
Persistence-Based Clustering in Riemannian Manifolds

Frédéric Chazal, Steve Oudot, Primoz Skraba
INRIA Saclay – Île-de-France

4, rue Jacques Monod
91893 Orsay Cedex, France

firstname.lastname@inria.fr

Leonidas J. Guibas
Computer Science Dept.

Stanford University
Stanford, CA 94305, USA

guibas@cs.stanford.edu

ABSTRACT
We present a clustering scheme that combines a mode-seeking
phase with a cluster merging phase in the corresponding
density map. While mode detection is done by a stan-
dard graph-based hill-climbing scheme, the novelty of our
approach resides in its use of topological persistence to guide
the merging of clusters. Our algorithm provides additional
feedback in the form of a set of points in the plane, called a
persistence diagram (PD), which provably reflects the promi-
nences of the modes of the density. In practice, this feed-
back enables the user to choose relevant parameter values,
so that under mild sampling conditions the algorithm will
output the correct number of clusters, a notion that can be
made formally sound within persistence theory.

The algorithm only requires rough estimates of the density
at the data points, and knowledge of (approximate) pairwise
distances between them. It is therefore applicable in any
metric space. Meanwhile, its complexity remains practical:
although the size of the input distance matrix may be up
to quadratic in the number of data points, a careful imple-
mentation only uses a linear amount of memory and takes
barely more time to run than to read through the input.

In this conference version of the paper we emphasize the
experimental aspects of our work, describing the approach,
giving an intuitive overview of its theoretical guarantees, dis-
cussing the choice of its parameters in practice, and demon-
strating its potential in terms of applications through a series
of experimental results obtained on synthetic and real-life
data sets. Precise statements and proofs of our theoretical
claims can be found in the full version of the paper [7].

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Non-numerical Algo-
rithms and Problems — Geometrical problems and compu-
tations, Computations on discrete structures.

General Terms: Algorithms, Theory.

Keywords: Unsupervised Learning, Clustering, Mode Seek-
ing, Topological Persistence, Morse Theory.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’11, June 13–15, 2011, Paris, France.
Copyright 2011 ACM 978-1-4503-0682-9/11/06 ...$10.00.

1. INTRODUCTION
Unsupervised learning or clustering is an important tool

for understanding and interpreting data in a variety of fields.
Obtaining the most natural clustering is an ill-posed prob-
lem in general, and it is particularly difficult with massive
and high-dimensional data sets where visualization tech-
niques fail. The breadth of the existing work on cluster-
ing [17] shows the high interest this topic has aroused among
the scientific community. Here we recount a few classi-
cal methods to show where our approach stands with re-
spect to the literature:
K-means [21] is perhaps the most commonly used ap-

proach. Given a fixed number k of clusters, it tries to place
cluster centers and define cluster boundaries so as to mini-
mize the sum of the squared distances to the center within
each cluster. This minimization problem is known to be
NP-hard, so k-means resorts to an iterative expectation-
maximization procedure that is guaranteed to converge at
least to some local minimum. This minimum is not guar-
anteed to be global, however. Another issue with k-means
and its variants is that they produce bad results on highly
non-convex clusters.

Spectral clustering [28] was designed specifically to work
on non-convex data. It first computes an embedding of
the data set endowed with a diffusion distance between the
points, given by a Laplacian of some neighborhood graph.
Then, it applies the standard k-means method in the new
ambient space. Computing the embedding requires an eigen-
decomposition of the Laplacian, which may have numerical
issues as the size of the data grows. The presence of a gap
in the spectrum of the Laplacian gives an indication of the
correct number k of clusters. However, problems arise when
there are more than a small number of outliers in the data,
in which case no such gap may exist.

Density-based techniques make the assumption that the
data points are drawn from some unknown density function
f . Clustering becomes then a problem of understanding the
structure of f , as estimated from the samples. A popu-
lar approach consists in thresholding the density at some
fixed level α, then treating the connected components of the
superlevel-set Fα = f−1([α,+∞)) as clusters and the rest of
the data as noise. In practice, the density f is unknown so
its superlevel Fα needs to be approximated from the data,
which algorithms like DBSCAN [15, 23] do by various graph-
based heuristics. Unfortunately, due to the use of a fixed
density threshold α, these techniques do not respond well to
hierarchical data sets, in which subtle multi-scale clustering
phenomena may occur.

97

R

X

p

q

s

(a)

R

X

p′

q′

s′

(b)
−∞

+∞

+∞

p′

q

p

q′

(c)

Figure 1: Sketch of topological persistence: (a) a new connected component is born in the superlevel-set Fα when

α = f(p), and it dies when α = f(s); its lifespan is represented as a vertical segment on the left of the graph, or

equivalently as a point in the PD of f ; (b) a piecewise-linear approximation f̃ of f ; (c) superimposition of the PDs of

f (red) and f̃ (blue), showing the one-to-one correspondence between the prominent peaks of f and f̃ .

Another popular approach, called mode-seeking, consists
in detecting the local peaks of f in order to use them as clus-
ter centers and to partition the data according to their basins
of attraction. The precise notion of the basin of attraction
Bp of a peak p varies between references, yet the bottom line
remains that Bp corresponds to the subset of the data points
that eventually reach p by some greedy hill-climbing proce-
dure. This line of work started with the algorithm of Koontz
et al. [20] and was followed by numerous variants and exten-
sions, including Mean-Shift [13] and its successors [24, 27]. A
common issue faced by these techniques is that the gradient
and extremal points of a density function are notoriously un-
stable, so their approximation from a density estimator can
lead to unpredictable results. This is why methods such as
Mean-Shift adopt a proactive behavior by smoothing the es-
timator before launching the hill-climbing procedure, which
in turn raises the difficult question of how much smoothing
is needed to remove the noise without affecting the signal,
and to obtain the correct number of clusters.

