A Probabilistic Approach to Inference with Limited
Information in Sensor Networks

Rahul Biswas
Stanford University
Stanford, CA 94309 USA

rahul@cs.stanford.edu

ABSTRACT

We present a methodology for a sensor network to answer
queries with limited and stochastic information using prob-
abilistic techniques. This capability is useful in that it al-
lows sensor networks to answer queries effectively even when
present information is partially corrupt and when more in-
formation is unavailable or too costly to obtain. We use a
Bayesian network to model the sensor network and Markov
Chain Monte Carlo sampling to perform approximate infer-
ence. We demonstrate our technique on the specific problem
of determining whether a friendly agent is surrounded by en-
emy agents and present simulation results for it.

1. INTRODUCTION

Recent advances in sensor and communication technolo-
gies have enabled the construction of miniature nodes that
combine one or more sensors, a processor and memory, plus
one or more wireless radio links [9, 12]. Large numbers of
these sensors can then be jointly deployed to form what
has come to be known as a sensor network. Such net-
works enable decentralized monitoring applications and can
be used to sense large-area phenomena that may be impos-
sible to monitor in any other way. Sensor networks can be
used in a variety of civilian and military contexts, including
factory automation, inventory management, environmental
and habitat monitoring, health-care delivery, security and
surveillance, and battlefield awareness.

In some settings, sensors enjoy the use of external power
sources and need not factor the energy costs of computation,
sensing, and communication into their decisions. Informa-
tion theory tells us that more information is always bet-
ter [4] and any algorithm analyzing sensing results should
be able to perform at least the same and hopefully better
with more information. In most actual deployment scenar-
ios however, sensors must operate with limited power sources
and carefully ration their energy utilization. In this world,
computation, sensing, and communication comes at a cost
and algorithms designed for sensor networks must strike a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IPSN' 04, April 26-27, 2004, Berkeley, California, USA.

Copyright 2004 ACM 1-58113-846-6/04/0004 ...$5.00.

Sebastian Thrun
Stanford University
Stanford, CA 94309 USA

thrun@cs.stanford.edu

Leonidas J. Guibas
Stanford University
Stanford, CA 94309 USA

guibas@cs.stanford.edu

good balance between increasing network longevity by de-
creasing costs on the one hand and providing useful answers
to queries on the other.

One aspect in which algorithms used for sensor networks
must differ from traditional algorithms is that they must
be able to reason with incomplete and noisy information.
Some areas of interest may lie outside sensor range. Any
information, if available, is not free but has a sensing cost
and comes at the expense of decreased network longevity.
Also, real sensors do not always operate as they should and
any algorithm that deals with sensor information must be
able to handle partial corruption of the input data.

We present an algorithm that leverages both limited and
stochastic sensor data to probabilistically answer queries
normally requiring complete world state to answer correctly.
By answering probabilistically, i.e. by assigning a probabil-
ity to each possible answer, we provide the inquirer with
more useful information than only one answer whose cer-
tainty is not known. This technique is applicable to a broad
range of queries and we demonstrate its effectiveness on
an open problem in sensor networks, that of determining
whether a friendly agent with known location is surrounded
by enemy agents with unknown but stochastically sensable
locations [7].

We structure the probabilistic dependencies between sen-
sor measurements, enemy agent locations, and the query of
interest as a Bayesian network. We then enter the sensor ob-
servations into the Bayesian network and use Markov Chain
Monte Carlo (MCMC) methods to perform approximate in-
ference on the Bayesian network and extract a probabilistic
answer to our original query.

Our experimental results demonstrate the effectiveness of
our inference algorithm on the problem of determining sur-
roundedness on a wide variety of sensor measurements. The
inference algorithm consistently provides accurate estimates
of the posterior probability of being surrounded. It demon-
strates the ability to incorporate both positive and negative
information, to use additional information to disambiguate
almost colinear points, to cope effectively with sensor failure,
and provide useful prior probabilities of being surrounded
without any sensor measurements at all.

