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and their function values to measurements of some physical
quantity (temperature, humidity, etc.), or unsupervisean-

ing, where the data points are sampled from some unknown
density distribution, a rough estimate of which is computed
at each sample.

The nature of the sought-for information is highly
application-dependent. In the aforementioned exampies, o
is mainly interested in finding the peaks and valleys of the
function f, together with their respective basins of attrac-
tion®. In addition, it is desirable to have a mechanism for
Abstract distinguishing between significant and insignificant peaks
Given a real-valued functiorf defined over some metricor valleys of f, which requires to introduce some notion
spaceX, is it possible to recover some structural informatio®f prominance for the critical points of a function. This
aboutf from the sole information of its values at a finite sdé Wheretopological persistenceomes into play. Inspired
L C X of sample points, whose pairwise distanceXiare from Morse theory, this framework describes the evolution
given? We provide a positive answer to this question. Mdgéthe topology of the sublevel-sets ffi.e. the sets of type
precisely, taking advantage of recent advances on the frént ((—oc, a]), as parameten ranges from—oc to +-oc.
of stability for persistence diagrams, we introduce a novE?pological changes occur only at critical pointsfofvhich
algebraic construction, based on a pair of nested famil@&n be paired in some natural way. The outcome is a set of
of simplicial complexes built on top of the point cloudd intervals (called gersistence barcodg]), each of which
from which the persistence diagram pfcan be faithfully gives the birth and death times of a topological featureén th
approximated. We derive from this construction a series $blevel-sets of — see Figure 1. An equivalent represen-
algorithms for the analysis of scalar fields from point clod@tion is by a multiset of points in the plane, calleger-
data. These algorithms are simple and easy to impleméiitence diagranmwhere the coordinates of each point corre-
have reasonable complexities, and come with theoretigBPnd to the endpoints of some interval in the barcode. Such
guarantees. To illustrate the generality of the approaf@presentations are used to guide the simplification ofscal
we present some experimental results obtained in varidigds by iterative cancellations of critical pairs [16, 1As
applications, ranging from clustering to sensor netwoske ( such, they provide meaningful information about the promi-
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the electronic version of the paper for color pictures). ~ nence of the critical points of a scalar field.
Thus, our goal becomes to approximate the persistence
1 Introduction diagram of an unknown scalar fielfl from its values at a

finite setL of sample points, and from the pairwise distances
whose values are known only at a finite et X of sam- between these points. We provide a theoretically sound

ple points, our goal is to extract structural informatiomatb solut|on_ to this pro_blem; In Section 3 we exhibit a novel
f from the sole information of the pairwise geodesic dig__lgebram construction, based on a pair of nested famifies o

tances between the data points and of their function valud _le_ClaI complexes, from which the perS|_stence dlagr_am
No parametrization oK is assumed — in other words, nd f is approximated (Theorem _3'1)', Th's _constructlon
coordinates are needed for the pointslof This problem Is provably robust to noise both in pairwise distances and

finds applications in many scientific fields, including semsgmcnon values (Theorem 3.2). From these structural tesul

networks, where the data points correspond to sensor no‘HSs‘_je”"e algorlthms (Sect|o_n 4) for approximating the
persistence diagram of from its values at the points of

L, both in static (fixedf) and in dynamic (time-varying)
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Given an unknown domail and a scalar fielg : X — R



dimensional PL setting, and in this respect our work suggest
a way of extending the approach to a more general class
of spaces via finite sampling and modulo some (controlled)
errors in the output. Although finding and merging the basins
of attraction of the peaks of a scalar fiefds simpler than
computing a full hierarchy of Morse-Smale complexes, it is
already a challenge in our context, where the knowledgé of
is very weak, and where the potentially high dimensionality
of the data makes PL approximations prohibitively costly.
Another line of work in which persistence has played
a prominent role is homology inference from point cloud
data, where the goal is to recover the homological type of
some unknown compact s& c R? from a finite setL
of sample points. Under a sufficient sampling density, the
Figure 1: Top row, left: a noisy scalar fielg’ defined over a sampled distance td_ in R approximates the distanceXo therefore
planar square domaifX; center and right: approximations of the 0- andtheir persistence diagrams are close, by a stability reult
1-dimensional persistence barcodeg off) generated by our method from[10]. This makes the inference of the homology>ofrom
the values off at the sample points and from their approximate pairwisPne persistence of the distance Xotheoretically possible

geodesic distances . The six long intervals in the 0-dimensional barcodf8 101, | ti i this dist t int
correspond to the six prominent peaksfdfincluding the top of the crater), '’ ] n practice, computing this distance at every poin