Enter topological persistence. In this paper we adopt a
more reactive behavior by using topological persistence [14,
29] to detect and merge unstable clusters after their compu-
tation, thus regaining some stability. Although our method
belongs to the same family as Mean-Shift, the use of persis-
tence makes it possible to link explicitly the input parameter
values to the output number of clusters. It also provides a
sound theoretical framework for characterizing the correct
number of clusters, in the same spirit as spectral clustering.

Topological persistence estimates the prominence of the
density peaks and builds a hierarchy of the peaks based on
it. The prominence of a peak is defined as the difference
between its height and the level at which its basin of attrac-
tion meets the one of a higher peak (its parent in the hierar-
chy). More precisely, focusing on the 1-parameter family of
superlevel-sets Fα = f−1([α,+∞)) of the density function
f , persistence studies the evolution of the connectivity of
Fα as α ranges from +∞ to −∞. A new connected compo-
nent C is born in Fα when α reaches the height of a peak
p of f , and dies when it gets connected in Fα to the com-
ponent of a higher peak (see Figure 1(a)). As mentioned
above, the prominence of p is simply the height difference

between birth and death values of C. The lifespan of each
connected component C can be represented as a point in
the plane, with the x-coordinate giving the birth time of C
and the y-coordinate giving its death time. The collection
of such points is called the persistence diagram (PD) of f ,
illustrated in Figure 1(c). The key insight of this planar
data representation is that the PD reveals part of the topo-
logical structure of the density function f . More precisely,
each peak of f is uniquely represented by one point in the
PD, and its prominence is given by twice the distance of this
point to the diagonal y = x.

Originally defined in Morse theory, prominence is known
to be more stable than other measures of significance such
as absolute height. For example, a small bump occurring
at a high density will have large absolute height but small
prominence. The same kind of stability holds for PDs. For
instance, f and its noisy approximation f̃ (see Figure 1(b))
have similar PDs, in the sense that there is a one-to-one
mapping of small amplitude from the prominent peaks of f̃
to the ones of f , the rest of the peaks being treated as noise
and mapped to the diagonal in the PD (see Figure 1(c)).
Thanks to this fundamental stability property, with only
limited knowledge of the underlying space and a finite esti-
mate of the density f it is possible to provably and efficiently
approximate the PD of f . The combination of such guaran-
tees with computational practicality is at the heart of topo-
logical data analysis [1, 2, 3, 16], which includes this work.

It is worth noting that PDs are similar in spirit to the
dendrograms provided by agglomerative clustering schemes,
whose principle is to build the clusters in a bottom-up fash-
ion, starting with each point being its own cluster and merg-
ing at each step the most similar clusters together. The out-
put dendrogram describes the sequence of merges that have
occurred during the process, thus encoding the hierarchical
structure of the obtained family of clusterings. While these
techniques bear some connections with ours, they are ac-
tually based on a different clustering paradigm that suffers
from its own limitations — see e.g. Section 14.3.12 in [18].

Our method. Our clustering scheme, called ToMATo (Topo-
logical Mode Analysis Tool), combines the original graph-
based hill-climbing algorithm of Koontz et al. [20] with a

98

(a) (b)
0.5 1 1.5 2

x 10-3

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x 10 -3

0.2

-∞

(c)
(d)

Figure 2: Our approach in a nutshell: (a) estimation of the underlying density function f at the data points; (b) result

of the basic graph-based hill-climbing step; (c) approximate PD showing 2 points far off the diagonal corresponding to

the 2 prominent peaks of f ; (d) final result obtained after merging the clusters of non-prominent peaks.

cluster merging step guided by persistence. As illustrated
in Figure 2(b), hill-climbing is very sensitive to perturba-
tions of the density function f that arise from a density
estimator f̃ . Computing the PD of f̃ enables us to separate
the prominent peaks of f̃ from the inconsequential ones. In
Figure 2(c) for instance, we can see 2 points (pointed to
by arrows) that are clearly further from the diagonal than
other points: these correspond to the 2 prominent peaks of
f̃ (one of the points is at y = −∞, as the highest peak never
dies). To obtain the final clusters, we merge every cluster of
prominence less than a given thresholding parameter τ into
its parent cluster in the persistence hierarchy. As shown
in Figures 2(c) and 2(d), the PD gives us a precise under-
standing of the relationship between the choice of τ and the
number of obtained clusters.

In practice we run ToMATo twice: in the first run we set
τ = +∞ to merge all clusters and thus compute the PD;
then, using the PD we choose a value for τ (which amounts
to selecting the number of clusters) and re-run the algorithm
to obtain the final result. The feedback provided by the
PD proves invaluable in interpreting the clustering results
in many cases. Indeed, the PD gives a clear indication of
whether or not there is a natural number of clusters, and
because it is a planar point cloud we can understand its
structure visually, regardless of the dimensionality of the
input data set.

ToMATo is highly generic and agnostic to the choice of
distance, underlying graph, and density estimator. Our the-
oretical guarantees make use of graphs that do not require
the geographic coordinates of the data points at hand (only
pairwise distances are used) nor estimates of the density at
extra points. This makes the algorithm applicable in very
general settings. ToMATo is also highly efficient: in the
worst case it has an almost-linear running time in the dis-
tance matrix size, and only a linear memory usage in the
number of data points (as in most applications distances to
near-neighbors suffice). Most often we use Euclidean dis-
tances, however other metrics such as diffusion distances
can be used. Indeed, the choice of metric and density es-
timator define the space we study, while our algorithm gives
the structure of this space. Finally, ToMATo comes with a
solid mathematical formulation. We show that, given a fi-
nite sampling of an unknown space with pointwise estimates
of an unknown density function f , our algorithm computes a

faithful approximation of the PD of f . Under conditions of a
sufficient signal-to-noise ratio in this PD, we can determine
the correct number of clusters and show that significant clus-
ters always have stable regions. The precise statements and
proofs are included in the full version of the paper [7]; in
this conference version we give an intuitive explanation to
highlight how interpretation can be aided by our approach.
In some applications, the number of clusters is not obvious
and we see this in the corresponding PDs. However, in these
cases the relationship between the choice of parameters and
the number of obtained clusters is transparent.