2. PROBLEM DEFINITION

2.1 Overview

We seek to determine whether an agent F' is surrounded
by N enemy agents Ei...FEn. Let the location of agent
F be given as LF and the locations of agents Fi ... Enx be

given by LFE1 ... LEN respectively. Let the assertion D refer
to the condition that LF' lies in the convex hull generated
by points LE ... LEN, which we will henceforth refer to in
aggregate as simply LFE.

We assume that LF and N are known. We have no prior
knowledge over the LE but form posteriors over them from
the evidence gathered by the sensor measurements.

2.2 Sensor Model

Sensors can detect the presence of enemy agents in a cir-
cular region surrounding the sensor. We have a total of M
sensors S1...Sy at our disposal. Let the sensor locations
be given by LS1 ... LS. For a given sensor S;, let dl equal
1 if there exists one or more enemy agents inside the circle
with its center collocated with the sensor and radius R, and
0 otherwise. In other words, d; is a boolean variable that is
the response sensor S; should obtain if it is operating cor-
rectly. Let d; be the value sensor S; actually obtains and
shares with other sensors. The variable d; depends stochas-
tically on d; as follows:

d; : with probability ¢
d; = 0 with probability 1
1 : with probability 2%

I~

(1)

2

m|
T

Setting ¢ to 1 is equivalent to having perfect sensors and
setting ¢ to 0 is equivalent to having no sensors. Typically,
¢ will be quite high since sensors usually tend to work cor-
rectly.

2.3 Objective Function

Our objective is to determine, given LF and a set of
P stochastic sensor measurements R; ... Rp, the posterior
probability of D. The set of sensor measurements may be
empty.

We do not seek to address the issues of network control
and communication in this paper. While these are impor-
tant topics and are revisited in Section 6.2, our inference al-
gorithm works independently of the control algorithm that
decides who will sense and manages inter-sensor communi-
cation.

3. PRIOR WORK

The traditional approach to solving this sort of problem
is to determine the values of each of the variables of inter-
est and then use standard techniques to answer the query
given the full world state. The potency of our approach lies
in its ability to take partial world state and estimate the
complete world state in expectation. By doing so, we can
use the same off-the-shelf techniques the other algorithms
can. In fact, in the example we have chosen to showcase,
that of determining whether a friendly agent is surrounded,
we use an unmodified traditional computational geometry
algorithm and simply plug it into our inference. This allows
us to probabilistically answer any other query just as easily
by just plugging in existing algorithms requiring full world
state into the core of our MCMC sampler.

For the specific problem at hand, we can determine whether
the friendly agent lies within the convex hull of enemy agents
by starting with the exact values of LE, computing their
convex hull, and then determining whether LI lies within
this convex hull. Many well-known computational geometry

/@@%’%&\

Lo o = =

Figure 1: Bayesian Network with 3 sensor measure-
ments and 4 enemy agents

algorithms exist that compute the convex hull of N points
in the plane in O(N - logN) time [16].

In fact, convex hull inclusion can be tested directly in
O(N) time. Let C'H represent the convex hull of LE and
let CH; ...CHg represent the enemy agents, in order, lying
on this hull. S is less than or equal to N. LF lies within
CH if and only if either of the following conditions holds:

Vs € S,CCW(CH,,CHqy1, LF) (2)
or
Vs € §,CW(CH,,CHsy1,LF). (3)

Here, CHg41 wraps around to CH;, CCW (a,b, c) refers
to the assertion that point c is strictly counterclockwise to
ray ab, and CW (a,b, c) refers to the assertion that point ¢
is strictly clockwise to ray ab.

Closest in spirit to our effort are techniques that try to
approximate a convex body using a number of probes [1],
or those that try to maintain approximate convex hulls in
a data stream of points, using bounded storage [8]. These
works both address similar problems but their methods can-
not be applied to our problem at hand.

4. OUR APPROACH

‘We show in this section how the query, in this case, whether
the friendly agent is surrounded by enemy agents can be rep-
resented by a variable in a Bayesian network. The proba-
bilistic relationships between sensors, enemy agent locations,
and the query are faithfully represented by the Bayesian net-
work. Thus the problem of answering the query reduces to
computing the posterior probability of the variable in the
network representing our query. We use MCMC sampling
to perform this inference. We start with the formal defini-
tion of our Bayesian network, identify why exact inference is
not possible, and then discuss our MCMC implementation.

