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Abstract

We consider the problem of reconstructing a road net-
work from a collection of path traces and provide guaran-
tees on the accuracy of the reconstruction under reason-
able assumptions. Our algorithm can be used to process
a collection of polygonal paths in the plane so that shared
structures (subpaths) among the paths in the collection
can be discovered and the collection can be organized to
allow efficient path similarity queries against new query
paths on the same road network. This is a timely prob-
lem, as GPS and other location traces of both people
and vehicles are becoming available on a large scale and
there is a real need to create appropriate data structures
and data bases for such data.

1 Introduction

Finding shared structure in a collection of objects is a
fundamental problem in both pattern matching [25] and
similarity search [15, 19]. For the case of discrete strings,
there are many classical solutions to this problem [17,
22, 24, 25]. However, there has not been much previous
work on finding shared structure in path data embedded
in Euclidean space. With path data such as GPS
or other location traces becoming available on a large
scale, it is important to develop algorithms and data
structures to organize such geometric data. To facilitate
this goal, we develop an algorithm to extract important
shared structure in planar paths.

Many real world collections of path data seem to
follow an underlying “road network.” This assumption
holds not only for the obvious example of vehicular GPS
traces, but also for natural examples such as animal mi-
gration patterns [16] for which an explicit representation
of an underlying road network may not be available.
Our method of finding shared structure begins by con-
sidering what properties make a road network easy to
reconstruct from sample data. Then, given reasonable
assumptions about the underlying road network, our
reconstruction algorithm can extract important shared
structure in the paths. We further show how to use this
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information to implement a simple data structure for
partial matching of paths.

Road network reconstruction is closely related to
curve reconstruction, which is the problem of com-
puting a polygonal curve that approximates a contin-
uous curve sampled by a given point set (when the
ordering of the points along the curve is unknown).
Many algorithms have been proposed for reconstruct-
ing curves from a point set [2, 9, 10]. The crust algo-
rithm presented by Amenta et al. [2] uses Voronoi-based
techniques to reconstruct smooth and closed curves
from densely sampled points. Dey et al. [9] followed
up with the conservative-crust algorithm, which recon-
structs smooth curves with endpoints. Again based on
the Voronoi diagram, Dey and Wenger [10] proposed a
method to reconstruct curves with sharp corners. Even
though path traces typically come with temporal order-
ing for the samples, road network reconstruction is in
fact a more difficult problem, since road networks con-
tain many challenging non-manifold structures such as
crossings. Chazal et al. [7] proposed a sampling theory
to recover the topology of any compact set in Euclidean
space for a set of sample points based on the distance
function. But since a collection of sample paths intrin-
sically contains more information than a collection of
sample points, we would also like to recover the geome-
try of the underlying road network. However, the road
network reconstruction problem may have ambiguities,
as we will see in Section 2, especially at crossings or
when two roads come close to each other. Our strategy
is to recover the geometry of the sections of the road
network that are unambiguous and the connectivities
between these sections.

There have been several interesting techniques de-
veloped in the computer vision community for extract-
ing road networks from satellite and aerial imagery.
Baumgartner et al. [3] and Zhao et al. [27] propose
semiautomatic road extraction methods requiring man-
ual intervention. These systems process digital images
and mark the pixels corresponding to the roads. Mena
et al. [18] propose an integrated method to automati-
cally extract a skeleton of the road network from im-
ages. There has also been work [5, 12] using artificial
intelligence techniques to recover a road network from
massive amounts of GPS traces. However, these meth-



ods do not attempt to establish prior-free guarantees of
accuracy. Our work is the first, to our knowledge, to
approach this problem as a reconstruction problem and
to prove guarantees without stringent assumptions on
the distribution of input paths.

2 Road Network Model

In this paper, the underlying road network is modeled
as a geometric graph G = (V,E) embedded in R2

with edges drawn as polygonal curves. For clarity, we
will refer to these embedded edges as road fragments.
Furthermore, the road network is also associated with
a road width ε. This representation is both useful
and natural, as it contains information about both
the original road surface, which is the ε/2-fattening of
the road network G, and possible sample paths, which
should be close to embedded paths on the graph under
a natural distance measure. Formally, the δ-fattening of
a point set A is the Minkowski sum A+B(0, δ), denoted
Aδ, where B(x, r) is the ball of radius r centered at x.

For convenience, we use vertices and their associ-
ated embedded points interchangeably. Moreover, we
associate a path P = (v1, v2, . . . , vk) on an embedded
graph with a curve C : [1, k]→ Rk where C(i) = vi and
C restricted to the domain [i, i+1] for i = 1, . . . , k−1 is
the arc length parameterization of the embedded edge
(vi, vi+1). This allows us to use curves and paths inter-
changeably. A subcurve of a curve ` : [a, b]→ R2 is the
restriction of the map ` to a sub-interval of [a, b]. The
arc length of a curve ` is denoted Len(`).