Obtaining guarantees in such general settings using only
simple tools like neighborhood graphs is made possible by re-
cent advances on the stability of persistence diagrams [4, 6].
Previous stability results [12] required the use of piecewise-
linear approximations of the density functions, as in Fig-
ure 1(b) for instance. The construction of such approxima-
tions becomes quickly intractable when the dimensionality of
the data grows. This fact might explain why topological per-
sistence was never really exploited in mode analysis before,
except in some restricted or low-dimensional settings [22].

2. THE ALGORITHM
We first provide an intuitive insight into our approach by

considering the continuous setting underlying our input. We
then give the details of the algorithm in the discrete setting.

The continuous setting. Consider an m-dimensional Rie-
mannian manifold X and a Morse function f : X→ R, i.e. a
C2-continuous function with non-degenerate critical points.
Assume that f has a finite number of critical points. The
ascending region of a critical point m, noted A(m), is the
subset of the points of X that eventually reach m by moving
along the flow induced by the gradient vector field of f . For
all x ∈ A(m), we call m the root of x. Ascending regions of
the peaks of f are known to form pairwise-disjoint open cells
homeomorphic to Rm. Furthermore, assuming X to have no
boundary and f to be bounded from above and proper1, the
ascending regions of the peaks of f cover X up to a subset
of Hausdorff measure zero. It is then natural to use them to
partition (almost all) the space X into regions of influence.

1
This means that for any bounded closed interval [a, b] ⊂ R, the

pre-image f−1([a, b]) is a compact subset of X.

99

For any α ∈ R, let Fα denote the closed superlevel-set
f−1([α,+∞)). Consider the nested family of spaces {Fα}α∈R
obtained by letting parameter α decrease from +∞ to −∞.
This family is called the superlevel-sets filtration of f . For
any α ∈ R and x ∈ X, let C(x, α) ⊆ Fα denote the path-
connected component of Fα that contains x. Morse the-
ory tells us that when a local maximum mp of f enters the
superlevel-sets filtration, at time α = b(mp), a new path-
connected component C(mp, α) appears in the superlevel-set
Fα. In homological terms, the peak mp is called the genera-
tor of the component born at time b(mp). C(mp, α) ceases to
be an independent connected component in Fα when it gets
connected to another component generated by a higher peak
mq. At that particular time α = d(mp), persistence the-
ory tells us that the component C(mp, α) gets merged into
C(mq, α). While mq remains the generator of the compo-
nent C(mq, α), mp ceases to be a generator, and by analogy
we call mq its root, noted mq = r(mp). In the 0-dimensional
persistence diagram D0f , the lifespan of mp as a generator
is encoded by the point p of coordinates px = b(mp) and
py = d(mp) ≤ px. The difference dp = px − py ≥ 0 between
birth and death times is called the prominence of the peak
mp. Equivalently, we say that mp is dp-prominent.

Given a thresholding parameter τ ≥ 0, we restrict our
focus to the peaks mp of f of prominence at least τ . Intu-
itively, the points of X that are attracted by mp are the ones
belonging to ascending regions that are eventually merged
by persistence into the connected component of mp before
being merged into the component of any other peak of promi-
nence at least τ . Formally, for every peak mq of f (of arbi-
trary prominence), let us iterate the root map mq 7→ r(mq)
until some peak of prominence at least τ is reached2. We
call r∗τ the thus iterated root map, and we note that every
peak of prominence at least τ is a fixed point of r∗τ . The
union of the ascending regions of the peaks mapped to mp

through r∗τ is referred to as the basin of attraction of mp (of
parameter τ) in the paper, noted Bτ (mp):

∀mp s.t. px − py ≥ τ, Bτ (mp) =
⋃

r∗τ (mq)=mp

A(mq).

Note that Bτ (mp) contains A(mp) since mp is a fixed point
of r∗τ . More precisely, we have A(mp) = B0(mp) ⊆ Bτ (mp).
In addition, since the iterated root map mq 7→ r∗τ (mq) is
uniquely defined, the basins of attraction form a partition
of the union of all ascending regions. These basins are our
target clusters.

The discrete setting. ToMATo takes as input an unweighted
simple graph G, whose vertex set represents the data points
and whose edges connect the points according to some user-
defined proximity rule. Each vertex i of G must be assigned
a real value f̃(i) corresponding to the estimated density at
that point. In addition, ToMATo takes in a non-negative
merging parameter τ , whose choice and use are elaborated
below. In this discrete setting, the algorithm mimics the
process described above in the continuous setting by run-
ning the following procedures in this order (in practice they
can be run in a single pass over the vertices of G):
1. (Mode-seeking) To compute the initial clusters, ToMATo

iterates over the vertices of G sorted by decreasing f̃ -

2
Such a prominent peak is always reached eventually, since the func-

tion f has finitely many peaks and since the root map satisfies
f(mq) < f(r(mq)), meaning that r(mq) is more prominent than mq .

values : at each vertex i, it simulates the effect of the
gradient of the underlying density function by con-
necting i to its neighbor in G with highest f̃ -value. If
all neighbors of i have lower values, then i is declared a
peak of f̃ . The resulting collection of pseudo-gradient
edges forms a spanning forest of the graph, and each
tree in this forest can be viewed as the analog within
G of the ascending region of a peak of the true density
function in the underlying continuous domain.