while the long interval in the 1-dimensional barcode resetk ring shape Of the ambient spacR‘ is prohibitively expensive. Itis then
of the basin of attraction of the top of the crater. Bottom r@pproximate necessary to resort to auxiliary algebraic constructisash
basins of attraction of the peaks ff before (left) and after (right) merging as theRips complex?s (L), defined as the abstract simplicial
non-persistent clusters, thus revealing the intuitivesture off. complex whose simplices correspond to non-empty subsets
settings. We also show how to find the basins of attractioh L of diameter less thand. As proved in [9], a pair
of the peaks of inside the point cloud., and how to merge of nested Rips complexeBs;(L) C Rs (L) can provably
them according to the persistence information, as showrcapture the homology of the underlying spacehough the
Figure 1 (right). Our algorithms are based on variants [1the individual complexes do not. Our algebraic construrctio
12] of the celebrated persistence algorithm [16, 26]. Thésee Section 3) is directly inspired from this property, and
can be easily implemented, have reasonable complexitfest our theoretical analysis is articulated in the same way
and are provably correct. Finally, we show experimenta$ in [9], namely: we first work out structural properties
results in a variety of applications (Section 5): while we daf unions of geodesic balls, which we prove to also hold
not provide definitive solutions to these problems, theltgsufor their nerves (also calle@ech complexgs then, using
demonstrate the potential of our method and its possilhe strong relationship that exists betwegaech and Rips
interest for the community. complexes, we derive structural properties for families of
Related work. Topological persistence has already beeR.n'pS. _complexes. Note that the core 9.f our analysis differs
) X P |9n|f|cantly from [9], because our families of complexes ar
used in the past for the analysis and simplification of scalar.,, . : . . -
) o . uilt differently. In particular, the classical notion débility
fields. The original persistence paper [16] showed how 0 . . . . )
N ) T of persistence diagrams, as introduced in [10], is not broad
simplify the graph of a piecewise-linear (PL) real-valued . -
. i T L enough to encompass our setting, where it is replaced by a
function f defined over a simplicial compleX in R”, by . .
. . . . " : . generalized version recently proposed by Chatral. [6].
iteratively cancelling the pairs of critical points proeidl

by the persistence barcode 6f This approach was later
, ) . . . 2 Background
refined, in the special case whekeis a triangulated 2- _ )
manifold, to only cancel the pairs corresponding to sharfiroughout the paper we use singular homology with co-
intervals in the barcode, thus removing the topologicaseoiefficients in a commutative ring?, assumed to be a field
up to a certain prescribed amplitude [17]. In paralle?,nd omitted in the notations. We also use elements of Rie-
others have considered computing complete or simplifiEnnian geometry and of Morse theory (in Section 4.2).
representations of Morse-Smale complexes, which captftorough introductions to these topics may be found in
important information about the structure of scalar fielok 22, 23].

Building upon the idea of iterative cancellations of pairs ) o )
of critical points, it is possible to construct hierarchied1 Persistence modules and filtrationsThe main alge-

of increasingly coarse Morse-Smale complexes from Pf&ic objects under study here are persistence modules. A
functions defined over triangulated 2- or 3-manifolds [1, Bersistence module is g famifyd, }ner Of R-modules to-
15, 20, 21]. All these methods are restricted to the lo®€ther with a family{¢g : o — Pgla<per of homo-




morphisms such thata < g < ~, ¢) = qbg o ¢ and notion of proximity between persistence modules:

¢S = ide,, . For simplicity of notation, we remove the ranges

of indices when they are obvious. Persistence modules REFINITION 2.1. Two persistence modules
often derived fronfiltrations, i.e. families {F,} of topo- ({Pa}ack, {¢5}a<per) and ({Potaer, {¥3}a<per)
logical spaces that are nested with respect to inclusion. B& (strongly) c-interleaved if there exist two families
all @ < 3, the canonical inclusion map, — Fj induces Of homomorphisms{y, : ®. — Waicteer and
homomorphisms between the homology groBg Fy) — {Va : o — ®Puretacr, SUch tha? = v 0?5 o i,
Hk(Fﬂ)_of all dimensionsk € N Thus, for any fi_xedk_ andy? = pg_. o ¢§jr§ ov, forall 8 > a + 2e.

the family { Hy (F, )}, together with the homomorphisms in-

duced by inclusions, form a persistence module, called tdader this condition, they proved the following generatize
kth persistent homology module{df,, }. Animportant class stability result [6]:

of filtrations are thesublevel-sets filtrationsGiven a topo-

logical spaceX and a functionf : X — R, the sublevel-sets THEOREM2.1. If two tame persistence modules are
filtration of £ is the family{F,} of subspaces X of type interleaved, then, in the exFended pldh%endowgd with .the
F., = f~((—00,qa]). This family forms a filtration because/ ™ norm, the bottleneck distance between their persistence

F71((=00,0]) € f~1((—oc, B]) whenevera < 3. By de- diagrams is at mosie.
fault, thekth persistent homology module gfrefers to the

one of its sublevel-sets filtratiop, }. Recall that the bottleneck distandé& (A, B) between two

multisets in (R%,/°>°) is the quantitymin, max,c4 [[p —
~v(p)|lso, Where~ ranges over all bijections from to B.

An important special case is when the persistence modules
are thekth persistent homology modules of two filtrations

2.2 Persistence diagrams, tameness, stabilityzollow-
ing [6], we say that a persistence mod(§&,}, {#2}) is 0-
tame(or simplytams if the rank of¢? is finite for alla. < 3.
Observe that persistent homology modules of nested f<':‘:'rniI{é:a}a€]R and{Ga}aer such thatf, C Gase andGa C

of finite simplicial complexes are always tame. Therefoile, a **¢ _for all @ € R (we then say thal{Fa} and {Ga}

the persistence modules introduced in the following sastic® 5-|nterlgaved, by analogy). In this case, the maps
of the paper will be tame. 1o and v, induced at homology level by the inclusions

The persistence diagram of a tame persistence modife Gate ANdGo — Foye make the wo persistence

({@.},{#%)) is defined as a multiset of points in the exnodulesc-interleaved, and Theorem 2.1 guarantees that
tendeél plgné@ whereR — R U {—o0, +00}. This mul- their persistence diagrams &@eclose, if they are tame. To

tiset is obtained as the limit of the following iterative proi'mlf’l,'fy the gxposn;]on, V‘I’e call aglltlratlon or functlcfrza;lme _
cess: given arbitrary values,e > 0, we discretize the Ik;ﬁ Its _perswteg_t omo (t)]gy modules argz_ tame. fk;n’ Its
persistence module over the integer saale ¢Z, consid- ~th Persistence diagrans the persistence diagram o

ering the subfamily{®, . }rcz of vector spaces togetherpers’istent homology module.

