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Abstract. This paper discusses recent progress achieved in two areas
related to the development of a Dynamic Data Driven Applications Sys-
tem (DDDAS) for structural and material health monitoring and critical
event prediction. The first area concerns the development and demon-
stration of a sensor data compression algorithm and its application to the
detection of structural damage. The second area concerns the prediction
in near real-time of the transient dynamics of a structural system us-
ing a nonlinear reduced-order model and a time-parallel ODE (Ordinary
Differential Equation) solver.

1 Introduction

The overall and long-term goal of our effort is to enable and promote active
health monitoring, failure prediction, aging assessment, informed crisis manage-
ment, and decision support for complex and degrading structural engineering
systems based on dynamic-data-driven concepts. Our approach involves the de-
velopment a Dynamic Data Driven Applications System (DDDAS) that demon-
strates numerically, as much as possible, its suitability for structural health mon-
itoring and critical event prediction. An outline of this approach, its objectives,
and preliminary architectural concepts to support it can be found in [1].

The main objective of this paper is to describe progress achieved in two
areas of activity that are directly related to drastically reducing the overall
sensing and computational cost involved in the utilization of such a DDDAS. For
this purpose, our efforts draw experiences and technologies from our previous
research on the design of a data-driven environment for multiphysics applications
(DDEMA) [2, 3].

The first area of progress pertains to the development and implementation of
an efficient data compression scheme for sensor networks that addresses the issue
of limited communication bandwidth. Unlike other data compression algorithms,
this scheme does not require the knowledge of the compressing transform of the
input signal. It constitutes a first step towards the efficient coupling between a
given sensor network and a given computational model.



The second area of progress pertains to the development and implementa-
tion of a numerical simulator for the prediction in near real-time of the transient
dynamics of a structural system. The new aspect of this effort is the gener-
alization to nonlinear second-order hyperbolic problems of the PITA (Parallel
Implicit Time-integration Algorithms) framework developed in [4, 5] for linear
time-dependent problems.

Preliminary verification and performance assessment examples that further-
more illustrate the basic concepts behind both methodologies outlined above are
also provided in this paper.

2 An Efficient Data Compression Scheme for Sensor

Networks

In the context of a DDDAS for health monitoring and critical event prediction,
the sensor network collects the monitored data of the structure and sends it
to the numerical simulator. This simulator is equipped with full- and reduced-
order computational models that are validated for healthy states of the structure.
Differences between sensed and computed (possibly in near real-time) data, or
sensed data and data retrieved in real-time from a computational data base in the
simulator, form a special class of sparse signals that can be used to locate, assess,
and possibly predict the evolution of structural damage as well as dynamically
update the computational models [6, 7]. Hence, the sensor network acts in general
as the source of the data used for guiding and driving numerical simulations
and/or updating the underlying computational models.

Communication bandwidth is a very limited resource in sensor networks. For
this reason, the trivial approach where all sensor readings are sent to the simu-
lator is unlikely to be deployed. Compressed sensing offers a venue to a different
approach that avoids expensive communication between the sensor network and
the numerical simulator. Such an alternative approach is not only more practical
for health monitoring in general, but also essential for critical event prediction.
In this section, we discuss our chosen data compression scheme whose theory was
developed in [8]. Unlike many other data compression algorithms, this scheme
does not require any information about the compressing transform of the input
signal. It only assumes that the signal is compressible — that is, it has a sparse
representation in some orthogonal basis. In health monitoring applications, this
assumption typically holds given that as mentioned above, a signal usually con-
sists of the difference between a measured information and a predicted one. Since
a sparse signal can be reconstructed from the knowledge of a few random linear
projections [8], collecting only these few random projections constitutes a fea-
sible mechanism for data compression and provides the sought-after saving in
communication time.

2.1 Compressed Sensing Overview
Let x0 ∈ R

m denote a signal of interest that has a sparse representation in
some orthogonal basis, and φ ∈ R

n×m, with n < m, denote the random matrix
generated by the “uniform spherical ensemble” technique described in [8]. Con-
sider the vector y = φx0. This matrix-vector product represents the result of n



random linear projections — or samples — of the original signal x0. From the
knowledge of y, one can reconstruct an approximation x̃0 of x0 as follows

x̃0 = arg min
x

||x||1 subject to y = φx (1)

The reconstruction technique summarized by the above equation involves essen-
tially linear, non-adaptive measurements followed by a nonlinear approximate
reconstruction. In [8], it is proved that despite its undersampling (n < m), this
technique leads to an accurate reconstruction x̃0 when n = O(N log(m)), where
N denotes the number of largest transform coefficients of x0 — that is, the num-
ber of transform coefficients of x0 that would be needed to build a reasonable
approximation of this signal. For example, for a k-sparse system — that is, a
system with only k values different from zero or larger in absolute value than a
certain minimum threshold — N = k.

2.2 Implementation

In our proposed sensing approach, we avoid expensive communication between
the sensor network and the simulator by communicating to the latter only sum-
maries of the original sensor readings. These summaries contain however enough
information to allow the extraction of the deviant sensor readings and localize
the sensors announcing deviant information. Here, “deviant” refers to a measure-
ment that is significantly different from an expected value obtained by simulation
and therefore is indicative, for example, of structural damage.