2. (Merging) To handle merges between trees, ToMATo it-
erates over the vertices of G again, in the same or-
der, while maintaining a union-find data structure,
where each entry corresponds to a union of trees of
the spanning forest. We call root of an entry e, or r(e)

for short, the vertex contained in e whose f̃ -value is
highest. By definition, this vertex is the root of one of
the trees contained in e. During the iteration process,
two different scenarios may occur when a vertex i is
considered: (a.) If i is a peak of f̃ within G, i.e. the
root of some tree Ti, then i creates a new entry ei in
the union-find data structure, in which Ti is stored.
(b.) If i is not a peak and therefore belongs to some
tree Tj stored in an existing entry ej , then we look for
potential merges of ej with other entries. Specifically,
iterating (in an arbitrary order) over the neighbors k

of i in G satisfying f̃(k) ≥ f̃(i), we merge ek into ej
if f̃(r(ek)) < min{f̃(r(ej)), f̃(i) + τ}, in other words
if the peak r(ek) is lower than r(ej) and has promi-
nence less than τ . Reciprocally, we merge ej into ek
if f̃(r(ej)) < min{f̃(r(ek)), f̃(i) + τ}.

The output of ToMATo is the collection of (merged) clusters
stored in the entries of the union-find data structure at the
end of the merging phase. In addition, ToMATo outputs the
lifespans of all the entries created during the process, each
lifespan being represented as a point in the plane. When τ
is set to +∞, this planar set of points coincides with the PD
of the scalar field f̃ over the graph G.

3. PARAMETER SELECTION
ToMATo takes in three inputs: the neighborhood graph

G, the density estimator f̃ , and the merging parameter τ .
Although the freedom left to the user in the choice of these
inputs gives our approach a lot of flexibility, the latter must
not come at the expense of a significant increase in the
amount of effort needed to run the program. This is why
this section provides some insights into the choice of our
parameters.

Neighborhood graph G. ToMATo relies heavily on the
neighborhood information encoded in the input graph G.
Choosing a relevant neighborhood graph (and thereby a rel-
evant metric) is a problem faced by many clustering tech-
niques. In our experiments we primarily used the δ-Rips
graph, which connects two data points whenever they lie
within distance δ of each other. This purely metric defini-
tion makes it possible to use these graphs in arbitrary metric
spaces, and to interpret the structure of the obtained PDs
thanks to a sound theoretical framework (see Section 4).
The choice of a particular value for δ corresponds more or
less to the choice of a scale at which to inspect the data. It
can be tricky on some instances, where different choices of
scale may reveal different structures. This is why we recom-

100

mend running ToMATo at several scales, either sequentially
or in parallel. This can be done even for large data sets
thanks to the efficiency of the algorithm. For too large values
of δ there will be no real structure in the PD, while too small
values of δ will produce many infinitely prominent peaks in
the PD, corresponding to the connected components of the
graph. By examining the PDs obtained at different scales,
one can find an appropriate trade-off.

Another popular choice of neighborhood graph is the k-
nearest neighbor (k-nn) graph. Its main advantage is that it
remains sparse whatever the layout of the data. We tested
the algorithm with this graph and generally found that it
performed well, recovering the correct clusters under a suit-
able choice of parameter k. However, to the best of our
knowledge there currently exists no theory that validates
these empirical observations, and in practice we were left
with the task of choosing k, which we accomplished by trial-
and-error.

We also ran ToMATo using Delaunay graphs and some of
their variants [26]. These have the great advantage of being
parameter-free, and the disadvantage of creating long edges
connecting high-density areas that are far apart, thus lead-
ing to artificial merges between clusters. One way around
this issue is to discretize the long edges and to estimate the
density at the newly created nodes, in order to reveal ad-
ditional valleys that separate the prominent peaks. This
requires the ability to estimate the density outside the in-
put point cloud, which is generally the case when a Delaunay
graph is built.

Density estimator f̃ . While the algorithm is agnostic to
the choice of density estimator, we experimented with two
of them: a truncated Gaussian kernel estimator, and the
distance to a measure proposed in [5]. Each of these esti-
mators uses one parameter, and we refer the reader to the
appropriate references for some insights into the choice of
these parameters.

Merging parameter τ . During the merging phase, ToMATo
eventually merges all clusters of prominence less than τ into
clusters of prominence at least τ . In other words, the choice
of τ determines which peaks of f̃ are considered real and
which peaks are treated as noise. To choose τ , we run
ToMATo twice. In the first run, τ is set to +∞, which
makes ToMATo output the PD of the scalar field f̃ over the
graph G, just as the 0-dimensional version of the standard
persistence algorithm [14] would do. This PD reveals the

topological structure of f̃ , providing the height and promi-
nence of each peak of f̃ . Hence it can be used to determine
a suitable value for τ , to be assigned in a second run of
ToMATo that computes the final clustering.

In cases where the PD of f̃ shows a large gap separating
a small set of k highly prominent peaks from the rest of the
structure, we infer that the number of clusters is likely to
be k, and so we set τ to be any value between the promi-
nences of the k distinguished peaks and the prominences of
the rest of the PD. Then the output of the second run of
ToMATo contains exactly k clusters. Detecting a large gap
automatically can be done by means of the following simple
heuristic: we sort the points in the PD by decreasing promi-
nence (possibly weighted by the corresponding peak heights,
to avoid a squeezing effect due to the presence of extremely
or even infinitely prominent peaks), and then we look for

the largest drop in the sequence of (weighted) prominences.
This is reminiscent of what is commonly done in spectral
clustering for finding a gap in a Laplacian spectrum, and
in fact our prominence gap and the spectral gap play very
similar roles, even if in completely different settings.