4.1 Bayesian Network

A Bayesian network [11] is characterized by its variables
and the prior and conditional probabilities relating the vari-
ables to one another. We start with the variables and what

they represent and then move on to their conditional prob-
abilities. Figure 1 shows a Bayesian Network for the case of
three sensor measurements and four enemy agents. In prac-
tice, the network structure will vary depending on the num-
ber of sensor measurements and number of enemy agents.

4.1.1 Variable 1: Sensor Measurements

Let there be P sensor measurement variables R1 ... Rp in
our Bayesian network. These variables are identical to the
variables mentioned in Section 2 and contain both the index
of the sensor it originated from and the stochastic value d
that the sensor perceived. These variables are observed in
the Bayesian network.

4.1.2 Variable 2: Enemy Agent Locations

Let there be N enemy agent location variables LE; ... LEN
in our Bayesian network. These variables are also identical
to the variables mentioned in Section 2. The variables are
not observed in the Bayesian network, i.e., their values are
not known to the inference algorithm. By doing inference
however, it is possible to form posterior probability distri-
butions over them.

4.1.3 Prior Probability: Enemy Agent Locations

We assume that the enemy agents are independently and
uniformly distributed across a bounded rectangular region.

4.1.4 Variable 3: Whether the Friendly Agent is Sur-
rounded

Let there be a variable D in our Bayesian network. Like
the variables that came before it, this variable is identical to
the variable mentioned in Section 2. Indeed, the potency of
our Bayesian network lies in the simplicity of its conception.
This variable is also not observed in the Bayesian network
but it is possible to form a posterior probability distribution
over it as well.

4.1.5 Conditional Probability 1: How Enemy Agent
Locations Affect Sensor Measurements

Sensor measurements are stochastically determined by en-
emy agent locations as presented in Section 2.

4.1.6 Conditional Probability 2: How Enemy Agent
Locations Affect the Query

The value of D is deterministic given LFE; ... LENy. We
use the off-the-shelf convex hull generation and containment
algorithm described in section 3 to establish this relation
between D and LE:... LEN.

4.2 Problems with Exact Inference

Inference in Bayesian networks refers to the process of
discovering posterior probabilities of unobserved variables
given the values of observed variables. A family of tech-
niques known as clique tree methods is used for this pur-
pose.

Unfortunately, our Bayesian network has both continu-
ous (LE) and discrete (R and D) variables. In fact, this
is the hardest class of Bayesian networks to perform infer-
ence on [10]. Moreover, the nature of the problem preempts
the use of multivariate Gaussians to approximate the LE
variables while maintaining the rich hypotheses inference
required to form accurate posteriors. Faced with such a
network, clique tree methods would form an immense clique

containing each R variable along with each of the LE vari-
ables. The inadequacy of multivariate Gaussians would force
us to perform discretization of the joint space. The expo-
nential blowup that arises from this enormous state space
would render the problem computationally intractable.

4.3 MCMC for Approximate Inference

Fortunately, we can get an accurate estimate of the poste-
rior probability of interest, P(D|R;: ... Rp). We do this with
the Metropolis algorithm, an instance of a MCMC method
that performs approximate inference on Bayesian networks.
It is equipped to handle the continuous nature of this dis-
tribution as it samples evenly over the entire joint space.

We follow the treatment of Metropolis and use the termi-
nology as presented in [5]. The function f(X) we want to
estimate is the variable D and the space X; we sample from
is the joint distribution over LE. Let us choose to draw T’
samples using the Metropolis algorithm and let the hypothe-
sis over LE while taking sample t be LE". The starting state
often systematically biases the initial samples so we discard
the first ¢ - T samples and estimate our posterior probability
of interest as the mean of the remaining samples:

P(D|R: ... Rp) = ﬁ S PODILEY) (1)

where ¢ is the fraction of samples discarded until the Markov
chain converges.