We use the Fréchet distance dF to measure the dis-
tance between two curves; see [1] for its formal defini-
tion. An intuitive definition of the Fréchet distance be-
tween two curves is the length of the shortest leash that
allows a man to walk on one curve and his dog to walk
on the other curve from the beginning of the curves to
the end, without either one backtracking. The Fréchet
distance is more natural than the Hausdorff distance
because it takes into account the course of the curves.
We restrict the allowable sample paths to be polygo-
nal curves P such that dF (P,Q) ≤ ε/2, where Q is a
subcurve of an embedded path in G.

It is common in the literature to model a road net-
work as a geometric graph [4, 8, 11, 23, 26]. However,
we observe that given a real road network system, find-
ing a geometric graph representation may require many
arbitrary choices. For example, consider the situation
in the top pictures in Figure 1, in which the yellow road
and the orange road merge. Both underlying geometric
graphs on the left and right sides seem to be reasonable
representations of the road network, as their fattenings
both seem to approximate the road surfaces well and
a car moving through the intersection might be able to

Figure 1: Ambiguities.

follow the path on either graph closely. Therefore, given
sample traces of car movement on such a road network,
it would be impossible to determine which geometric
graph is the underlying truth unless further, possibly
unreasonable assumptions are made about the distribu-
tion of the deviation of sample paths from the underly-
ing graph skeleton. Moreover, such ambiguities extend
beyond the geometric embedding of the graph. The bot-
tom pictures in Figure 1 show that even the graph and
its connectivity can be ambiguous. Both the black and
blue graphs seem to be equally suitable representations
of the illustrated road surface.

In spite of these ambiguities, it seems that under
certain conditions, it should be possible to recover well-
separated road fragments from sample paths. There-
fore, given an underlying geometric graph representa-
tion of a road network, we seek to identify sections of
the graph for which reconstruction is a plausible goal,
and also give an algorithm that reconstructs these sec-
tions of the graph with bounded error under reasonable
assumptions. To do this, we introduce the following
notation:

Definition 2.1. (α-good Points) A point p on G is
α-good if B(p, αε) ∩ G is a 1-ball that intersects the
boundary of B(p, αε) at two points. Let a point p be
α-bad if it is not α-good.

Intuitively, a good point on the road network graph
corresponds to a point whose neighborhood in the
graph is a single curve. We will argue that we are
able to find such sections of the road network with
bounded error. Moreover, portions of the vehicle routes
traveling through these sections of road tend to be
the most important. For example, if the region under



Figure 2: Major roads between cities.

consideration is a large portion of a nation, as in
Figure 2, then we are most likely to be interested in
paths that connect multiple cities. In this case, the
course of a path through city streets is probably less
important than the highway routes traversed.

3 Assumptions

In this section, we state the assumptions on both the
road network and the input sample paths that are nec-
essary to guarantee the performance of our algorithm.
However, as Section 7 shows, the algorithm produces
reasonable results even when these assumptions are not
fully met. We will also explain why the assumptions
model real road networks well. The following assump-
tions on the road network use a parameter b, which is set
to 2+

√
6 to guarantee proper behavior of the algorithm:

1. Each road fragment γ is a polygonal curve
(p1, p2, . . . , pn) such that ||pipi+1|| ≥ 3bε,
∠pi−1pipi+1 ≥ π/2, and for any point p ∈ γ,
B(p, (b+ 2)ε) ∩ γ is a 1-disk.

2. For each road fragment γ, there exists a subcurve
β of γ such that Len(β) ≥ 9b and any p ∈ β is
(b+ 2)-good.

3. If the points p1, p2 are from road fragments γ1, γ2

respectively and d(p1, p2) < 3ε, then γ1 and γ2

share a node v, and the Fréchet distance between
the two subcurves of γ1 and γ2 joining v to p1 and
p2 is less than 3ε.

a

b
c

Assumption (1)
states that road
fragments do not
take sharp turns and do not come close to self-
intersecting. It is less restrictive than the smoothness
assumption used in many curve reconstruction algo-
rithms [2, 9], as it allows for corners. Furthermore, if

a section of road requires sharp turns, it can be split
into multiple road fragments. Assumption (2) states
that each road fragment has a good section that is long
enough that sample paths can be used to justify its
existence. Assumption (3) is needed to rule out pairs
of nonintersecting road fragments that are so close
together that their sample paths are indistinguishable
from those belonging to a single road fragment. For
example, in the figure above, road fragments a and b are
both sampled by the gray paths. However, these sample
paths could also arise from a single road fragment c.
Assumption (3) ensures that two road fragments that
do not meet at an intersection do not get close enough
together to be mistaken for a single road fragment.
Note that we do not make any assumptions on how
long two road fragments can be close to each other.

For the input sample paths, we make the following
two assumptions:

4. Each input path is within Fréchet distance ε/2 of a
subcurve of a path on G.

5. For each road fragment γ, there exists an input
path ` such that `ε/2 contains γ.

Figure 3: GPS trace data from [20].

Assumption (4) simply says that a path should stay
within the road surface. Assumption (5) ensures that
each part of the road network graph is well sampled.
In fact, Assumption (5) is stronger than necessary. In
particular, for the (b + 2)-good sections of the road
fragments, it is enough to assume that for each point,
there is an input path passing through the ball of radius
(b+ 2)ε centered that point. However, for simplicity of
exposition, we state Assumption (5) in its stricter form.
Figure 3 shows that the assumptions are met in GPS
trace data from Open Street Map [20]. In fact, real
GPS trace data appear to be very densely sampled.