In cases where the PD of f̃ does not show any well-separated
structure, it still provides a clear relationship between the
choice of parameter τ and the number of clusters obtained
after re-running ToMATo. The choice of a particular value
(or of a collection of values) for τ depends on the context,
and in practice it requires to use additional application-
specific information on the data. This is what we did for
instance on the biological data set to distinguish between
several possible choices of τ (see Section 5).

4. THEORETICAL GUARANTEES.
In this section we give an intuitive overview of the theoret-

ical guarantees that come along with ToMATo and validate
the above heuristics. Formal statements and proofs can be
found in the full version of the paper [7].

Let X be an m-Riemannian manifold with positive con-
vexity radius, and f : X → R a Lipschitz-continuous prob-
ability density function with respect to the m-dimensional
Hausdorff measure. We assume that the input data set P
has been sampled over X according to f in i.i.d. fashion,
and that the values of f at the data points and the geodesic
distances between the data points are known either exactly
or within a small additive error. Finally, we assume the in-
put graph G to be the δ-Rips graph built over P using the
estimated geodesic distances, for some user-defined param-
eter δ.

Definition 4.1. Given two values d2 > d1 ≥ 0, the per-
sistence diagram D0f is called (d1, d2)-separated if every
point of D0f lies either in the region D1 above the diago-
nal line y = x − d1, or in the region D2 below the diagonal
line y = x− d2 and to the right of the vertical line x = d2.

-∞0
0

d2

d1

D1

D2

d2

Figure 3: Separation of the persistence diagram D0f be-

tween prominent peaks (D2) and topological noise (D1).

This condition, illustrated in Figure 3, formalizes the intu-
itive notion that the points of D0f can be separated between
prominent peaks (region D2) and topological noise (region
D1), as illustrated opposite. In this respect, it acts very
similarly to a signal-to-noise ratio condition: the larger the
prominence gap d2 − d1, the more clearly one can separate
the prominent peaks from the noise. In the limit scenario
where d1 = 0, all peaks of f are at least d2-prominent and
none of them is viewed as noise. The additional condition
that the points of D2 must lie to the right of the vertical line

101

m1 m2

m

z

m
s2

s2
s1

z

s2 s2

z

Figure 4: A function f : [0, 1]2 → R with unstable basins of attraction. The three peaks m,m1,m2 have respective

prominences f(m)− f(s2), f(m1)− f(s1), and +∞. When τ > f(m)− f(s2), the ascending region A(m) is merged into the

basin of attraction Bτ (m2) at the value α = f(s2). However, since f(s2)− f(s1) can be made arbitrarily small compared

to f(m1)− f(m), arbitrarily small perturbations of f compared to the prominence gap f(m1)− f(m)+ f(s2)− f(s1) merge

A(m) into Bτ (m1) instead, thus making A(m) an unstable part of Bτ (m2). In the discrete setting, where the square

[0, 1]2 is replaced by a point cloud, different samplings of the square or different values of parameter δ lead to different

merges of the cluster associated with m. This erratic behavior of the algorithm only stops when δ become small enough

compared to the (arbitrarily small) quantity f(s2)− f(s1).

x = d2 is purely technical and stems from the fact that only
some superlevel-set of the density f can be densely sampled
by the data points, not the whole manifold X. Our first
result relates the number of clusters computed by the algo-
rithm to the number of prominent peaks of f . Using the
stability of persistence diagrams [4] to relate the diagram of
f to the diagram output by step 2 of the algorithm, we can
prove that the regions D1 and D2 remain disjoint under per-
turbations caused by our approximation, and can therefore
be separated using any value within a certain range for the
thresholding parameter τ . With such values of parameter
τ as input, the algorithm computes the correct number of
clusters with high probability:

Result 1 (Theorem 4.8 in the full version [7]).
If D0f is (d1, d2)-separated and if the Rips parameter δ > 0
is smaller than a fraction of d2 − d1 and of the convexity
radius of X, then there is a range [d1 + O(δ), d2 − O(δ)] of
values of the thresholding parameter τ such that the number
of clusters computed by the algorithm is equal to the number
of peaks of f of prominence at least τ with probability at least
1− e−Ω(n), where n is the number of data points.

Explicit bounds are given in the full statement of the theo-
rem. The big-O notation hides some factors depending on
the Lipschitz constant c of f , while the big-Ω notation hides
some factors depending on c, δ, and certain geometric quan-
tities of the manifold X. As can be seen from the statement,
the larger the prominence gap d2 − d1, the larger the inter-
val of admissible values for τ , and of course the more easily
this interval can be detected. In the meantime, the smaller
δ, the larger the interval, but also the more points need to
be sampled, simply because a minimum point density is re-
quired for the connectivity of the δ-Rips graph to reflect the
one of some superlevel-set of the density f .

Another question is how well the output of the algorithm
approximates the basins of attraction of the prominent peaks
over the point cloud, assuming that f is of Morse type. In
full generality, this is a hopeless question since the basins
of attaction are not stable even in the smooth case. There
are indeed many examples of very close functions having

very different basins of attraction, and clearly the algorithm
cannot provably-well approximate the unstable parts of the
basins. An illustrative example is given in Figure 4. Yet, we
can ensure that the output of the algorithm approximates
some stable parts of the basins:

Result 2 (Theorem 4.9 in the full version [7]).
Under the same hypotheses as in Result 1, it holds with prob-
ability at least 1−e−Ω(n) that for every point p ∈ D2 the algo-
rithm outputs a cluster C such that C∩Fα = Bτ (mp)∩P∩Fα
for all values α ∈ [ατ (mp) + d1 + O(δ), f(mp)), where mp

is the peak of f corresponding to point p, where Bτ (mp) de-
notes the basin of attraction of mp in the underlying man-
ifold X, and where ατ (mp) is the first value of α at which
Bτ (mp) gets connected to the basin of attraction of another
peak of f of prominence at least τ in the superlevel-set Fα.