with the subfamily{q&jﬂfe}kglez of linear maps. Its per-

sistence diagram is defined naturally from [10] as the 39? Geodesic e-samples on F_elemanman manifolds.
of vertices of the regular gria + ¢Z) x (a + €Z) in R? From now on, and unless otherwise stafédlenotes a com-

plus the diagonalh = {(z,z), = € R}, where each grid pact Riemannian m_anif_old, possibly with boundgry, ard
vertex (a + ke,a + le) is given the (finite) multiplicity deno';es its geodesic distance. We alsalldie a finite _set
at(-1)e atle of points of X that form ageodesic:-sampleof X, that is:
mult(a + ke, a + le) = rankl Patre TR Goihe + vy o X dy(a, ) < e. Our theoretical claims will assume
rank ¢ tfs |~ rank g2 """ while each point of to be at most a fraction of thetrong convexity radiusf X,
is given infinite multiplicity. Then, the persistence diagr denotedy. (X). It is defined as the largest value such that ev-
of ({®a}acr, {92 Ja<per) is the limit multiset obtained asery open geodesic babx(z,7) = {y € X, dx(z,y) < r}
¢ — 0. Itis known to be independent of the choicend®].  of centerr € X and radiusr < 0.(X) is strongly con-
An important property of persistence diagrams is th@éx namely: for every pair of pointg, v’ in the closure of
they are stable under small perturbations of the persiete@;g(x’ r), there exists a unique shortest pattXibetweery
modules. The first result in this vein was devised for thghd,/, and the interior of this path is included By (x, 7).
special case of persistent homology modules of continuoige strong convexity radius plays an important role in the
functions [10]. Recently, Chazet al. [6] dropped the func- paper because strongly convex sets are contratiie in-
tional setting and proposed instead the following geneedli tersections of strongly convex sets are also strongly conve

ZRoughly speaking, the multiplicity of poifft+ke, a+le) corresponds

to the number of homological features that are born betweerstime k — 3A topological space is contractible if it can be continuguformed

1)e anda + ke and that die between times+ (I — 1)e anda + le. to a point within itself.



2.4 Offsets, nerves, Rips complexescor all§ > 0, let 77 : Th — T}. Since this is true for alle < g,

L° denote thes-offsetof L, defined as the union of thethe family {Fﬁ}aeR of vector spaces, together with the
open geodesic balls of same raditibout the points of family {v7},< of linear maps, forms a persistence module.
L, namely: L° = {J,., Bx(p,9). Its nerve, also called By analogy with the terminology of Section 2, we call it
Cech complexand notedC;s (L), is the abstract simplicial the kth persistent homology module of the nested pair of
complex of vertex sef, whose simplices correspond to norfiltrations { Rs(L,) <— Ras(La)}acr, and its persistence
empty subsets of the family of open ball#x(p,d)},cr diagram thekth persistence diagram of the nested pair. In
whose elements have a non-empty common intersectifact, this construction is not specific to families of Rips
The topology ofCs(L) is related to the topology of its dualcomplexes, and it allows a persistence module to be defined
union of balls through the Nerve Theorem [32G]. This ({I'*},{72}) from the k-dimensional homology groups of
makes theCech complex a good candidate data structuredny pair of filtrations{G, } and{G,} that are nested with
theory. However, it can be difficult to compute in practiceégspect to inclusionva € R, G, C G,

where it is often replaced by th@/ietoris-)Rips complex THEOREM3.1. Let X be a compact Riemannian manifold

Rs(L), whose simplices correspond to non-empty subs {Sesibly with boundarvL a geodesic-sample ofX. and
of L of geodesic diameter less than This condition only B X —?/R atamec-Lipgghitzgfunction Ik < ‘19 (X)’then
. 4 &cC )

involves distance comparisons, which are much easierf p 1 ;
; ; . ) anyd € [2e, -0.(X)) and anyk € N, thekth persistent
check than the emptiness of an intersection of geodesi. b y 12¢, 300(X)) 4 b

. . X M mology modules of and of the nested pair of filtrations
In addition, the Rips complex is related to tBech complex {Rs(La) — Ros(La)}acs are 2cs-interleaved. Therefore,
through the following sequence of inclusions [9]:

the bottleneck distance between their persistence diagram
(2.1) V6 > 0, C% (L) C Rs(L) C C5(L) is at most6co, by Theorem 2.1.

. . . The proof, based on a technique of algebraic topology called
In the literatureCech and Rips complexes are usually turneflagram chasing is given in Section 3.1. Its robustness

into filtrations by letting parametervary from0 to +oc. I with respect to noise in the distances or function values is
contrast, the following sections present algebraic coostr gqdressed in Section 3.2.

tions where’ remains fixed to some constant value while the

vertex set grows fror to L. 3.1 Proof of Theorem 3.1.We begin with some prelimi-
_ nary results about unions of geodesic balls and their nerves
3 Structural properties whose proofs can be found in the full version of the paper

Let X, L be defined as in Section 2, and et X — R be [7]. Letd > 0 be a fixed parameter.
tame and-Lipschitz. Assumingk andf to be unknown, our LEMMA 3.1. Let X, f
goal is to approximate thieth persistence diagram ¢ffrom o
its values at the points af. The main result of the section
(Theorem 3.1 below) claims that this is possible using
algebraic construction based on Rips complexes. From
on, L,, denotes the sgt N f~1((—o0, a]).