4 Algorithm

Our reconstruction algorithm recovers the (b+ 2)-good
sections of road fragments and their connectivities. The
algorithm starts by obtaining a set of sample points
forming a metric bε-net of the input paths. (A metric
bε-net is a set of points S selected from the input
paths such that all points on the input paths are within
distance bε of at least one point in S and no two
points in S are within distance bε of one another.) The
algorithm then computes a Voronoi diagram using these
sample points as sites. From a subgraph of the dual
Delaunay graph, the algorithm builds a structure graph
useful for organizing the input paths. The structure
graph is the basis for building a reconstruction graph
that represents the underlying road network graph with
bounded error. In some sense, the algorithm recovers
the road network by organizing the input paths. In
the remainder of the section, we describe the structure
graph and the reconstruction graph, and then outline
the reconstruction algorithm that builds them.

4.1 Structure graph and reconstruction graph
To describe the structure and reconstruction graphs,

we begin by introducing several concepts: Given the
Voronoi diagram of the sample points, we extract a sub-
graph of the dual Delaunay triangulation (called the re-
stricted Delaunay triangulation) by selecting Delaunay
edges whose corresponding Voronoi edges intersect one
or more input paths. We define the degree of a Voronoi
cell to be equal to the degree of the corresponding node
in the restricted Delaunay triangulation. A curve cuts
through a bounded region if it intersects the region but
both of its endpoints are outside the region.

Definition 4.1. (Clean Voronoi Cell) A Voronoi
cell V(s) is clean if it is of degree two, there is at least
one input path cutting through the cell, and any path
cutting through the cell intersects two distinct Voronoi
edges if and only if it also intersects the ball B(s, ε).

We define the clean graph to be the subgraph of the
restricted Delaunay triangulation induced by the sites
of clean Voronoi cells. Every connected component in
the clean graph is either a simple path or a simple cycle
as each clean Voronoi cell is of degree two. Define a
primitive chain to be the Voronoi cells in a connected
component equipped with an Euler path (s1, . . . , sm).
For a connected component equipped with (s1, . . . , sm),
(V(s1), . . . ,V(sm)) is the corresponding primitive chain.
We also refer to the Euler path (s1, . . . , sm) as the
skeleton. We note that it is possible that the skeleton
(s1, . . . , sm) can be a single point (i.e., m = 1) or a
simple cycle (i.e., s1 = sm). With each primitive chain
c = (V(s1), . . . ,V(sm)), we associate a polygonal curve

as follows: for each si, choose a path cutting through
V(si), let `si

be the subcurve in V(si), and then connect
consecutive `si and `si+1 using the segment joining their
endpoints on the Voronoi edge common to V(si) and
V(si+1); see Figure 4(a). We use this polygonal curve,
denoted `c = (`s1 , . . . , `sm

), to approximate the section
of the road fragment covered by the primitive chain.
This is a more accurate reconstruction than using the
polygonal curve (s1, s2, . . . , sm), as we allow a turn as
large as π/2 within a road fragment; see Figure 4(a).

Definition 4.2. (Link) A link between two clean
Voronoi cells (not necessarily distinct) is a subcurve of
an input path that intersects both cells at two distinct
Voronoi edges. Furthermore, the part of the subcurve
not in these two cells does not intersect B(s, ε) for any
sample point s corresponding to a clean Voronoi cell and
has endpoints on different Voronoi edges.

As we can see, the part of the link not in these two
cells connects them; we call this the vital part of the link.
Let the endpoints of the link be those of its vital part;
see Figure 4(b). We say that two links are of the same
type if their endpoints are on the same Voronoi edges.
We also say a link connects two primitive chains of it
touches one cell from each primitive chain. Note that
no link connects a primitive chain with a cyclic skeleton,
and therefore cyclic primitive chains are isolated. A
primitive chain with a simple path skeleton has two
boundary edges where endpoints of links may reside. A
link always connects two different boundary edges. We
further define a clean link be a link whose boundary
edges do not touch links of a different type.

The structure graph is obtained from the restricted
Delaunay triangulation by collapsing primitive chains
into supernodes; the vertices of the structure graph are
primitive chains and the edges are the different types
of links, with one edge for each type of link present
in the restricted Delaunay triangulation. Consider the
subgraph of the structure graph obtained by keeping
only the clean links. As in the clean graph, each
connected component in this subgraph is a simple
path or cycle, and we can again equip each connected
component with an Euler path. We call such an Euler
path a chain, denoted (c1, c2, . . . , cm), where {ci}mi=1 are
the component primitive chains. As in a primitive chain,
when c1 = cm, the chain (c1, c2, . . . , cm) is a cycle and
no link connects it to any other chain. This means the
road fragments covered by such a chain form an isolated
cycle, which is very unlikely to happen in the real world.
Our algorithm assumes that no chain is a cycle: every
chain must end at a boundary edge that either does not
connect to any link or connects to at least two links.
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Figure 4: (a) (V(s1),V(s2),V(s3),V(s4)) is a primitive chain and the bold curve is its associated polygonal
curve, which approximates the road fragment (dash-dotted line) better than the polygonal curve (s1s2s3s4). (b)
Illustration of a link. The bold part is the vital part of the link, and q1 and q2 are the endpoints of the link.