In plain words, cluster C is the trace of the basin of attrac-
tion Bτ (mp) over the point cloud P , until (approximately)
the value ατ (mp) at which Bτ (mp) meets the basin of an-
other τ -prominent peak of f . Beyond that value, the cluster
may start diverging from the basin, which itself may start
being unstable, as illustrated in Figure 4. We show in the full
version of the paper (Eq. 7 in [7]) that ατ (mp) ≤ f(mp)−d2,
so the length of the interval of values of α for which C is the
trace of Bτ (mp) over P is at least d2 − d1 −O(δ).

Our proof of Result 2 also shows an important fact, namely:
that each basin of attraction Bτ (mp) is stable under small
perturbations of the function f , at least between values
f(mp) and ατ (mp) + d1 + O(δ). This fact opens the door
to a more statistical approach to clustering: since we know
the top parts of the basins (and therefore of the clusters
computed by the algorithm) are stable under small pertur-
bations of the function, we can conduct multiple runs of the
algorithm with random perturbations of the function, and
then find correspondences between the outputs of different
runs. Each point can then be assigned a quantitative mea-
sure of its classification stability over the runs.

Note finally that the probabilistic nature of our theoretical
results does not stem from the algorithm itself, which is
deterministic, but from the fact that the input data set must

102

0.5 1 1.5 2
x 10

-3

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x 10 -3

-∞

(a) (b)

0.04 0.06 0.08 0.1 0.12 0.14 0.16

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(c) (d)

Figure 5: Left: the spirals data set from Figure 2, processed using a smaller Rips parameter: (a) the persistence

diagram; (b) the final clustering with late appearing connected components filtered out. Right: the same setting with

100k input points instead of 10k, processed using the Delaunay graph: (c) persistence diagram; (d) final clustering.

0.5 1 1.5 2
x 10

-3

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x 10 -3

-∞

(a)

0.5 1 1.5 2 2.5

x 10
-3

0.5

1

1.5

2

2.5

x 10-3

(b) (c)

1 2 3 4 5 6 7 8 9 10
0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

(d)

Figure 6: Left: PDs obtained on the spirals data set from Figure 2 with 10k input points, processed using (a) the k-nn

graph with k = 35 and (b) the Delaunay graph — the resulting clusterings are visually indistinguishable from 2(d).

Right: Spectral clustering on the same data set: (c) the obtained clustering, and (d) a plot of the first 10 eigenvalues.

form a dense sampling of some superlevel-set of f for the
algorithm to produce a faithful approximation of D0f . This
event can only occur with some probability since the data
points are sampled at random from f .

5. APPLICATIONS
We focused on two types of inputs: (1.) structured syn-

thetic data sets in R2 and R3, where direct data inspec-
tion allowed us to check our results visually; (2.) simulated
alanine-dipeptide protein conformations in R21, where the
knowledge of the intrinsic parameters of the simulation al-
lowed us to check our results a posteriori. In our experi-
ments we used the two estimators mentioned in Section 3:
truncated Gaussian kernel and distance to a measure. Our
implementation was done in C++, and it was run on a PC
with 8 CPU cores running at 2.4 GHz and 8 GB of RAM3.

Synthetic Data. Our first data set consists of 10k points
sampled from two spirals in the unit square, shown in Fig-
ure 2 (a). Using a δ-Rips graph, with δ = 0.04, and the in-
verse of a distance to a measure as our density estimator, we
obtain the PD in Figure 2(c). Choosing τ by the gap heuris-

3
Each run used only one core and a fraction of the available memory.

tic we obtain the clustering shown in Figure 2(d). A smaller
Rips parameter, δ = 0.02, gives many infinitely persistent
components (Figure 5(a)), with all except one appearing late
in the PD (near the lower left-hand corner). Components in
this part of the PD correspond to low peaks which cannot
be distinguished from noise. Ignoring these clusters removes
much of the background noise (Figure 5(b)).

We also experimented with the k-nn graph (taking k = 35)
and the Delaunay graph. The resulting PDs are shown in
Figures 6(a) and 6(b) respectively. Although not identical,
they share the same overall structure with 2 prominent clus-
ters. The resulting clusterings are virtually identical to Fig-
ure 2(d), the most notable difference being that there are no
late-appearing independent connected components because
the Delaunay graph is always connected and the k-nn graph
turned out to be connected in this case.

Figures 5(c) and 5(d) illustrate the scalability of our ap-
proach by showing the result obtained on the spirals data set
with 100k samples. Computation using the Delaunay graph
took less than a minute. The PD is much better separated
than in the previous cases because the approximation of the
PD of the underlying density provably improves with the
number of samples, as stated in our theoretical results.

For comparison, we ran spectral clustering [8] on the spi-

103

(a) (b)

Figure 7: (a) The rings data set with the estimated density function. (b) The result obtained using spectral clustering.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

-∞

(a)
0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-∞

(b)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8-∞

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

(c) (d)

Figure 8: Outputs of ToMATo on the rings data set: the obtained PD with (a) δ-Rips graph, (b) k-nn graph, and

(c) Delaunay graph. (d) Clustering obtained with the δ-Rips graph.

rals data set with 10k input points, using the k-nn graph.
The result, shown in Figures 6(c) and 6(d), was consistent
across choices of input parameters. We were unable to run
the code on δ-Rips graphs or on the data set with 100k points
because of numerical issues in the eigenvalues computation.