Our construction is inspired from [9], where it is showksing a variant of the Nerve Theorem introduced in [9], we
that a pair of nested Rips complexes can provably-well c&#n extend the above result to the ner@g¢L.) of the é-
ture the homology of a domain even though none of tREfsetsL):
individual Rips complexes does. Given a fixed paramggyma 3.2. Let X, f, L be as in Theorem 3.1. ¥ <
ter > 0, we use two Rips-based filtrations simultang; (x) then,Vk € N, there exists a family of isomorphisms
ously, { Rs(La)tacr @nd{R2s(La)}tack, @and we consider (rr, (Cs(L.)) — Hy(L3)}acr c<s<o.(x) SUCh that the
the persistence modules formed at homology level by tifowing diagrams (where horizontal homomorphisms are
images of the homomorphisms induced by the inclusiopgjyced by inclusions) commutén < o/ € R, V5 < &' €
Rs(L,) — Ros5(L,). Specifically, for allk € N and all e, 0.(X)),

a < 3 we have the following induced commutative diagram

L be as in Theorem 3.1. Then, for
any 6 > ¢, the sublevel-sets filtratioQF,,} of f is c¢d-
interleaved with they-offsets filtration{L? },cr. Hence,
¥ e N, the bottleneck distance between thiih persis-
N¥ce diagrams is at mo8ts, by Theorem 2.1.

at homology level: Hk(Cj(La)) — Hk(Ci(La’))
Hi(Rs(Lg)) — Hir(Ras(Lp)) He(L2) =  Hy(L%)
Hk(RZ(La)) N Hk(R;(L@)) Hence,Vk € N, V§ € [g,0.(X)), the kth persistent

homology modules ofCs(Ly)}acr and {LS},cr are 0-
Letting ¥ be the image oty (Rs(L.)) — Hi(R2s(Ls)), interleaved, which implies that their persistence diagsam
we get that the above commutative diagram induces a naap identical, by Theorem 2.1.



With these preliminary results at hand, we can now proceesmmuteVa < 3, Vv € {a, 8},
to the proof of Theorem 3.1:

Proof of Theorem 3.1.For convenience, we let = §, ¢” = Hy(C:(Ly)) —  Hi(L5)
20, Go = Rs(La), andG’, = Ras(Ly). Given some fixed 1 by0a, / 1y
k€ N, let ({Tk}, {+2}) pe th(.ek:th' persistent homology (3.4) Hy(Cor (L)) hy Hk(Li,)
module of the nested pair of filtratiols7, — G }acr. | eyod Lo
Since2e < ¢ < % Eq. (2.1) induces the following R o
commutative diagram &tth homology levelva < 3, Hy(Cen(Ly))  —  Hi(L5)
i B
Hy(Ce(La)) = Hi(Ce(Lp)) Hy(Cor(La)) ta Hy,(Cor(Lg))
bo 0 e (3.5) L, L,
Jo 18
Hy(Ga) - Hy(Gp) Hk(LZ,) Yo Hk(Lg/).
l ba l bﬁ
B
(2 H(Cu(La)) > Hy(Cr(Lp) y
1 da L dg Hyp(Cer(La)) —> Hp(Cer(Lg))
”Lﬁ " !
HU(G) ™ HU(G) (3:6) bz b
| ea Les Hp(Ly )  —  Hp(Lg)

Hi(Cern(La)) = Hi(Cer(Lp)) Foralla € R, letg, : TX — Hy(F, o) be the restriction

of the mapw,, o b, o e,, to the subspacEX = im d,, o b, C
%,';'(Gg). Symmetrically, let), .. : Hi(Fa_cc) — Tk be
hhee mapd,, o b, 0 a, o h; !t ot,. Itsimage is indeed included
in"the subspac&€® = im d, o b, C Hy(G.). To prove
that the persistence modul€l's }, {72}) is ce”-interleaved
.with thekth persistent homology module §F, }, it suffices
Y 5 show that (a.) the maps_ .. 0 s o ¢, is equal tom? over
the subspack® C Hy (G, ) forall 3 > a + c(s +€”), and
(b.) the mapps o mP o 1p, . is equal to the homomorphism

This diagram emphasizes the relationship between the
sistence modulé{T* }, {+#1) and the homology of a family
of Cech complexes. In addition, Lemma 3.1 tells us that t
homology of the sublevel-sets filtratidiF,, } of f is related
to the homology of the-, £’- ande”-offsets ofL,, through
the following sequence of homomorphisms induced b
clusions:Va, B s.t.5 —a > c(e + "),

Hk Fa—c Hk F, ce’’ "
(l . <) (T i: ) s0Te . Hy(Fa—ee) — Hy(Fpyeer) induced by inclusion
Hy (L) Hy(L5) forall § > . p .
lu T op (a.) Consider the magg_ . 0s5 0¢,. Since by definition we
° ' havel'* = im d, 0b, C im d,, the fact thatps_.. os? o ¢,
(3.3) H(L3) H(L5) coincides withm? overI'* is a direct consequence of the
l e ! o fact that the maps_.. o s2 o ¢, o d,, equalsm? o d,, over
Hi,(L3) H.(Lj) Hy(Cer(Ly)), which we will now prove. Replacing,, and
bwa y Tts 3. by their definitions, we gefsz o (bgoap o hgl) otgo
Hi(Foyeer) = Hp(Fg—ce) s owgy 0 (R, 0e,0d,), which by commutativity of (3.4) is

