the total number of compositions of this category is

T3

)2T2(n).

The numbers of polyiamonds shown in Figures 4(c.1,c.2) are both 77 (n—1).
Therefore, there are

3T¢(n —3) + 6T1(n — 3)Ta(n — 3) + 315 (n — 3) > 3(%2 T
C C

1‘2
Ti(n—1)> —5T%(n)
C

compositions in this category.
By rotational symmetry, the number of compositions in this category is the
same as that of Case (1,1).
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Summing up the four cases and the three cases in the proof of Theorem 1,
we obtain the relation

2 2
_ 2 2 B) (ﬂ B) 1 (E E) 2
(1 2x0 + 3xg +2(z0+c2+c3 - +C2 +c2+3 02+C3 T%(n)

<T(2n) ()

In order to set a good (high) lower bound on Ar, we need good lower bounds
on xg,x1, T2, r3 and a good upper bound on c¢. Then we obtain a relation of the
form u - T?(n) < T(2n), where u is a constant, and proceed in the same way as
in the proof of Theorem 1. If we denote the 4-variable polynomial multiplying
T?%(n) by f(xo,x1,72,23), we find that f(-,-,,-) is monotone decreasing when
1, T, xr3 decrease, so its infimum is obtained when z; = x5 = x3 = 0, which is
useless.

However, the actual data show that the sequence (T'(n+1)/7T(n)) is monotone
increasing with the limit Ay &~ 3.04. Assume, then, without proof that (T'(n +
1)/T(n)) < 4 for all n € N. By Theorem 5, this implies that x(n) > 0.2 for all
values of n. Using these bounds, we see that the left-hand side of Equation (5)
becomes a quadratic function g(xg) = 323 —1.875x9+1.00519. (All computations
were done with a much higher precision.) Elementary calculus shows that g(zo)
assumes its minimum at xo = 0.3125 and that ¢(0.3125) = 0.7122. Hence,

0.7122 - T%(n) < T(2n).

With manipulations similar to those in the proof of Theorem 1, it can be shown

that the sequence ((0.7122 : T(Zik))l/(yk))ji is monotone increasing for any

0
value of k, and, as a subsequence of ((0.7122 . T(n))l/n>7 it converges to Ar

as well. Therefore, any term of the form (0.7122 - T(n))l/n is a lower bound
on Ar. In particular, Ay > (0.7122 - T(75))"/™ ~ 2.8449, which is a slight
improvement over the lower bound on Ap, shown in Section 3, and is pending
only the correctness of the assumption that T'(n + 1)/T(n) < 4 for all n € N.
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