We obtain the reconstruction graph from the struc-
ture graph in the following manner: The vertices of the
reconstruction graph correspond to boundary edges at
the ends of chains. A chain (c1, c2, . . . , cm) forms an
edge between two vertices. This edge is embedded as
a polygonal curve formed by connecting the polygonal
curves associated with the primitive chains to the vital
parts of the interleaved links by adding segments be-
tween the chain/link vertices that lie on common bound-
ary edges. The number of the edges in the reconstruc-
tion graph is the same as the number of chains in the
structure graph.

4.2 Outline Our reconstruction algorithm consists
of the following seven steps:

1. Find a bε-net (bε-cover and (bε/2)-packing) S of
the input paths where b = 2 +

√
6 and ε is an input

parameter denoting the road width.

2. Compute the Voronoi diagram V(S).

3. Mark clean Voronoi cells, and compute the clean
graph and primitive chains.

4. Compute a representative polygonal curve for each
type of link and build the structure graph.

5. Mark clean links and find the chains.

6. For each chain, check if it has a clean Voronoi cell
V(s) such that every path cutting through B(s, 5ε)
must intersect B(s, ε). If not, mark all the Voronoi
cells in the chain not clean.

7. Update the structure graph, and then compute the
reconstruction graph.

Sections 5 and 6 establish the performance guar-
antees of the algorithm. Theorem 5.7 shows that for
each subcurve of the (b+2)-good section of a sufficiently

long road fragment, there is an edge (a polygonal curve)
in the reconstruction graph whose ε/2-fattening covers
most of the subcurve. However, short road fragments
may create many chains in step (5) of the algorithm.
The sample points in these extra chains must sample
the 3-bad sections of the road fragments. Since we do
not seek guarantees on the recovery of 3-bad sections,
it is fine to replace these chains with links, and that
is what step (6) does. However, the algorithm cannot
remove all extra chains: there are cases in which the
algorithm cannot tell whether input paths sample one
road fragment or multiple road fragments. Nevertheless,
Theorem 6.6 proves that the number of the chains, and
thus the number of edges in the reconstruction graph
output in step (7), is at most three times the number of
road fragments.

The running time of the algorithm is dominated by
the time to find the bε-net S of the infinite point set
of input curves. For n input paths of total complexity
M , using an incremental Voronoi diagram and tracing
the polygonal curves through the incremental diagram
to find the next point to add to the bε-net, the time
complexity is bounded by O(k2 + Mk log k), where
k is the complexity of the bε-net. This is because
in the worst case, the incremental Voronoi diagram
construction takes O(k2) time [21], each segment of a
polygonal curve might traverse Θ(k) different Voronoi
cells, and ray shooting takes O(log k) time [14]. Of
course, in practice, one can use an approximate solution
by finding a dense sample of the input paths, and then
using Har-Peled’s algorithm [13] to find a bε-net of the
dense sample in linear time. The rest of the algorithm
can be implemented by tracing the polygonal curves
through the Voronoi diagram. In our implementation,
we use a version of this approach, except that we use a
simpler algorithm to find the bε-net. Section 7 describes
our implementation and the results of our experiments
with it.



5 Recovering (b + 2)-Good Sections

In this section, we show that most of the Voronoi cells
whose sites sample the (b + 2)-good sections of a road
fragment are clean and those that sample a connected
component of the (b+ 2)-good section form a primitive
chain.

A Voronoi cell V(s) properly intersects a curve γ if
there is a subcurve of γ such that its ε/2-fattening is
contained in V(s). A primitive chain c = (s1, . . . , sm)
properly intersects a curve γ if one of its composing
Voronoi cells properly intersects γ, or equivalently either
V(s1) or V(sm) properly intersects γ. We say a point
samples a curve if the point is in the ε/2-fattening of
the curve. The following lemma bounding the size of a
Voronoi cell in V(S) is obvious but very useful.

Lemma 5.1. Let s be any sample point in S. Then we
have

(i) B(s, bε/2) is contained in V(s).

(ii) For any point x in Gε/2 ∩ V(s), d(x, s) < (b+ 1)ε.

Let X = {xi}mi=1 be a set of points sampling any
part of a road fragment γ. One can impose an order
on the points in X as follows. For each xi, let x′i be a
point on γ within ε/2 of xi. The order of x′is inherited
from γ induces an order on the xis. Note that if any two
balls of radius ε/2 centered at any two different points in
X are disconnected, this order does not depend on the
choice of x′is and therefore is well-defined up to reversal.
For instance, if Sγ ⊂ S is the set of sample points
in γε/2, then since S is a (bε/2)-packing, there is an
induced ordering on the points in Sγ . By a slight abuse
of notation, we also use Sγ for the ordered sequence
Sγ = (s1, s2, . . . , sm).