equal todgoh/; ougotzosf 0w, 0v, 0h/y. Now, observe
N/ow, foralla € R we leth,, Hk((ie(La)) — Hi (L), thatug otg o 52 0w, o v, is nothing but the homomorphism
ho + Hy,(Cor(La)) — Hi(L) andhg : Hi(Cer(La)) = 18 in4uced by the inclusiofie’ — <. Therefore, we have
Hy(Lg ) be the isomorphisms provided by Lemma 3.2 —* P @ ,_f B )
which are well-defined since < & < & < gu(X). Yo-ce © 86 0 ¢a 0da = dgo (hg ol'yohla), which
Combining these isomorphisms with Egs. (3.2) and (3.3), We€dual todg o I by commutativity of (3.5). Finally, we
get a full diagram relating{T'* }, {r7}) to thekth persistent haveds o 17 = m{, o d, by commutativity of (3.2). Thus,
homology module of F,, }. This diagram may not commute¥’s—c © 55 © ¢ coincides withn, overTY,.
for instance, there is no particular reason why] should () Consider now the mafy; o m7 o v .. Replacingp;
coincide withds o by 0 ag o h3' o Ly 0 57 0w, o ALl o andi, . by their definitions, we get; o hfj o (egomf) o
eo. Nevertheless, the subdiagram of Eq. (3.2) commutés© b, © aq o h" o to, which by commutativity of (3.2) is
because it is induced by inclusions. Furthermore, Lemm@ual towsohjjo(nfoe,)ody obyoaqohy oty. Now, the
3.2 ensures that the following subdiagrams (where the nesmmutativity of (3.4) implies that, od, 0 b, 0canoh ! =
homomorphismﬁ’g andn’g are induced by inclusions) alsoh”;1 0 Uy © Uy, thereforegs o m? o 1, .. is equal to



wgo (i onf oh” M) o, oug ota, Which by commutativity c=” replaced respectively by + ¢ andcs” + ¢ in Eq. (3.3)
Btee” and in the rest of the proof of Theorem 3.1. ~

amee Assume now thatly is replaced by some distandg

_ o satisfying the inequalities of (ii), and let = \j ande” =
3.2 Robustness with respect to noise in the datalheo- \s/ Under this assumption, we prove in the full version of

rem 3.1 assumes that exact geodesic distances and fungfgrhaper [7] that the following sequence of inclusions bold
values are used in the construction of the Rips complexgs.ail valuesa € R:

In practice however, function values from physical measure y y
ments are inherently noisy, while geodesic distances &ire €8.7) C:(La) C Rs(La) C Cor(La) C Ro/(La) C Cerr(La).
mated through some neighborhood graph distance. We clilm _ R(;(La) and G, — R(;I(La), we can then

. . etting G,
that our framework is generic enough to handle these pragg/erride Eq. (2.1) with Eq. (3.7) in the proof of Theorem
3.1, which gives the desired resuli.

cal situations:
THEOREM3.2. Let X, f, L be as in Theorem 3.1, and let
keN. 4 Algorithms

() Supposef is known within a precision of at the We only provide brief descriptions of the core algorithm
oints of L. Then, for anys 2, 2 0.(X)), the X ) . ;
pol ¥ €[22 500(X)) (Section 4.1), of its variants (Sections 4.2, and 4.3), a@nd o

Mh persistent homology modules gfand of the their guarantees. A thorough treatment is done in the full
nested pair of filtrationg Rs( L Ras(La)}ta . '
b $B5(La) = Fas(La)tack yersion of the paper [7].

are (2¢0 + (¢)-interleaved, hence their persistenc
diagrams are3(2¢é + (¢)-close.

Suppose the Rips complexes are now defined w
respect to some distana&; that is related todyx
through some scaling factok > 1, relative error
u > 1, and additive errorv > 0: Vp,q € L,
%’“’) < dx(p.q) < v+ M%. Then, for any
§ > v+ 2us and anyd’ € [v+ 2u8, 1o.(X)),

of (3.6) is equal tavs o n'g 0Vy OUg Oty = 8

tfli Core algorithm. The algorithm takes as input 2
Imensional vectow, an x n distance matrixD, and a
paramete$ > 0. The entries of give the function values

at the data points, while the entries Dfgive their pairwise
distances. No geographic coordinates are required, so that
the algorithm can virtually be applied in any metric space.

. For simplicity, we assume the entrieswofo be sorted«; <
the ith persistent homology modules piand of the vy < -+ < w,), although they are not in our implementation.

nested/palr of filtrations{ 5 (La) — Rs/(La)tack 1o algorithm proceeds in two steps:
are c\o’-interleaved, hence their persistence diagrams . o . )
1. It builds two families of nested Rips complexes:

!/
are 3c\¢’-close. Rs({1}) € Rs({1,2}) C -+ C Rs({1,2,++- ,n})
and Rys({1}) C  Ras({12}) C c
Ro5({1,2,---,n}). Theith complex in each family
is computed from the sub-matrix @ spanned by the
rows and columns of indicels - - - , 7. The time of ap-
pearance of its simplices that are not in the-(1)th
complex is set t;.
For k£ ranging from zero to the dimension of the

(ii)

While the meaning of assertion (i) is self-explanatory, asse
tion (ii) deserves a few words of context. We use the nota-
tions Rs(L,) and Ry (L) to emphasize that the Rips com-
plexes are now defined with respectdig. The latter is usu-

ally taken to be the distanek; in some neighborhood graph

G built on top of the point cloud.,, whose edges can be either
weighted or unweighted, depending on the application. Both 2.

classes of graphs are known to provide distanigesatisfy-
ing the hypotheses of (ii) for some quantities:, v [18, 24].

In addition, parameterg ¢’ are required to be somewhat re-

laxed: specificallyy must be sligthly larger tha2$ andd’

nth complex, the algorithm computes tlig¢h per-
sistence diagram of the nested pair of filtrations
{R5({1> U ’Z}) - R25({17 e 7i})}1SiSn'

Upon termination, the algorithm returns the persistenae di

slightly larger thar2?. grams computed at step 2.

