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The Conformal Alpha Shape Filtration

Abstract Conformal alpha shapes are a new filtration
of the Delaunay triangulation of a finite set of points in
R?. In contrast to (ordinary) alpha shapes the new filtra-
tion is parameterized by a local scale parameter instead
of the global scale parameter in alpha shapes. The lo-
cal scale parameter conforms to the local geometry and
is motivated from applications and previous algorithms
in surface reconstruction. We show how conformal alpha
shapes can be used for surface reconstruction of non-
uniformly sampled surfaces, which is not possible with
alpha shapes.
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1 Introduction

The method of alpha shapes was originally motivated
for the study of points in the plane [9]. This method was
later generalized to higher dimensional points [10]. Alpha
shapes define a family of simplicial complexes parame-
terized by a € R. These a-complexes have vertices in the
point set and simplices from the points’ Delaunay trian-
gulation. Consequently, alpha complexes are efficiently
computable. Later the definition of alpha shapes was

modified slightly and extended also to weighted points [5].

With the modified definition the family of alpha shapes
implies a filtration, a partial ordering of the simplices of
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the Delaunay triangulation, that may be used for multi-
scale topological analysis of the point cloud. It is this
rich structure that makes alpha shapes popular in many
applications ranging from bio-geometric modeling [§],
where atoms are modeled as weighted points, to surface
reconstruction, where the surface of some solid is sam-
pled.

Alpha shapes have influenced the development of prov-
able surface reconstruction algorithms in computational
geometry. By “provable”, we mean geometric and topo-
logical guarantees that are based on assumptions on the
sampling. We distinguish two major lines of Delaunay-
based surface reconstruction algorithms. The first line
considers filtering the Delaunay triangulation of a point
cloud. Alpha shapes is one such filter as each a-complex
specifies a subset of the simplices. Beginning with the
seminal work of Amenta and Bern, there have been pro-
posed a flurry of such algorithms, the most significant
of which are the Crust and the Cocone algorithms [1,2].
The second line of research takes the fundamentally dif-
ferent approach of examining the critical points of a dis-
crete or continuous flow based on the sample points [7,
11]. These critical points are related to the critical a-
complex simplices: the simplices at which the complex
undergoes a topological change.

Although alpha shapes have inspired fruitful research
on surface reconstruction, the method’s utility is limited.
First, alpha shapes define a family of complexes, but it is
not clear which a-complex is suitable for reconstruction.
Second, the chosen « fixes a global scale, so the method
can be successful only for uniform sampling. The algo-
rithms that have been successful in practice all use local
filters to cope with non-uniform sampling.

In this paper, we discuss conformal alpha shapes, which
use a local scale parameter & instead of the global scale
parameter av. We show that conformal alpha shapes share
many properties with ordinary alpha shapes, but have
additional properties that are useful for surface recon-
struction. In the rest of the paper, we study the ge-
ometric and topological consequences of localizing the
scale parameter within the framework of surface recon-
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struction. We begin by defining conformal alpha shapes
in Section 2. In section 3 we consider topological reper-
cussions when moving from global to a conformal scale
as done with conformal alpha shapes. In Section 4, we
discuss how conformal alpha shapes can be utilized for
surface reconstruction. We prove that conformal alpha
shapes at a well defined scale are essentially equivalent
to the Crust and Cocone surface reconstruction algo-
rithms. Finally, we demonstrate the difference between
ordinary and conformal alpha shapes with some example
that we obtained from our implementation of the confor-
mal alpha shape filtration.
A preliminary version of this paper appeared in [3].

2 Definitions

In this section, we begin by briefly describing the back-
ground necessary for our work, including the definition
of alpha complexes as a family of sub-complexes of the
Delaunay triangulation. We then introduce conformal al-
pha shapes and prove that they also provide a family of
sub-complexes as the prior method.

2.1 Preliminaries

A point set P C R? is in general position, if there are no
k < d+ 1 points on a common (k — 2)-flat or k < d+ 2
points on a common (k — 3)-sphere. In the following,
we always assume general position as this assumption
simplifies the exposition and is justified in practice [6].
A Ek-simplex o is the convex hull of k£ + 1 points S C P.
A simplex 7 defined by T' C S is a face of o and o is
a co-face of 7. A simplicial complexr K is a finite set of
simplices that meet along faces, all of which are in K.
A filtration of a complex K is a nested subsequence of
complexes ) = K°CK'C...C K™ =K.

The Voronoi diagram V(P) of P is a cell decompo-
sition of R? into convex polyhedra. Every Voronoi cell
V), corresponds to exactly one sample point p € P and
contains all points of R? closest to p. That is,

Vo ={z eR?| |z —p| < |z — ql|,¥q € P}.

Closed facets shared by d — k4 1 Voronoi cells are called
Voronoi k-facets.

The Delaunay triangulation D(P) of P is the dual of
the Voronoi diagram. Whenever a collection Vj,,, ..., V),
of Voronoi cells have a non-empty intersection, the sim-
plex defined on the corresponding points pq, ..., px is in
D(P). The Delaunay triangulation is a simplicial com-
plex that decomposes the convex hull of the points in P.
In the rest of the paper, all simplices will be Delaunay.
At times, we will restate this to remind the reader.