There are four aspects to evaluating this expression. The
first three deal with the inner workings of Metropolis. First,
where do we start the chain? Second, how does LE® tran-
sition to LE''? Third, how do we decide whether to ac-
cept the proposed transition? Fourth, how do we evaluate
P(D|LE")?

4.3.1 Starting the Chain

We place each of the enemy agents at a random location
uniformly distributed over the rectangular region where en-
emy agents are known to be located.

4.3.2 Proposal Distribution

One of the enemy agents is chosen at random and is moved
to a random location uniformly chosen over the same rect-
angular region as before. Thus, each component of LE‘™?,
that is, each enemy agent location, is conditionally indepen-
dent, given LE*. This condition is required for Metropolis
to work correctly.

4.3.3 Determining Proposal Acceptance

We use the Metropolis proposal acceptance criterion:

P(LE""', Ry ...Rp)

t 1y
a(LE",LE""") = min(1, PLE" By .. Rr)). (5)

The proposal is accepted with probability a(LE®, LE*™)
as given above. This is easily done by generating a ran-
dom number U uniformly drawn from between 0 and 1 and
accepting the proposal if U < o(LE®, LE*™).

We can simplify the expression

P(LE™ Ry...Rp) (©)
P(LE*,R:...Rp)

substantially. We discover from the Bayesian network that
the expression P(LE’S7 R1...Rp) decomposes as follows:

H H (R,|LE") (7)

where LE! refers to the hypothesized location of enemy
agent ¢ when Metropolis takes sample .

Similarly, the expression P(LEtH7 R ..
as:

. Rp) decomposes

N P
[[P@ESH T P(RILE). (8)
=1 j=1

Thus, we can rewrite 6 as:

15, P(LEM T, P(RILE™Y)
1L, P(LEDTT;Z, P(R;|ILEY)

9)

If we recall that LE? is uniformly distributed and that
each of the LFE terms cancel out in both the numerator and
denominator, this expression simplifies to:

I1;_, P(R;|LE")
[T, P(R|LEY)

(10)

Our Bayesian network does not directly allow us to sim-
plify this expression further but since sensors are not af-
fected, even stochastically, by enemy agents outside their
sensing range, we can exploit context-specific independence
to reduce this expression further. Specifically, only one of
the LE; variables has changed value from step ¢ to step t+41.
Only sensors for which this enemy agent is within range will
be affected by this transition. Let there be K such sensors
and let K} refer to the index of the k-th such sensor.

The sensor measurements that are not affected by the
change in LFE; cancel out in the numerator and denominator,
leaving us with:

RKk|LEt+1) (11)
RKk |LEt) '

::]w

Computing this expression is extremely fast and is further
sped up in our implementation by discretizing the rectangu-
lar region and associating with each grid cell a list of sensor
measurements that affect that cell.

The conditional probabilities of the sensor measurements
given the enemy agent locations can be computed directly
from the expressions of the conditional probability. This
formulation of the problem, which relies only on the con-
ditional probabilities as they are stated, i.e. the forward
model, and not on evidential reasoning make computation
of likelihoods and thus inference easier to implement, faster,
and more accurate [17].

4.3.4 Computing P(D|LE;)

This conditional probability can be computed directly from
the definition as presented in 4.1.6. The locations of the en-
emy agents are given by LF;. The expression will yield a
probability that is either 0 or 1 but not in between.

4.4 Alternate Queries

Up to this point, we have explored our algorithm for the
specific query of determining whether a friendly agent is
surrounded by enemy agents. This problem dealt with de-
termining properties of the convex hull of a set of stochasti-
cally sensable points. While we present the scenario in 2D,
it generalizes directly to higher dimensional spaces.

We briefly note two other scenarios where we can use our
algorithm to discover useful geometric properties of a set
of points. The first scenario explores discovering both the
extent and area of a set of stochastically sensable points.
The second deals with finding a point maximally distant
in expectation from all other points. These scenarios were
chosen to explore different areas of computational geometry
but our algorithm works on any query where small changes
in the input induce small changes in the output.