Proof of Theorem 3.2. Assume first that for each pointQuality of the output. Observe that the filtrations built at

p € L we are given a valug(p) # f(p), and let( = step 1. are the same as the ones considered in Theorem 3.1,
maxper |f(p) — f(p)|. For convenience, for allk € R which therefore provides the following theoretical guaean

we introduce the sef, of points of L whose f-values if the data points form a geodesiesample of some Rieman-
are at mostv. Note thatL, may neither contain nor benian manifoldX, with e < § ¢.(X), and if the input distance
contained inL,, in general. However, we have, C L..¢, matrix D gives the exact geodesic distances between the data
which, plugged into the proof of Lemma 3.1, implies thadoints, then, for any tameLipschitz functionf : X — R

the sublevel-sets filtration of is (¢ + ¢)-interleaved with whose values at the data points are given exactly by the input
{ig}aeR. The rest of the analysis of Section 3.1 carriegctorv, thekth persistence diagram output by the algorithm

through, withL,, replaced byL,, for all « € R andce and lies at bottleneck distance at mas® of the kth persistence



diagram of f, provided that the input parametérsatisfies if pis a local minimum); the local minima gf in G5

2e <6 < F0.(X). are then promoted to the status of cluster centers, and
Similar theoretical guarantees are obtained from Theo- L is partitioned according to their descending regions
rem 3.2 in cases where the entries of the input vectorma- in Gas;

trix D are noisy, provided tha is replaced by’ > 26 in 2. we apply the core algorithm to approximate of itie
the algorithm. This is quite useful in practice, when geddes persistence diagram gf, which is then used to merge
distances are estimated using some neighborhood graph. clusters of lifespan less than some input threshold

Implementation and complexit A useful propert into longer-lasting clusters,
P . omplexity. = A | PrOPEMY 1o procedure is illustrated in Figure 1. The clusters con-
of the Rips complex is that its simplices are in bijec:

fion with the cliques of its 1-skeleton graph [9]. At Stestrucnon at step 1. is inspired from [14], and we refer the

. ) ader to [25] for a detailed implementation in our point
1. of the a'gof”hm' Qwe. build the 1-skeleton graph. cE:fleoud setting. This construction is known to be quite unsta-
Ros({1,--- ,n}) in O(n?) time, then we enumerate all it

; . . . le under small perturbations éf or f, and the novelty of
cliques using version 1 of the Bron-Kerbosch algorit@aj . : .
) . : -~ our approach resides in the way we use persistence to merge
in O(Nnlogn) time, whereN is the total number of sim- PP 4 P 9

. . .~ clusters and regain some stability at step 2. Specificaldy, t
plices 0fRps({1,-- - , n}). Finally, we encode the f'l.trat".msapproximate persistence diagram consists of a set ofalritic
of parameter® and 24 as two orderings on the simplice

. . Spairs(v, e), wherev is a local minimum off in G5 ande is
of Rys({1,--- ,n}), Wh'.Ch take@(Nlog N) time. Atstep ., edge ofy; that links the connected component created
2., we apply the modified persistence algorithm of [11] CB’lyv in Gls; to the one created by some lower minimumif
our two filtrations, which raises the overall running time

O(N?) tf?we lifespaf of the connected componentwofs shorter than
In principle, Ras ({1, - - - ,n}) could span the fullsf — 7, then the algorithm merges the clusternahto the cluster

1)-simplex and have as many a% simplices. In practice

g_oweve_r, data El)%mts are doften dr_f;lwn from rr:_anlfoldsdfz_f IO\SIY<eIeton graphGys, creating and merging clusters on the
imensionsn. Then, under a unfiorm sampiing condition, using the modified union-find data structure of [16].

a packingmargument Shows that the size of the2 comple Rice G5 has been built, the remaining running time is
at most22” n, and that it even drops down (" )n, if a O(NA—L(N)), where N is the size ofGas and A the
reasonable upper bound enis known [9]. This reduces theAckermann fu,nction.

running time of the algorithm tqo(mQ)T_LB and thus makes  The number of clusters output by the algorithm is guar-
the approach tractable. Sampling uniformity is a stringefiteed by Theorem 3.1 to coincide with the number of de-
condition, but it is achieveable by a landmarking strate@¥ending regions of minima of of lifespan at least in X,

[19]. provided that thé@th persistence diagram gfsatisfies some

) o ) ) ) well-separatedness condition made explicit in the full ver
4.2 Extracting spatial information. The input is the gjon of the paper. In addition to this stability guarantee, i
same as in Section 4.1, and we calthe underlying space,\yoy|d be desirable to have an approximation résariund-
/ the unknown scalar field, anfdthe set of data points. Wejnq the distances ik between the computed clusters and

want to partitionZ into clusters, each of which consists of thg, ey corresponding descending regions of minimd of X.
points that flow down to a same minimum ffwhen mov- This question remains open for now.

ing opposite to the gradient vector field pfin X. Stated in

Morse-theoretic terms, our goal is to compute the trace iny Time-varying functions. Suppose now thak and L
of the descending regions of the minitra f. We assume yemain fixed whilef varies with time. More precisely, our
for simplicity that the values of at the points of are all input is now a finite sequendey, - - - , v,) of n-dimensional
different, which is easily ensured by an infinitesimal pert,ectors each of which is snapshotof f at the points of
bation of f. ~ L and at a certain tim¢; < t;,1. For convenience, we let
After building the 1-skeleton graptiys of Ras(L) @s in ¢ . xx ., R denotef at timet;, and we calk; its Lipschitz
Section 4.1, we proceed In two steps: _ constant. Our aim is to approximate the persistence diagram
1. at each poinp € L we compute a rough estimate of the f;.
th? dlreg:t|0n Of steepest descentfoby connecting The naive approach applies the core algorithm at each
toits neighbor intr,s with lowestf-value (and to itself (jme step separately. By Theorem 3.1, the output persistenc

Our implementation makes a single pass through the 1-

*This algorithm was designed to enumerate maximal cliques, tbut i cDefined as the difference between the times at whiahdw appear in
actually enumerates all cliques. the 1-skeleton graptiss.