To show that (b + 2)-good sections are recovered
well, we first prove the following lemmas:

Lemma 5.2. If a point w samples the (b + 2)-good
section of a road fragment γ, then w must be in the
Voronoi cell of some sample point in Sγ .

Proof. Let s ∈ S be a sample point with w ∈ V(s). (We
are assuming Voronoi cells are closed, so w might belong
to more than one.) By Lemma 5.1, d(s, w) < (b + 1)ε.
Let w′ be a (b+2)-good point in γ∩B(w, ε/2). We have
d(w′, s) < (b+ 1.5)ε and hence B(s, ε/2) is contained in
B(w′, (b+ 2)ε). Thus s is in γε/2 as w′ is (b+ 2)-good,
which proves the lemma. 2

Lemma 5.3. Suppose a point w on the 1-skeleton of the
Voronoi diagram V(S) samples the (b+ 2)-good section
of a road fragment γ. Consider the set Sγ ∪ {w} with

the order induced by γ. Then w must be in the Voronoi
cell of the samples of its two immediate neighbors in this
order.

Proof. By Lemma 5.2, w must lie in the Voronoi cells
of the samples in Sγ . As d(w, s) > bε/2 for any s ∈ S,
the road fragment indeed induces an order on the set
Sγ ∪ {w}. Let sj−1 and sj be the two immediate
neighbors of w in the ordered set Sγ ∪ {w}. Suppose
that V(sk) with k > j contains w. Let w′ be a (b+ 2)-
good point on γ within distance ε/2 of w, and let s′i
be a point on γ within distance ε/2 of si for any i.
Since d(w, sk) < (b + 1)ε by Lemma 5.1, sk ∈ B for
B = B(w′, (b + 1.5)ε). By Assumption (1) each line
segment in γ is longer than 3bε ≥ (b + 1.5)ε, and so
there is at most one corner on γ between w′ and any
intersection of γ and B; see Figure 5(a). Let the angle
at this corner be θ (if there is no corner, θ = π).

Consider the triangle ∆wsjsk and define a =
1
εd(w, sj) and c = 1

εd(sj , sk). Let α be the angle
∠wsjsk. Then d(w, sk) ≤ aε, b/2 ≤ a ≤ (b + 1) and
c ≥ b. From the law of cosines, a2 ≥ (d(w, sk)/ε)2 =
a2 + c2 − 2ac cosα and thus

c2 − 2ac cosα ≤ 0.

On the other hand, consider two lines `1, `2 parallel to
and distance ε/2 from the line segment containing w′;
see Figure 5(a). The placement of sj and sk falls into
one of the following three cases: (1) both sj and sk are
sandwiched between `1 and `2; (2) neither sj nor sk lies
between `1 and `2; (3) sj is between `1 and `2 and sk is
not. One can verify that in each case, α > θ − α1 − α2

where sinα1 <
ε

d(w,sj)
= 1

a and sinα2 <
ε

d(sj ,sk) = 1
c .

Since θ ≥ π/2, cosα < cos(θ − α1 − α2) < 1
a + 1

c . Thus
for b ≥ 2 +

√
6,

c2 − 2ac cosα > c2 − 2c− 2a ≥ b2 − 2b− 2(b+ 1) ≥ 0,

a contradiction. This proves the lemma. 2

Corollary 5.4. For a road fragment γ, if β = {q ∈
γ | q is (b+ 2)-good}, then there is no Voronoi vertex
in βε/2.

Lemma 5.5. Let γ be a road fragment, let Sγ =
(s1, s2, . . . , sm), and suppose a point w ∈ γε/2 lies on
the boundary of V(sk). If sk samples the (b + 2)-good
section of γ and 1 < k < m, then in the order induced
by γ on the set Sγ ∪ {w}, the immediate neighbors of w
are either sk−1, sk or sk, sk+1.

Proof. Prove by contradiction. Without loss of general-
ity, assume that w lies after sk+1 in the order induced
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Figure 5: (a) Illustration for Lemma 5.3; (b) Illustration for Lemma 5.5.

by γ. As in the proof of Lemma 5.3, consider the tri-
angle ∆sksk+1w and define a = 1

εd(w, sk+1) and c =
1
εd(sk, sk+1). Then d(w, sk) ≤ aε, b/2 ≤ a ≤ (b+1) and
c ≥ b. From the law of cosines, a2 ≥ a2 + c2 − 2ac cosα
and thus c2−2ac cosα ≤ 0. On the other hand, the angle
α = ∠sksk+1w has the same lower bound as the angle
∠wsjsk (see Figure 5(a)) in the proof of Lemma 5.3.
Thus similarly we have c2 − 2ac cosα ≥ c2 − 2c− 2a >
b2 − 2b − 2(b + 1) ≥ 0 for b ≥ 2 +

√
6, which gives a

contradiction. 2

Remark: Although Lemmas 5.3 and 5.5 have similar
statements and proofs, they differ in that w samples the
(b + 2)-good section in Lemma 5.3, whereas sk does so
in Lemma 5.5.