4,41 Extent and Area of a Point Set

The problem of finding the farthest point along a cer-
tain direction in a point set is more generally known as the
extremal polytope query and can be solved efficiently by
Kirkpatrick’s algorithm [16]. Let us define a new variable B
that contains both the minimal and maximal point in each
direction. We replace the last step of our algorithm, comput-
ing P(D|LE}), with computing P(B|LE;). This conditional
probability is deterministic, as its predecessor was. The ex-
pected value of the extents are the mean of the components
of the individual samples. The expected value of the area
is the mean of the areas stemming from the individual sam-
ples and will typically not equal the area stemming from the
mean extents. Using only discovered points in this scenario
will tend to underestimate the extent of the point set.

4.4.2 Maximally Distant Point

The problem of finding a point that is maximally distant
from its nearest neighbor stems from the Voronoi diagram
of a point set and can be computed as described in [6]. Let
us define a new variable E that uses a discretized grid to
represent the distance of each cell to its nearest neighbor in
the point set. By replacing the last step with computing
P(E|LE:) (again deterministic), we calculate the expected
distance from each cell and choose the one with the highest
expected distance. Using only discovered points in this sce-
nario will tend to ignore the effects of undiscovered points
on the solution.

5. EXPERIMENTAL RESULTS

We show in this section some examples of the sort of re-
sults the inference algorithm produces. First, we have some
specific networks and show the posterior probabilities pro-
duced conditioned on different sets of sensor measurements.
Second, we show how the average posterior probabilities
vary as different parameters of the sensor network varies.
Third, we examine how many iterations MCMC requires to
converge.

5.1 Specific Inference Examples

In Figure 2, we see a sensor network. Here, LF corre-
sponds to the friendly agent and is designated by a plus sign,
LE; corresponds to the ith enemy agent and is designated
by a circle, and LS; the jth sensor and is designated by an
asterisk. The circle surrounding a sensor shows the extent
of its sensing range. The labels and circles for only a subset

Figure 2: An Example Sensor Network

of sensors are drawn to reduce clutter in the diagram. The
following table provides the posterior probabilities resulting
from inference when different sets of sensors are chosen to
sense. None of the sensors failed during the simulation runs
but the algorithm runs with ¢ set to 0.01.

Posterior Probabilities for Figure 2
Sensors Sensing | Posterior Probability
56, 68 44
none 51
2,41 80
41 81
41, 56, 68 86
36, 37, 41, 56, 68 93

We analyze our results from a geometric perspective. It is
important to note that our inference algorithm approaches
the problem in a fundamentally different way than the dis-
cussion that follows.

Let us start with the prior probability that the agent is
surrounded without any sensor measurements. In this in-
stance, the entire field is 100 by 100 and the friendly agent
is at 58, 40. Ignoring collinearity, which is of measure 0 any-
way, the friendly agent is only surrounded if all of the enemy
agents do not lie to one side of it. Let us analyze the case
that all the enemy agents are to the north of the friendly
agent. The probability of any one of them being there is
60% and the probability of all five of them being there is
approximately 8%.

The alternative scenario is that each of the agents is to the
south. The probability of any one of them being there is 40%
and the probability of all five of them being there is approx-
imately 1%. Thus the probability of not being surrounded
because all the agents lie to one side of the east-west merid-
ian is approximately 9%. We need to extend this case to

each line passing through LF but without double counting.
For example, the probability of all of the enemies lying to
one side of the north-south meridian is also approximately
9% because of the approximate symmetry of the situation.
We do not seek to compute the prior via this method but
only to show where the prior comes from and demonstrate
the difficulty of computing it.

We next consider the situation where sensors 56 and 68
have sensed and found enemy agents but the posterior has
decreased to 44%. This may seem counterintuitive that
we have useful information and our posterior has dropped
but with a fixed number of enemies, finding two of them
in inessential locations decreases the probability of enemies
elsewhere. Specifically, the probability of enemy agents to
the south and east of the friendly agent, where they were
already less likely to be, is further reduced. Contrast this
with the situation where only sensor 41 has sensed. Finding
an enemy where it was unlikely but more potentially useful
increases the posterior probability substantially, in this case
to 81%.