More specifically, our approach to compressed sensing is composed of two
main steps that are described next.

Extraction of Compressed Summaries. Let s0 ∈ R
m and p0 ∈ R

m denote
the measured and numerically predicted readings at m sensor nodes, respectively.
We compute n (n << m) random linear projections of these readings as follows

ys = φs0 , yp = φp0 (2)

The n compressed measurements of sensor readings represented by ys are then
communicated over the network to the simulator. Since n << m, this leads to a
reduction in communication time.

Decoding of a Compressed Representation. At the simulator, we com-
pute the difference between the sensor readings and corresponding simulator
predictions

δy = ys − yp = φs0 − φp0 = φ(s0 − p0) (3)

For a computational model that is validated for a healthy state of the structure,
the simulator predictions should be in principle in reasonable agreement with the
sensor readings most of the time. Therefore, the signal (s0 − p0) is in principle
a sparse and therefore compressible one that can be accurately reconstructed
by solving the minimization problem underlying Eq. (1) after substituting x
by (s − p) and y by δy from Eq. (3). Then, as demonstrated in Section 2.4, the
reconstructed value (s̃0− p̃0) of (s0−p0) can be exploited, after noise removal, to
localize the deviant sensor readings, predict the location of damage and possibly
characterize it.



2.3 Summary

The compressed summaries outlined above behave like an error detecting code.
They allow the system to detect events of interest, which facilitates automatic
detection. They also contain enough information to allow the localization of the
sensor nodes contributing to deviant readings. Finally, compressed sensing allows
faster data acquisition by lowering the communication burden.

2.4 Preliminary Verification

To illustrate the compressed sensing methodology described above, we consider
here the case of an F-16 fighter jet that is suddenly hit by an explosive bullet
in one of its wings. For simplicity, we ignore the damage formation process
in order to focus on the compressed sensing issues. Hence, we simulate here
the inflicted damage by suddenly introducing in the Computational Structural
Dynamics (CSD) and Computational Fluid Dynamics (CFD) models a realistic
hole that alters the stiffness, mass, and aerodynamic properties of the aircraft
(see Fig. 1). We equip the simulator with validated, full- and reduced-order,
aeroelastic computational models of the F-16 such as those presented in [9–
11]. We assume that 9131 sensor nodes are deployed over the entire fighter jet.
We note that this massive instrumentation hypothesis is currently unrealistic
because of sensor weight issues. We are currently addressing this aspect of the
problem by conducting various trade-off studies. We simulate the data measured
by the sensor nodes after damage infliction using the AERO simulator [9, 10] and
compare it to the pre-damage data obtained by numerical predictions using the
validated computational models.

(a) CFD (wireframe) & CSM (shaded) (b) Structural damage

Fig. 1. CFD and CSM models of an F-16 fighter with a hole in the port side wing.

Fig. 2 reports our findings using the compressed sensing approach with
m = 6000 — that is, when collecting 6000 instead of 9131 readings. The peak
values of the reconstructed difference signal shown in the bottom most diagram



of this figure correlate well with the locations of the sensor nodes that are clos-
est to the region hit by the explosive bullet. This demonstrates the potential of
compressed sensing for locating structural damage. Using such a massive instru-
mentation also allows the in-flight estimation of the size of the damage, among
other properties.

Fig. 2. In all plots, the x-axis represents the sensor nodes and the y-axis represents
the sensed, predicted, difference, and reconstructed difference values of the vertical
component of the displacement field at the sensor nodes.

3 A Time-Parallel Computational Framework for Faster

Numerical Predictions

The transient dynamics of a complex structural system are typically modeled
by a set of Partial Differential Equations (PDEs) that are semi-discretized by
the finite element method. The solution of the resulting semi-discrete systems
of equations is typically organized around two loops: (a) an inner-loop which
evaluates some quantities related to the state of the structure at a specific time-
instance, and (b) an outer one which advances the state of the structure from
a given time-instance to the next one. Hence, the computational cost associated
with the time-integration of the semi-discrete systems governing structural dy-
namics problems can be divided into two main components: (a) the CPU time
incurred by the inner-loop — that is, by the evaluation of the displacement
field and/or related quantities at a given time-instance, and (b) that incurred
by the outer-loop — that is, by time-advancing the complete state of the struc-
ture. To a large extent, parallel algorithms for the solution of transient dynamics
problems have mainly addressed the reduction of the CPU time associated with
the inner-loop. Such parallel algorithms can be described as space-parallel al-
gorithms. By comparison, the parallelization of the outer-loop of a structural
dynamics time-integrator — or time-parallelism — has received little attention



in the literature. This is because, in general, time-parallelism where the solution
is computed simultaneously at different time-instances is harder to achieve than
space-parallelism, due to the inherently sequential nature of the time-integration
process. However, time-parallelism can be of paramount importance to fast com-
putations, for example, when space-parallelism is unfeasible, cannot exploit all
the processors available on a given massively parallel system, or when predicting
structural dynamics responses in near-real-time requires exploiting both space-
and time-parallelisms.