Lemma 5.6. For any subcurve β of the (b+2)-good part
of a road fragment γ, if Len(β) ≥ 3bε, there must be a
sample point s in βε/2.

Proof. Let β = (p1, p2, p3, . . . , pm). Note that by
Assumption (1), Len(pipi+1) ≥ 3bε for any 2 ≤ i ≤
(m − 2). If d(p1, p2) ≥ (b + 1)ε, choose p ∈ p1p2 with
d(p, p1) = (b + 1)ε. Otherwise, choose p ∈ p2p3 with
d(p, p3) = (b + 1)ε. Such a p must exist as d(p2, p3) ≥
(2b− 1)ε in this case. Then we know B(p, (b+ 1)ε) ∩G
is a subcurve of β. From the sampling process, there
must be a sample point s in B(p, (b+1/2)ε) as B(p, ε/2)
must intersect a sample path. There is a point on G
within distance ε/2 of s. Then this point on G is within
distance (b + 1)ε of p, and therefore is on β. Thus s
must be in βε/2. 2

We are now ready to prove the reconstruction
guarantees on the (b + 2)-good sections of a road
fragment:

Theorem 5.7. For a subcurve β of the (b + 2)-good
section of a road fragment γ, let Sβ = (s1, s2, . . . , sm)

be the ordered set of β’s samples, and let S ⊆ Sβ be the
subsequence of samples whose Voronoi cells are clean.
Then

• Sβ \ S ⊆ {s1, sm}, and thus there is a primitive
chain c whose skeleton contains S as a sub-path,

• if Len(β) ≥ 10bε the ε/2 fattening of `c covers a
subcurve of β no shorter than Len(β)− 10bε.

Proof. Let s′i be a point on β within distance ε/2 of
si. Notice that any V(si) is of degree at least two, as
Assumption (5) states that the cell is cut through by a
subpath in γε/2. Note that V(si) does not intersect the
ε/2-fattening of road fragments in G other than γ. This
is because for any x ∈ Gε/2 ∩ V(si), d(si, x) < (b+ 1)ε.
As s′i is (b+ 2)-good, x must sample γ.

Let w be a point in both γε/2 and the boundary
of V(si). For any 2 ≤ i ≤ (m − 1), from Lemma 5.5,
w is within distance ε/2 of a point on the (b + 2)-good
subcurve of γ between s′i−1 and s′i+1. By Lemma 5.3,
w must also be in the Voronoi cell of si−1 or si+1,
implying that V(si) is of degree two. In addition, by
Corollary 5.4, w cannot be a Voronoi vertex, which
means that the Voronoi edges dual to si−1si and sisi+1

cut through γε/2, and sandwich the ball B(si, bε/2)
between them. From Assumption (4) on the input
paths, any path cutting through V(si) intersects these
two Voronoi edges if and only if it also intersectsB(si, ε).
Therefore si is clean for 2 ≤ i ≤ (m − 1) and Sβ \ S ⊂
{s1, sm}. It is then obvious that there is a primitive
chain c whose skeleton contains S as a sub-path.

In fact, V(si) is also clean for any i ∈ {1,m} if
B(si, (b + 1.5)ε) ∩ γ is a subcurve of β, because in this
case any point x ∈ V(si) ∩Gε/2 samples β. This is due
to the fact that d(si, x) < (b+ 1)ε from Lemma 5.1 and
thus B(x, ε/2) is contained in B(si, (b+1.5)ε). Consider
w on the boundary of V(si) and in Gε/2. Based on



Lemma 5.3 and Corollary 5.4, an argument similar to
that above shows that V(si) is clean.

If Len(β) ≥ 10bε, then by Lemma 5.6, we know
that Sβ contains at least three points. If both V(s1)
and V(sm) are clean, we know that the subcurve of β
between s′1, s

′
m is no shorter than Len(β)−6bε. If V(s1)

is not clean, then B(s1, (b+ 1.5)ε)∩ γ is not a subcurve
of β, in which case one can show that the subcurve of
β between one of the endpoints of β and s′1 has length
at most 2b. By Lemma 5.6, the length of the subcurve
between the endpoint and s′2 is at most 5b. A similar
statement holds for s′m−1. This proves the theorem.
2

6 Bounding the number of edges of the
reconstruction graph

In this section, we bound the number of edges (embed-
ded as polygonal curves) in the reconstruction graph.
Because the number of edges is the same as the num-
ber of chains in the structure graph, it suffices to bound
the number of chains. Our strategy is to consider the
3-good sections and the 3-bad sections separately. By
Assumption (3) on road fragments, the 3-good section
of a road fragment is a (connected) curve and the 3-bad
section of a road fragment consists of at most two con-
nected curves attached to the nodes to which the road
fragment is incident. In order to bound the number of
chains, we first prove several useful lemmas:

Lemma 6.1. Let s be a point sampling a road fragment
γ. If V(s) is clean and does not properly intersect the
3-bad section of γ, then for any input path ` cutting
through V(s) and intersecting two distinct Voronoi edges
of V(s), its part in between these two Voronoi edges lies
in γε/2.