Let us next consider the case where sensors 2 and 41 have
both sensed. The posterior probability is lower than the sce-
nario where only 41 has sensed. Intuitively, the sensor is al-
most collinear to the previously detected sensor and friendly
agent and the discovery of this enemy is neither immensely
helpful nor it useless. It does however reduce the number of
unknown enemies that might have been used to expand the
convex hull in a useful direction.

The next scenario we consider, where sensors 41, 56, and
68 have sensed, is perhaps the most intuitive. We can see
that the discovered enemies form a triangle that just encloses
the friendly agent. The sensors have less information than
we do though — they only know that enemy agents lie within
their sensing radius. It may be that both enemy agents lie
north of the sensors that have located them. If this were the

* . .
« Wi L J
& N Ls46

SRSy

T~ ~

Figure 3: Another Example Sensor Network

case, the friendly agent would not longer be surrounded.

The last scenario, where sensors 36, 37, 41, 56, and 68 have
sensed, shows the powerful effect of negative information.
The addition of results from sensors 36 and 37 demonstrate
that the enemy agent that sensor 41 found is not in the
sensable region of either sensor 36 and 37 and therefore must
lie farther south, where it is more likely to participate in
surrounding the friendly agent.

Another example sensor network and inference results fol-
low. In this case, none of the sensors failed during the sim-
ulation runs but the algorithm now runs with ¢ set to 0.2.
We will see how this difference affects inference.

Posterior Probabilities for Figure 3
Sensors Sensing Posterior Probability
none 67
35, 50, 58 70
8, 36, 58 74
8, 36, 46 75
8, 35, 50, 58 78
8, 35, 36, 46, 50, 58, 75, 86 91

There is much to be learned from these results but we fo-
cus on the three essential points that were not demonstrated
by the previous example. First, the prior probability of be-
ing surrounded is much higher. This is due solely to the fact
that the friendly agent is closer to the center of the region
where enemy agents are distributed.

Second, even when the sensor evidence supports the as-
sertion that the friendly agent is surrounded, as in the case
where sensors 8, 35, 50, and 58 have sensed, the posterior
probability is not as high as one may expect. The sensor
network realizes due to the relatively high value of ¢ that it
is likely that one or more of these sensor measurements are
inaccurate and considers these possibilities in its inference.

Third, when there is evidence from multiple sensors sup-
porting the presence of an enemy agent, as in the case where
sensors 8, 35, 36, 46, 50, 58, 75, and 86 have all sensed and
each enemy agent is covered by at least two sensors, the
posterior probability increases substantially.

5.2 Effects of Changing Network Parameters

We now move on to aggregate results of how different
parameters of the scenario affect the posterior probability of
being able to detect that the friendly agent is surrounded.
It is possible to perform such analysis for any query and can
provide valuable insights into how the parameters of the
sensor network help or hinder in answering specific types of
queries.

Figure 4 shows the aggregate of two sets of ground truth
scenarios. The Surrounded case shows examples where the
agent is actually surrounded. The Not Surrounded case
shows examples where the agent is actually not surrounded.
The distinction is determined by the simulator and not through
sensor measurement. The chart thus shows how the aver-
age posterior of the inference algorithm across a variety of
scenarios evolves. The number of enemies is set to four and
the sensing radius is set to 12. As we see, more informa-
tion brings the posterior probability closer and closer to the
ground truth.

Figure 5 shows the same scenario but with the number
of enemies varying now. The number of sensors is set to
twenty-five and the sensing radius remains at twelve. We
see that it is easier to locate enemies and believe that one is
surrounded when there are more enemies present but that
the effect is not strong.