5Symmetrically, we can approximate the ascending regions afitne 7Our experimental results, detailed in Section 5, suggesbtistence of
ima of f by using— f in our computations. such a guarantee.



| dataset | dimension| #vertices| #edges | Rips graph (sec.] clustering (sec.) total (sec.)]

crater 2 1,048 7,095 0.01 0.00 0.01
torus 3 2,034 7,650 0.01 0.00 0.01
four Gaussians 2 6,354 51,946 0.07 0.02 0.09
hand 2 19,470 158,395 0.27 0.05 0.32
double spiral 2 114,563 | 2,116,035 2.43 0.61 3.04

Table 1:Timings on an Intel Core 2 Duo T7500 @ 2.20GHz with 2GB of RANM. Tacing phase of the approach is the construction of the &iaph,
which performs a linear number of proximity queries, impdated using the C++ library ANN [27]. Thelusteringphase comprises both steps of the
algorithm of Section 4.2, which are performed simultangous

diagrams at time; approximate the ones of; within a gregation step. A sample result is shown in Figure 1.
bottleneck distance dfjc;, under a sampling condition and
with a choice of parametérthat are time-independent. Thé&.2 Clustering. Clustering attempts to group points by as-
total running time isO(sN?3), where N is the number of suming they are drawn from some unknown probability dis-
simplices of the Rips compleRys(L). tribution. Our approach is inspired by Mean-Shift clustgri

A more elaborate variant inspired from [12] exploits thiL3]. Given an input point cloud,, we use a simple density
fact thatRos(L) remains fixed throughout the process, arebstimator to approximate the local density at the points.of
that the sole orderings of its simplices corresponding ¢o tAs Figure 2 shows, our estimator can be quite noisy. How-
filtrations of parametersand20 have to be updated betweemver, our emphasis is not on accurate density estimatian, bu
t;—1 andt;. For each filtration, we permute the order of theather on clustering with noisy density estimates. Our esti
simplices ofRys (L) usinginsertion sort which decomposesmator is provided together with as input to the algorithm
the permutation into a sequencernf simple transpositions of Section 4.2, which clusters the points bfaccording to
of simplices. This sequence is given as input tovineyards the basins of attraction of the local maxima of the estimator
algorithm [12], which updates the persistence diagramsiinthe Rips graptzos built over L. Due to the noisy nature
O(m;N) time. In the worst case, this bound is no better thaf the estimator, we get a myriad of small clusters before the
O(N?). However, it is sensitive to the timewise variationsierging phase. The novelty of our approach is to provide
of f, which can be small. A more formal discussion on thigsual feedback to the user in the form of an approximate

point can be found in the full version of the paper. persistence barcode of the estimator, from which the user
can choose a relevant merging parameterFor instance,
5 Applications and discussion the example of Figure 2 is highly non-linear and noisy, yet

We illustrate the relevance and generality of our approa@¢ barcode clearly shows two long intervals, suggestiag th
through three specific applications. For each applicatidiere are two main clusters. _
we describe the context and present some experimentation Another important feature of our approach is to make
validation. Timings on our data sets are given in Table 1. @ clear distinction between the merging criterion, governe
by 7 and based solely on persistence information, and the
5.1 Sensor networks.Our approach was originally de-approximation accuracy of the basins of attraction of the
signed with the sensor network framework in mind, whef@axima, governed by the Rips paramet@nd based solely
physical quantities such as temperature or humidity are meg spatial information. In the example of Figure 2, reducing
sured by a collection of communicating sensors, and whérgvhile keeping fixed enabled us to separate the two
the goal is to answer qualitative queries such as how ma&Rjrals from the background while keeping them separate
significanthot spotsare being sensed. Purely geometric agnd integral.
proaches cannot be applied in this setting, since geographi
location is usually unavailable. Rough pairwise geodeisic d®-3 Shape SegmentationThe goal of shape segmentation
tances however are available, in the form of graph distané®¥0 partition a given shape intoeaningfulsegments, such
in the communication network. With this data at hand, tf# fingers on a hand. This problem is ill-posed by nature,
algorithms of Section 4 can find the number of hot spof$ meaningfulness is a subjective notion. Given a sampled
provide an estimation of their prominance and of their size$hapeX, our approach is to apply the algorithm of Section
the network, and track them as the quantity being measufled On someegmentation functiofi : X — R derived from
changes. As a by-product, they also compute the homoldg§ 9eometric features &f. The output is a partition of the
of the underlying domain as the linear span of the infinitelpQint cloud into clusters corresponding roughly to the bgsi
persistent homological features in the output barcodes. T atraction of the significant peaks ¢t Thus, we cast
computations are done in a centralized way, after a data Hift Segmentation problem into another problem, namely the



Figure 2: A result in clustering. The top row shows the input providethe algorithm of Section 4.2: the data points (left), ot their pairwise
Euclidean distances, and the estimated density funcfi¢center and right). The 3-d view gf illustrates how noisy this function can be in practice,
thereby emphasizing the importance of our robustnesstréBaéorem 3.2). The bottom row shows the estimated basiatrattion of the peaks of,
before (left) and after (right) merging non-persistentsters. The O-dimensional persistence barcode-of ) (center) contains two prominent intervals
corresponding to the two main clusters. Since the estima¢edity is everywhere non-negative, the barcode has beeshtiided aD. Thus, intervals
reaching0 correspond to independent connected components in thegRips. Among those, the ones that appear lately are treaseabése and their
basins of attraction shown in black, since their corresgogdiensity peaks are low.