We considered a second synthetic example, made of four
noisy interlocked rings in R3 with uniform background noise
added (Figure 7(a)). Spectral clustering again failed on this
data set (Figure 7(b)), mainly due to the effect of the back-
ground noise on the k-means procedure in eigenspace. It did
obtain correct clusters with much of the background noise
removed, but this required significant tweaking of the num-
ber of neighbors: too many resulted in bad clustering and
too few resulted in numerical instability in the computation.
For comparison, Figure 8 shows the outputs of ToMATo.

Alanine-dipeptide conformations. Next we cluster con-
formations of the alanine-dipeptide molecule. Our data con-
sists of short trajectories of conformations generated by atom-
istic simulations of this small protein [10]. Accurate simu-
lation by molecular dynamics must be done at the atomic
scale, generally limiting the length of simulations to picosec-
onds because of the small time steps needed to integrate stiff
bond length and angle potentials. Biologically interesting
dynamics, however, often occur on the scale of milliseconds.
One solution to this issue is to generate a coarser model us-
ing metastable states [19]. These are conformational clusters
between which transitions are infrequent and independent.

Such coarser representations are tractable using Markovian
models [9, 10, 11] while still allowing for useful simulations.
A key problem is the discovery of these metastable states.

The alanine-dipeptide was chosen as example because its
dynamics are relatively well-understood: it is known that
there are only two relevant degrees of freedom, and these
are known a priori. This makes it possible to visualize the
clustering results by projecting the points onto these coor-
dinates which are referred to as φ and ψ (Ramachandran
plots). In previous work [10], clustering was done manually
into 6 clusters. Subsequent work [9] tried to automatically
recover these 6 clusters, as we did using our method.

Our input consisted of 960 trajectories, each one made
of 200 protein conformations, each conformation being rep-
resented as a 21-dimensional vector with 3 coordinates per
atom of the protein. For our experiments we took the tra-
jectories and treated the conformations as 192,000 indepen-
dent samples in R21. The metric used on this point cloud was
root-mean-squared deviation (RMSD) after the best possible
rigid matching computed using the Theobald method [25].
The RMSD distance matrix was the only input to our clus-
tering scheme. The output is shown in Figure 9.

It appears from the persistence diagram that there could
be anywhere from 4 to 7 clusters. The first 4 clusters are
much more prominent than the following 3 clusters. Since
there is clearly a multiscale behavior, we plot the PD on
a log-log scale. From this perspective, the first 4 clusters
are still prominent but relative to their height the 5th and
6th clusters are prominent as well. While the 7th cluster is

104

(a)
1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

-∞
(b) (c)

Figure 9: Biological data set: (a) input point cloud, projected down to the (φ, ψ) domain for visualization purposes;

(b) output PD represented on a log-log scale; (c) output clustering with 7 clusters.

1 2 3 4 5 6 7 80

1

2

3

4

5

6

7

Number of clusters

M
et
as
ta
b
ili
ty

(a)

(Unnormalized) Metastability
Rank Prominence
1 ∞ 0.99982
2 3827 1.91865
3 1334 2.8813
4 557 3.76217
5 85 4.73838
6 32 5.65553
7 26 6.50757
8 7.2 6.8193
9 3.0 –
10 2.2 –

(b)

Figure 10: Quantitative evaluation of the quality of the output of ToMATo on the biological data set: (a) metastability

of the obtained clustering versus the number of clusters; (b) corresponding intervals sorted by decreasing prominence.

not as prominent, it is still more prominent than the follow-
ing clusters, suggesting that 7 is also a reasonable number of
clusters. To confirm this insight we came back to the original
problem of finding clusters that maximize the metastability
(as defined in [19]): we computed the metastabilities of all
our candidate clusterings, and we reported them in the table
and plot of Figure 10. These results show that the metasta-
bility increases linearly with the number of clusters, up to 7
clusters, after which it starts leveling off. So, choosing 4, 5, 6
or 7 clusters should not affect the metastablity significantly,
thus confirming the observations made from the PD. This is
an example of a scenario where the insights into the number
of clusters provided by the PD can be validated by exploiting
further application-specific information on the data.

Computing the input RMSD distance matrix took the
most time: all pairwise distances between conformations
were estimated, which took about a day of computation. In
order to save space, for each conformation we only recorded
the distances to its 15,000 closest conformations in the ma-
trix. On this input, ToMATo only took 10 minutes to run.
Meanwhile, the amount of memory used remained approxi-
mately constant, which enabled us to make several runs in
parallel to find a suitable Rips parameter δ.

Other types of data. In the full version of the paper [7] we
experiment with a third type of data: bitmap images, which
we segment using our clustering scheme in color space. This
kind of data typically produces PDs without any significant
prominence gaps. The correct number of clusters is then ill-
defined, which is consistent with the widely accepted idea
that image segmentation is an ill-posed problem. Yet, the
PDs still provide a precise understanding of the relation-
ship between the choice of parameter τ and the number of
obtained clusters on each image.

6. CONCLUSION
Our algorithm combines a classical mode-seeking stage

and a novel persistence-based cluster merging stage. It is
straightforward to implement and provably robust to noise.
Rather than rely on heuristics, it returns structural infor-
mation about the modes of the density function in the form
of a persistence diagram, which allows the user to see the
relationship between the choice of parameter values and the
number of obtained clusters. In many cases this diagram
provides insights into the correct number of clusters, which
can be automatically inferred by further processing. Our
method can work with any density estimator and any met-
ric, including Euclidean, geodesic, and diffusion distances.

105

The point is that the persistence diagram only displays the
information that is present in the density function and un-
derlying space (known through the input distance matrix).

Our theoretical developments provide an understanding
of when the data has a clear number of clusters, and which
parts of the clusters are stable under small perturbations
of the input. This opens up the possibility of doing soft-
clustering, where each point is assigned to a cluster with
some probability. Finally we note that, because we use a
topological framework, additional features can be extracted
from the data through higher-dimensional persistence dia-
grams [6], such as the circular structure of the rings in the
synthetic data set of Figure 7(a) — although it is not yet
clear how this type of information can be exploited.