Figure 6 shows the same scenario but with the range of
the sensor varying now. The number of sensors is set to
twenty-five and the number of enemies is set at four. While
it is easier to locate enemies with increased sensing range,

Probability Surrounded

Posterior Probability Evolution as Number of Sensors Varies

Posterior Probability Evolution as Number of Enemies Varies

1 T T T T T T 1 T T T T T
— Surrounded — Surrounded
— - Not Surrounded — - Not Surrounded

0.9 q 0.9 q

0.8

0.7
=l
L7}

0.6~ S
3
e
3

0.5 > 0.5 q
5
©

0.4 ‘é 0.4 i
a

0.3 0.3 q

0.2 q 0.2 q

oal "7 RSN 11 oaf -7

0 Il Il Il Il = 1 - \\ I S ~Ne— 0 - Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45 50 3 4 5 6 7 8 9 10

Number of Sensors

Number of Enemies

11

Figure 4: Posterior Probability Evolution as Num-
ber of Sensors Varies

the uncertainity associated with such information makes this
information less useful. These contrary forces appear to bal-
ance out and varying the sensor range appears to neither
help nor hurt inference.

5.3 MCMC Convergence

Although MCMC converges in the limit to the exact pos-
terior, it is useful to know how many iterations are required
in practice to obtain accurate results. It is unfortunately
only feasible to compute analytical bounds for MCMC al-
gorithms for only the simplest distributions though and the
conditions required by most bounding theorems are not sat-
isfied by general distributions. However, it often suffices in
practice to answer this question heuristically through ex-
perimentation [15]. Figure 7 shows the standard deviation
of the MCMC posterior estimate errors before convergence
occurs. Regardless of the number of queries, we find that
the posterior estimate errors level off after approximately
15,000 steps of MCMC, a computation that takes only a
few hundred milliseconds to perform.

6. FUTURE WORK

While we feel that we have made significant progress with
the methods presented in this paper, there are two major
directions we plan to proceed with this work. First, we want
to use this algorithm with a set of actual sensors. Second, we
want the sensor network to guide its own sensing activities
and direct sensing in such a way to minimize both sensing
and communication cost. We discuss these ideas in turn.

6.1 Moving from Simulation to Actual Sensors

We plan to use this algorithm to help mobile robots play-
ing laser tag with one another [14] determine where their
enemy agents may or may not be. For example, if a robot
knew that a certain corridor was most likely free of enemy
agents, it could focus its searching efforts elsewhere.

Specifically, we plan to use vibration sensors that will de-
tect the absence or presence of enemy robots and route this

Figure 5: Posterior Probability Evolution as Num-
ber of Enemies Varies

information to the friendly agents to determine where en-
emies may or may not be. These sensors will be subject
to noise as they will sometimes miss a robot going by or
mistake a person walking by for an enemy robot.

6.2 Intelligent Sensor Selection

While our algorithm can effectively leverage very limited
information, to run on an autonomous sensor network, it
needs to be paired with a decentralized algorithm that runs
on each sensor node that decides when to sense and also
when and what type of information to communicate to its
neighbors.

Such an algorithm will need to make tradeoffs between
energy conservation and answering queries more effectively.
One way to address this problem is a cost-based scheme
that casts utility and battery depletion into a single cur-
rency [3]. While the cost of sensing, asking another node
to sense, or sending information to another node will fall
directly out of a coherent energy-aware sensor model, the
value of such information is intricately tied to the inference
algorithm. Specifically, to prevent bias, the value of sensing
should be the expected reduction in entropy stemming from
the acquisition of this information.

Constructing such an algorithm requires answering several
difficult questions. First, how can sensors with only partial
world state display utility-maximizing emergent behavior?
Second, what is the tradeoff between expending more energy
and acquiring a more accurate answer? Third, how can
sensors distribute work in a way that takes into account the
effects of remaining power at the granularity of individual
nodes?

7. CONCLUSION

We have presented an inference algorithm for a sensor
network to effectively answer generalized queries. Using
probabilistic techniques, the algorithm is able to answer
these queries effectively with only partial information over

Posterior Probability Evolution as Sensor Range Varies

T
— Surrounded
— - Not Surrounded

0.8 T

0.9

o o °
S (%] o
T T T
. . .