Proof. Note that there exists a point s′ on the 3-good
section of γ with d(s, s′) < ε/2. Furthermore, since
V(s) is clean, there is a point q ∈ ` in between the two
Voronoi edges that ` intersects satisfying d(q, s) < ε, and
therefore d(s′, q) < 1.5ε. Since s′ is 3-good, q ∈ γε/2.
Since V(s) does not properly intersect the 3-bad section
of γ, any point on ` ∩ V(s) is within distance ε of a 3-
good section of γ, and hence samples a 2-good section
of γ. This means that the two intersections of ` with
the Voronoi edges of V(s) sample γ, which proves the
lemma. 2

Consider all clean cells whose sites sample a road
fragment but do not properly intersect the 3-bad section
of the road fragment. Among them, by Theorem 5.7,
those whose sites sample the (b + 2)-good section are
part of a primitive chain. However, the remaining clean
cells may form other primitive chains. Nevertheless, the

following lemma says that these primitive chains form
a single chain.

Lemma 6.2. For any road fragment γ, let S =
(s1, . . . , sm) be the subsequence of Sγ consisting of the
sites s such that V(s) is clean and does not properly in-
tersect any 3-bad section of γ. Then there is one and
only one chain that contains {V(s1), . . . ,V(sm)}.

Proof. Since B(si, bε/2) is contained in V(si), V(si)
breaks γε/2 into two pieces: left (containing the sample
points in Sγ before si) and right (containing the sample
points in Sγ after si). We can classify the intersections
of the paths in γε/2 with the boundary of V(si) into
two classes; one class of intersections lying on the left,
denoted v−i , and the other class lying to the right,
denoted v+

i , see Figure 6(a).
From Assumption (5) on the input paths, there

exists a subcurve β of an input path in γε/2 connecting
a representative of v+

i to a representative in v−i+1, where
both B(si, ε) and B(si+1, ε) intersect β. Because V(si)
and V(si+1) are clean, β intersects each of them at two
distinct Voronoi edges. (Regions V(si) and V(si+1) are
not guaranteed to abut, which is the chief difficulty
this lemma must handle.) Note that the subcurve of β
between the representative in v+

i and the representative
in v−i+1 is in the ε/2-fattening of the 3-good section of γ.
Thus it does not intersect any ball of radius ε centered
at a sample point that does not sample γ. It follows
that if V(si) and V(si+1) are not in the same primitive
chain, β is a link connecting them.

Note that both the representatives in v+
i and the

representatives in v−i lie on one Voronoi edge for every i.
Thus there is only one type of link possible between
V(si) and V(si+1), see Figure 6(b).

For 1 ≤ i ≤ m − 1, consider any link L connecting
V(si) with one of its endpoints in v+

i . By Lemma 6.1,
we know that L∩V(si) is in γε/2. From Assumption (4)
on sample paths, the vital part of the link L must be in
γε/2. Thus the link L cannot connect V(si) to a clean
cell other than V(si+1). Similarly one can show that
for 2 ≤ i ≤ m any link connecting V(si) with one of
its endpoints in v−i must connect to V(si−1). Therefore
{V(s1), . . . ,V(sm)} is contained in one chain.

It remains to show that S is not empty. As there
exists a subcurve β of the (b + 2)-good section with
length greater than 9bε, we have from Lemma 5.6 that
Sβ contains more than three points. Let s ∈ Sβ be any
point that is not an endpoint of the sequence. From the
proof of Theorem 5.7, we know V(s) is clean. Because s
samples the (b+ 2)-good section, it is also easy to show
that any path cutting through B(s, 5ε) also intersects
B(s, ε) (note that b+ 2 > 6). Thus S is not empty. 2
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Figure 6: Illustration for Lemma 6.2.

Lemma 6.3. Suppose a path ` fully sampling a road
fragment γ cuts through a clean Voronoi cell V(s). Then
any path fully sampling γ will either cut through V(s)
or stop inside it.

Proof. Let l ∈ ` be a point such that d(s, l) ≤ ε. Let p ∈
γ be such that d(p, l) ≤ ε/2. Then since the minimum
radius of the Voronoi cell is bε/2, B(p, ε/2) ∈ V(s).
Since any path sampling γ also intersects B(p, ε/2), the
proof is done. 2

The previous lemma allows us to define the chains
a road fragment intersects to be the chains intersected
by all paths fully sampling the road fragment. Further-
more, since samples are far enough apart, an ordering
of a road fragment also induces an ordering on these
chains.

Lemma 6.4. Let β = (β1, β2, . . . , βk) be a connected 3-
bad subcurve of a road fragment r. We order the vertices
such that β1 is a boundary point between the 3-bad and
3-good sections of r, and βk is an endpoint of r. Then
this ordering of β induces an ordering on the chains
c1, c2, . . . , cl it intersects. Furthermore, β intersects ci
on one side and exits it on the opposite side. Let S(c)
be the set of connected 3-bad subcurves intersected by a
chain c. Then S(ci) ⊆ S(ci+1).