one of finding a relevant segmentation functjofor a given estimation problem, while shape segmentation is turned int
class of data. finding a relevant segmentation function for a given class

In our experiments, we defingf{z) to be the diameter of shapes. Many application-specific questions arise from
of the set of sample points on the boundary of the shape tthe$ paradigm, which we do not pretend to solve in the
are closest ta;, normalized by their distance to We chose paper. Some of them, related to the above scenarios, will
this particular function as a demonstration, but our methbd addressed in subsequent work.

can be applied virtually with any ;egmentation funCtioneTl}_\cknowledgements. The authors wish to thank the anony-
barcode cc_)mputed by the algqnthm measures the Stab'”%us referees for their helpful comments. This work was
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Figure 3: Segmentation result on a sampled hand-shaped 2-D domaie.s@mentation function is the (normalized) diameter ofstteof nearest
boundary points. The barcode shows six long intervals,esponding to the palm of the hand and to the five fingers. Thiétsdmfore and after merging
non-persistence clusters are shown respectively to tharefto the right of the barcode.

(2]
(3]

(4]

(5]

(6]

[7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

[15] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchicg@7] http://www.cs.umd.edu/

C. Bron and J. Kerbosch. Finding all cliques of an undirected
subgraphCommun. ACM16:575-577, 1973.

G. Carlsson, A. Zomorodian, A. Collins, and L. Guibag16]
Persistence barcodes for shapesnterational Journal of
Shape Modelingl1:149-187, 2005.

M. Do Carmo. Riemannian GeometryBirkhauser, Boston, [17]
Basel, Berlin, 1992.

F. Cazals, F. Chazal, and T. Lewiner. Molecular shape anal-
ysis based upon the Morse-Smale complex and the Conndli\3]
function. InProc. 19th Annu. ACM Sympos. Comput. Geom.
pages 237-246, 2003.

F. Chazal, D. Cohen-Steiner, L. J. Guibas, and S. Y. Oudot.
The stability of persistence diagrams revisited. Research
Report 6568, INRIA, July 2008.

F. Chazal, L. J. Guibas, S. Y. Oudot, and P. Skraba. Analy$i9]
of scalar fields over point cloud data. Research Report 6576,
INRIA, July 2008.

F. Chazal and A. Lieutier. Stability and computation of20]
topological invariants of solids ifR™. Discrete Comput.
Geom, 37(4):601-617, 2007.

F. Chazal and S. Y. Oudot. Towards persistence-based recon-
struction in Euclidean spaces. Rroc. 24th ACM Sympos. [21]
Comput. Geompages 232-241, 2008.

D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of
persistence diagrams. Rroc. 21st ACM Sympos. Comput.
Geom, pages 263-271, 2005. [22]
D. Cohen-Steiner, H. Edelsbrunner, J. Harer, and D. Morozo
Persistent homology for kernels and images. Preprint, 20083]
D. Cohen-Steiner, H. Edelsbrunner, and D. Morozov. Vines
and vineyards by updating persistence in linear timeéPrbt.  [24]
22nd Sympos. on Comput. Geppages 119-126, 2006.

D. Comaniciu and P. Meer. Mean shift: A robust approach to-
ward feature space analysIEEE Trans. on Pattern Analysis[25]
and Machine Intelligence24(5):603-619, May 2002.

T. K. Dey and R. Wenger. Stability of critical points with
interval persistenceDiscrete Comput. Geom38:479-512, [26]
2007.

Morse complexes for piecewise linear 2-manifolds.Phoc.
17th Annu. Sympos. Comput. Geppages 70-79, 2001.

H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topolog-
ical persistence and simplificatio@iscrete Comput. Geom.
28:511-533, 2002.

H. Edelsbrunner, D. Morozov, and V. Pascucci. Persistence-
sensitive simplification of functions on 2-manifolds. Pnoc.
22nd Sympos. on Comput. Geppages 127-134, 2006.

J. Gao, L. Guibas, S. Oudot, and Y. Wang. Geodesic De-
launay triangulation and witness complex in the plane. Full
version, partially published ifProc. 18th ACM-SIAM Sym-
pos. on Discrete Algorithmgages 571-580, 2008. Full draft
available at: http://graphics.stanford.edu/projects/
Igl/papers/ggow-gtwep-08/ggow-gdtwep-08-full.pdf .

L. G. Guibas and S. Y. Oudot. Reconstruction using withess
complexes. IrProc. 18th Sympos. on Discrete Algorithms
pages 1076-1085, 2007.

A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and
B. Hamann. Topology-based simplification for feature ex-
traction from 3d scalar fields. IRAroc. IEEE Conf. Visualiza-
tion, pages 275-280, 2005.

A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and
B. Hamann. A topological approach to simplification of
three-dimensional scalar fieldslEEE Trans. Vis. Comput.
Graphics 12(4):474-484, 2006.

A. Hatcher. Algebraic Topology Cambridge Univ. Press,
2001.

John W. Milnor. Morse Theory Princeton University Press,
Princeton, NJ, 1963.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global
geometric framework for nonlinear dimensionality reduction.
Science290(5500):2319-2323, 2000.

X. Zhu, R. Sarkar, and J. Gao. Shape segmentation and
applications in sensor networks. Rroc. INFOCOM pages
1838-1846, 2007.

A. Zomorodian and G. Carlsson. Computing persistent ho-
mology. Discrete Comput. Geon33(2):249-274, 2005.
~mount/ANN/ .