Probability Surrounded

o
w
T
I

0.2 b

0 5 10 15 20 25
Sensing Range

Standard Deviation of Posterior Probability

Posterior Probability Convergence as MCMC Progresses

0.055 T T T T

—— 0 queries
—©— 2 queries
—— 4 queries
—+ 6 queries
—%— 8 queries

0.05

0.045 -

0.035-

0.025

0.02

0.015

0.01f

0.005 . L L
0 5 10 15 20

Number of MCMC Steps, in Thousands

25

Figure 6: Posterior Probability Evolution as Sensing
Range Varies

the world state. Moreover, it can reason coherently despite
the stochastic nature of the sensor data. The results shown
demonstrate that the inference algorithm is highly accurate
in the scenario presented and is able to handle a wide range
of types of sensor information.

8. ACKNOWLEDGEMENTS

This research is supported in part by DARPA’s MARS
Program (Contract number N66001-01-C-6018), DARPA’s
Sensor Information Technology Program (Contract number
F30602-00-C-0139), the National Science Foundation (CA-
REER grant number 11S-9876136 and regular grant number
11S-9877033), Intel Corporation, the Stanford Networking
Research Center, ONR MURI grant N00014-02-1-0720, and
a grant from the DARPA Software for Distributed Robotics
program under a subcontract from SRI, all of which is grate-
fully acknowledged. The views and conclusions contained in
this document are those of the authors and should not be
interpreted as necessarily representing official policies or en-
dorsements, either expressed or implied, of the United States
Government or any of the sponsoring institutions.

9. REFERENCES

[1] G. Battista, R. Tamassia, and I. Tollis. Constrained
Visibility Representation of Graphics Proc. IPL, 1992.

[2] M. Berg, M. Kreveld, M. Overmars, and

O. Schwarzkopf. Computational Geometry: Algorithms

and Applications. Springer-Verlag, 2000.

J. Byers and G. Nasser. “Utility-based decision-making

in wireless sensor networks” Proc. IEEE MobiHOC

Symposium, 2000

T. Cover and J. Thomas Elements of Information

Theory John Wiley and Sons, Inc., 1991.

W. Gilks, S. Richardson, and D. Spiegelhalter. Markov

Chain Monte Carlo in Practice. Chapman and Hall /

CRC, 1996.

Figure 7: Posterior Probability Convergence as
MCMC Converges

[6] L. Guibas, and J. Stolfi. “Primitives for the
manipulation of general subdivisions and the
computation of Voronio diagrams”. ACM Trans.
Graph. 4, 74-123. 1985.

L. Guibas. “Sensing, Tracking and Reasoning with

Relations”. IEEE Signal Processing Magazine. Volume:

19 Issue: 2, March 2002.

J. Hershberger and S. Suri. “Convex Hulls and Related

Problems in Data Streams”. Proc. ACM

SIGMOD/PODS Workshop on Management and

Processing of Data Stream, 2003.

J. Kahn, R. Katz, and K. Pister. “Mobile networking

for smart dust” Proc. ACM/IEEE Intl. Conf. on

Mobile Computing and Networking, 1999.

[10] U. Lerner. Hybrid Bayesian Networks for Reasoning
about Complex Systems Ph.D. Thesis, Stanford
University, October 2002.

[11] J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers, Inc., 1988.

[12] G. Pottie and W. Kaiser. “Wireless integrated
network sensors.” Proc. ACM Communications, 2000.

[13] T. Richardson. “Approximation of planar convex sets
from hyperplane probes”. Proc. Discrete and
Computational Geometry, 1997.

[14] M. Rosencrantz, G. Gordon, and S. Thrun. “Locating
moving entities in indoor environments with teams of
mobile robots.” Proc. AAMAS-2003.

[15] J. Rosenthal. “Minorization Conditions and
Convergence Rates for Markov Chain Monte Carlo.”
Proc. Journal of the American Statistical Association,
1995.

[16] J. Rourke Computational Geometry in C Cambridge
University Press, 1998.

[17] S. Thrun. “Learning occupancy grids with forward
models”. IEEE Conference on Intelligent Robots and
Systems. 2001.

(9]