Acknowledgements
This work was carried out within the associated teams TGDA
and CoMeT. It was suported by ANR grant GIGA, NSF
grants FODAVA 0808515, DMS 0900700, and CCF 1011228,
by a Stanford-France grant, and by a gift from Google, Inc.

7. REFERENCES
[1] G. Carlsson. Topology and data. Bulletin of the

American Mathematical Society, 46(2):255–308, 2009.

[2] G. Carlsson, T. Ishkhanov, V. Silva, and
A. Zomorodian. On the local behavior of spaces of
natural images. Int. J. Computer Vision, 76(1):1–12,
2008.

[3] G. Carlsson, A. Zomorodian, A. Collins, and
L. Guibas. Persistence barcodes for shapes. In Proc.
Symp. Geom. Process., pages 127–138, 2004.

[4] F. Chazal, D. Cohen-Steiner, L. J. Guibas, M. Glisse,
and S. Y. Oudot. Proximity of persistence modules
and their diagrams. In Proc. 25th ACM Sympos.
Comput. Geom., pages 237–246, 2009.

[5] F. Chazal, D. Cohen-Steiner, and Q. Merigot.
Geometric inference for measures based on distance
functions. Technical report, INRIA, May 2009.

[6] F. Chazal, L. J. Guibas, S. Y. Oudot, and P. Skraba.
Analysis of scalar fields over point cloud data. In Proc.
20th ACM-SIAM Sympos. Discrete Algorithms, pages
1021–1030, 2009.

[7] F. Chazal, L. J. Guibas, S. Y. Oudot, and P. Skraba.
Persistence-based clustering in Riemannian manifolds.
Research Report 6968, INRIA, June 2009.

[8] W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, and E. Y.
Chang. PSC: Parallel Spectral Clustering, 2008.
http://www.cs.ucsb.edu/~wychen/sc.

[9] J. D. Chodera, N. Singhal, V. S. Pande, K. A. Dill,
and W. C. Swope. Automatic discovery of metastable
states for the construction of markov models of
macromolecular conformational dynamics. The
Journal of Chemical Physics, 126(15):155101, 2007.

[10] J. D. Chodera, W. C. Swope, J. W. Pitera, and K. A.
Dill. Long-time protein folding dynamics from
short-time molecular dynamics simulations. Multiscale
Modeling & Simulation, 5(4):1214–1226, 2006.

[11] J. D. Chodera, W. C. Swope, J. W. Pitera, C. Seok,
and K. A. Dill. Use of the weighted histogram analysis
method for the analysis of simulated and parallel
tempering simulations. Journal of Chemical Theory
and Computation, 3(1):26–41, 2007.

[12] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer.
Stability of persistence diagrams. Discrete Comput.
Geom., 37(1):103–120, 2007.

[13] D. Comaniciu and P. Meer. Mean shift: A robust
approach toward feature space analysis. IEEE Trans.
on Pattern Analysis and Machine Intelligence,
24(5):603–619, May 2002.

[14] H. Edelsbrunner, D. Letscher, and A. Zomorodian.
Topological persistence and simplification. Discrete
Comput. Geom., 28:511–533, 2002.

[15] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In Proc. 2nd
Internat. Conf. on Knowledge Discovery and Data
Mining (KDD-96), pages 226–231. AAAI Press, 1996.

[16] R. Ghrist. Barcodes: the persistent topology of data.
Amer. Math. Soc. Current Events Bulletin,
45(1):61–75, January 2007.

[17] J. Hartigan. Clustering Algorithms. Wiley, 1975.

[18] T. Hastie, R. Tibshirani, and J. H. Friedman. The
Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer Series in Statistics.
Springer, 2009. Second edition.

[19] W. Huisinga and B. Schmidt. Advances in algorithms
for macromolecular simulation, chapter metastability
and dominant eigenvalues of transfer operators.
Lecture Notes in Computational Science and
Engineering. Springer, 2005.

[20] W. L. Koontz, P. M. Narendra, and K. Fukunaga. A
graph-theoretic approach to nonparametric cluster
analysis. IEEE Trans. on Computers, 24:936–944,
September 1976.

[21] S. P. Lloyd. Least squares quantization in pcm. IEEE
Trans. on Information Theory, 28(2):129–136, 1982.

[22] S. Paris and F. Durand. A topological approach to
hierarchical segmentation using Mean Shift. In Proc.
IEEE conf. on Computer Vision and Pattern
Recognition, 2007.

[23] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu.
Density-based clustering in spatial databases: The
algorithm GDBSCAN and its applications. Data
Mining and Knowledge Discovery, 2(2):169–194, 1998.

[24] Y. A. Sheikh, E. Khan, and T. Kanade. Mode-seeking
by medoidshifts. In Proc. 11th IEEE Internat. Conf.
on Computer Vision (ICCV 2007), October 2007.

[25] D. L. Theobald. Rapid calculation of rmsds using a
quaternion-based characteristic polynomial. Acta
Crystallographica Section A: Foundations of
Crystallography, 61(4):478–480, 2005.

[26] G. T. Toussaint. The relative neighbourhood graph of
a finite planar set. Pattern Recognition, 12:261–268,
1980.

[27] A. Vedaldi and S. Soatto. Quick shift and kernel
methods for mode seeking. In Proc. European Conf.
on Computer Vision (ECCV), 2008.

[28] U. von Luxburg. A tutorial on spectral clustering.
Statistics and Computing, 17(4):395–416, 2007.

[29] A. Zomorodian and G. Carlsson. Computing
persistent homology. Discrete Comput. Geom.,
33(2):249–274, 2005.

106