Usually, space-parallelism is unfeasible when the number of degrees of free-
dom (dofs) is too small to allow amortization of the interprocessor communica-
tion overhead. Reduced-order computational models, which can be a critical com-
ponent of an on-board DDDAS, examplify this scenario as they often involve only
a few dofs. Yet, these and other computational models with relatively few dofs
can be (or feel like they are) CPU intensive when time-integration is performed
over a relatively large time-interval, and/or real-time predictions are desired,
for example, for on-line critical event prediction or control purposes. Predicting
in near-real-time the time-evolution of the variables governed by such models
calls for time-parallelism. Finally, when considering off-line transient structural
dynamics computations on massively parallel computers with thousands of pro-
cessors such as the Department of Energy’s ASCI machines, space-parallelism
alone is not always the optimal strategy for reducing the time-to-solution [4].
Indeed, in many cases such as low-frequency applications, the mesh resolution
dictated by accuracy considerations can be accommodated by a fraction of the
total number of available processors. It is well-known that in such cases, because
of hardware-related issues such as memory bandwidth effects and interprocessor
communication costs, the solution time typically increases when the number of
processors Np is increased beyond a certain critical value, N cr

p , while the mesh
size is maintained constant. In this sense, the smaller is N cr

p compared to the
maximum number of available processors, Nmax

p , the less optimal is the space-
parallel implementation strategy, and the more adequate becomes an approach
that combines both space- and time-parallelisms in order to reduce as much as
possible the solution time by exploiting all Nmax

p processors [4].
During the last decade, at least three approaches have been proposed for

time-parallelizing time-integrators (for example, see [4] for a brief review). Among
these approaches, the second-generation PITA [5] stands out as the only compu-
tational approach that has demonstrated a potential for accelerating the solution
of second-order hyperbolic problems such as those encountered in structural dy-
namics applications. However, this computational framework was developed in
[5] for linear problems only. Under this DDDAS research effort, we have re-
cently generalized it to nonlinear dynamics problems such as those encountered
in failure prediction and aging assessment.

3.1 Nonlinear Structural Dynamics Computational Models

Nonlinear structural dynamics computational models can often be written as

Mü + f int(u̇, u) = fext(t) , u(t0) = u0 , u̇(t0) = u̇0 (4)



where M , u, and u̇ denote the mass matrix, and displacement and velocity
vectors, respectively, f int denotes the vector of internal forces which typically
vary nonlinearly with u and u̇ and f ext denotes the vector of external forces. In
the context of a DDDAS, Eq. (4) represents a full-order nonlinear computational
model when discussing off-line simulations and a reduced-order model (ROM)
when discussing on-line simulations.

3.2 Nonlinear PITA

The nonlinear PITA framework for the time-parallel solution of Eq. (4) is an
iterative one. It can be described as follows. The time-domain of interest is par-
titioned into time-slices whose boundary points are treated as a coarse time-grid.
In a pre-processing step, the solution is approximated on this coarse time-grid
to provide a seed — that is, an initial condition — for each time-slice, using a
sequential but computationally inexpensive numerical procedure. Next, the fol-
lowing computational steps are performed. First, a preferred time-integrator is
applied independently and therefore concurrently in each time-slice to advance
the solution from the starting point of this time-slice to its end point. This in-
troduces jumps in the computed solution at the interior points of the coarse
time-grid. Then, a Newton-based corrective step is performed on the original
time-grid to improve the accuracy of the seeds and reduce the magnitude of
these jumps. This two-step sequence of computations is repeated until conver-
gence is reached — that is, until the solution jumps at the interior points of the
coarse time-grid are eliminated. The computational burden associated with the
corrective Newton step is alleviated by the introduction of a carefully constructed
projector, so that the sequential computational complexity of each iteration of
a nonlinear PITA is only slightly larger to that of its underlying (or preferred),
time-sequential, time-integration algorithm. Therefore, the asymptotic parallel
speedup of the nonlinear PITA using Np processors is roughly equal to Np/Nit

where Nit denotes the number of iterations for convergence. This result reveals
that the nonlinear PITA is mostly interesting when Nit can be kept as small as
possible, say of the order of 2 to 4.

3.3 Preliminary Performance Assessment

To illustrate the potential of the recently developed nonlinear PITA for near
real-time simulations such as those envisioned on an on-line DDDAS, we consider
here the solution of Eq. (4) in the context of a reduced-order model of the F-16
aircraft shown in Fig. 1 and a cyclic (fatigue) load. We choose to equip PITA
with the midpoint rule as the underlying time-integrator and decompose the
time-domain of interest in 20 time-slices. The computational results reported in
Fig. 3 reveal that for the considered problem, the nonlinear PITA converges in
3 iterations, which highlights its potential for supporting an on-line DDDAS for
health monitoring.
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Fig. 3. Convergence of the nonlinear PITA equipped with the midpoint rule and applied
to the solution of Eq. (4) in the context of an on-line reduced-order model.
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