Proof. Suppose there is a connected 3-bad subcurve γ
in S(ci) but not in S(ci+1). Then ci contains a primitive
chain that is intersected by all paths fully sampling β
and γ. Moreover, all Voronoi cells in primitive chains
are clean. Therefore, every input path that crosses
a Voronoi cell V(p) ∈ ci must cross B(p, ε). By the
sampling assumption (5), there is such a path in βε/2

and another such path in γε/2. Therefore there is a
point b ∈ β and a point c ∈ γ such that d(b, c) ≤ 3ε.

But since γ 6∈ S(ci+1) and there is an input path
fully sampling γ within radius ε/2, the distance between
γ and a Voronoi site s in ci+1 is at least 4.5ε due to the
last step of the algorithm. But as before there is a point
b ∈ β within distance 1.5ε of s. Therefore, b is at least
3ε away from γ, which contradicts the road fragment
assumption (3). 2

Lemma 6.5. If E is the set of road fragments and C
is the set of chains intersecting more than one road
fragment, then |C| ≤ 2|E|.

Proof. Note that chains in C must intersect 3-bad sub-
curves of the road fragments. We assign an arbitrary
ordering β1, β2, . . . , βm to the maximal connected 3-bad
subcurves. Because each road fragment may have at
most two maximal connected 3-bad subcurves (Assump-
tion (3)), we have m ≤ 2|E|. We charge the chains of C
to the maximal connected 3-bad subcurves in the follow-
ing manner: Let a maximal connected 3-bad subcurve
βj intersect chains c1, c2, . . . , cl in the order of inter-
section given in Lemma 6.4. If there is some k < j
such that βk ∈ S(c1), we charge c1 to βj . Otherwise,
we charge the first ci such that βj is the lowest or-
dered element in S(ci−1) and not the lowest ordered
element in S(ci) to βj . Each maximal 3-bad subcurve
can be charged to at most once by Lemma 6.4. Further-
more, each maximal chain in C is charged to at least
one maximal 3-bad subcurve. To see this, note that if
a maximal chain ci is connected to cj , then either ci
or cj must have a second neighbor ck on the same side
as the link (ci, cj), or else the algorithm would have
merged ci and cj . Without loss of generality (WLOG)
assume ci has neighbors cj and ck. Let β be the low-
est ordered element in S(ci). Lemma 6.4 implies that
S(cj) and S(ck) cannot both contain β; WLOG suppose
β /∈ S(cj). Then ci is charged to the lowest ordered el-
ement in S(cj). Therefore, the number of chains in C is
at most m ≤ 2|E|. 2

Finally, we have:

Theorem 6.6. The number of edges of the reconstruc-
tion graph is at most three times the number of edges in
the underlying road network.

Proof. Lemma 6.4 implies that chains intersecting only
one road fragment are merged with the chain recon-
structing the good section of the road fragment. Com-
bining this with Lemma 6.5, we can bound the number
of chains by 3|E|. 2



7 Results

In this section, we show the results of our algorithm,
implemented using CGAL [6]. For simplicity of imple-
mentation, we find an approximate solution by finding
a bε-net of a sample of the polygonal curves instead of a
bε-net of the polygonal curves themselves. Instead of ray
shooting, we use a simple circular search at each Voronoi
cell to trace the polygonal curves, as the Voronoi cells
are likely to be small in practice. The performance of
our implementation was reasonable. A data set of 5000
paths was processed in several minutes on a 2.33GHz
Macbook Pro.

We ran our algorithm on two data sets. The first
is a synthetic data set in which the input paths are
generated by following the edges of an embedded graph.
The paths deviate from the edges within an ε-fattening
of the road network. Figure 7 shows our results on
this data set. The colored pieces are the associated
polygonal curves of the primitive chains and the black
are the links connecting the primitive chains. As we can
see, the reconstruction graph recovers the good sections
of the road fragment very well and the connectivities
between these recovered sections are faithful to those of
the original road network.

The second data set consists of 15182 GPS traces
from Moscow downloaded from Open Street Map [20].
We overlay the result on a map of Moscow in the
following examples, which use only 5000 of the traces.
Figure 8(a) is an overview of the reconstructed graph.
When zooming in as in Figure 8(b), we can see the
recovered road fragments (colored pieces) and the links
between them (black pieces). Even in the inner city (the
top picture in Figure 8(b)), where the road network is
complicated and many road fragments are close to each
other, our algorithm recovers the road network quite
well, as we can see many colored pieces. Using the
lengths of edges as a performance measure, 75% of the
graph belongs to the recovered road fragments.

8 Applications and Extensions

One obvious application for the structure graph is to
organize paths according to the chains they follow.
In such an application, one might build a weighted
alphabet in which each character corresponds to a chain.
Then paths would simply be strings in this alphabet and
many algorithms and data structures for strings could
then be applied. As an example, such strings may be
inserted in a suffix tree [25] so that partial path queries
may be performed in the time required to map the
query path into the string. Our algorithm can also be
modified for the case of a directed road network graph
and for an incremental refinement of a road network
graph. Details are omitted due to lack of space. One

important and open problem is to detect road widths
automatically for different parts of the road network.
In practice, one might tune this parameter manually
for different parts of the road network, but it would be
interesting to consider methods to handle varying road
widths automatically.
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