2.2 Alpha Shapes

For a given value of a € [0,00), alpha balls are balls
of radius « around the points in P. The corresponding
alpha complex of P is the Delaunay triangulation of P
restricted to the alpha balls. A simplex belongs to the
alpha complex, if the Voronoi cells of its vertices have
a common non-empty intersection with the set of alpha
balls. Note that at o = 0, the alpha complex consists
just of the set P, and for sufficiently large «, the alpha
complex is the Delaunay triangulation D(P) of P. For
any simplex o € D(P), let a(c) be the « value at which
o appears for the first time in the alpha complex. The
alpha shape filtration is the sequence of alpha complexes
obtained from growing a from zero to infinity. We show a
few complexes from the alpha shape filtration for a small
set of points in Figure 6.

2.3 Conformal Alpha Shapes

For p € P, let D, C D(P) denote the simplices incident
on p. The alpha values determine a partial ordering on
D,,, one which we make into a total ordering by sorting
according to dimension and breaking the remaining ties
arbitrarily. We may then view D, as a sequence of sim-
plices with non-decreasing alpha values azlj << ap.
Note that a,, = 0 since the first simplex in D, is the
point p which appears at a = 0. Let o, < a;‘ be two
o values in {ozfg}i. We will specify how to choose these
values later in the paper. We now re-scale a; using these
local values:

_ %y

i
P +
Qp

&

We call &} the internal alpha scale. This scale is invari-
ant to Euclidean transformations and scaling, so it is
conformal.

As in alpha shapes, we consider a restricted Delaunay
triangulation for each value & € (—o0, 00). However, the
restriction is not to the set of alpha balls, but to a new set
of balls whose radii are determined from their internal
alpha scales. We put a ball of radius «, at each point
p € P, where

() = of &+«
and a ball of negative radius is defined to be empty. Let
CS‘ be the intersection of the Voronoi cell V}, and the ball
at p and let C® be the interior of Upeng‘. The conformal
alpha shape (complex) is the Delaunay triangulation of
P restricted to C.

As in the definition of a(o), let &(o) be the & value
at which o appears for the first time in the conformal

alpha shape. We may compute the &(o) from the value
of a(o). Let p1,...,px € P be the vertices of o. Then,

a(0) = max inf{a | ay, (@) = a(o)}. (1)
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Lemma 1 The sequence of conformal alpha shapes ob-
tained by growing & from zero to infinity is a filtration
of the Delaunay triangulation D(P) of P.

Proof We need to show the following: (1) If & < &', the
simplices in the conformal &-shape are also in the confor-
mal &'-shape. (2) For sufficiently large &, the conformal
G-shape is D(P). (3) A simplex o € D(P) is earlier than
all its co-faces 7 in the filtration, that is, &(o) < &(7).
Property (1) holds as C% C C% for & < &'. Property
(2) holds as C covers R? in the limit as & approaches
infinity. For property (3), let S = {p;}; be the vertices of
0. The co-face 7 also has S as vertices, along with some
additional vertices. There exists a point p; € S such that

ap, (&(0)) = afo) < a(7) < ay, (4(7)),

which implies &(0) < &(7) as «y, is a monotonically
increasing function.

3 Topology

In this section, we study both the ordinary and the con-
formal alpha shape filtrations. A filtration allows us to
track topological changes at different scales. Here, the
scale parameter is either a or &. The topology of the
respective alpha shapes changes only at a finite num-
ber of critical a values as both have a finite number of
simplices. We characterize these values and uncover the
relationship between the critical values of conformal al-
pha shapes and those of the ordinary alpha shapes.

A simplex o is a-late, if a(p) < a(o) for all faces p,
and a-early, if a(c) < «(r) for all co-faces 7. If o is both
a-late and a-early, it is a-critical. We similarly have é&-
late, G-early, and &-critical. We define every vertex to
be a- and a-late and every d-dimensional simplex to be
a- and G-early. Note that by the filtration property we
always have a(p) < a(o) < a(7) and &(p) < a(o) <
a(1) for faces p and co-faces 7 of simplex o.

The a-critical simplices have a simple characteriza-
tion.

Lemma 2 ([7,11]) The a-critical Delaunay simplices
are exactly those that have a non-empty intersection with
their dual Voronoi cells. This intersection is a unique
point, namely the center of the smallest enclosing ball of
the simplez.

A similar characterization does not exist for @-critical
simplices but the following is true for both filtrations.

Lemma 3 The homotopy type of the alpha shape (or-
dinary or conformal) of a finite point set in general po-
sition changes only when a critical simplex enters the
shape.

Proof Clearly, the homotopy type of an alpha shape (or-
dinary or conformal) changes when a critical simplex ap-
pears. If a k-dimensional critical simplex appears, either
the (k — 1)-th Betti number of the alpha shape decreases
by 1, or the kth Betti number increases by 1 in simplicial
homology. At the appearance of 0-dimensional simplices
(vertices), the 0-th Betti number always increases, and
at the appearance of critical d-dimensional simplices, the
(d — 1)-th Betti number always decreases.

In the following, we restrict our exposition to &(-),
but all arguments also hold for a(-). We need to show
that the homotopy type of the alpha shape does not
change for non-critical simplices. If a k-dimensional sim-
plex o is non-critical, then either o has a (k—1)-dimensio-
nal face p with &(p) = é&(o) or o is the face of a (k+1)-
dimensional simplex with &(o) = &(7). Note that if
a(p) = é(o), then p is non-critical and if a(o) = G&(r),
then 7 is non-critical.

Let o be the highest dimensional simplex involved in
a non-critical alpha event, that is, the highest-dimensional
simplex among those that appear at the same & value.
The dimension k of ¢ is at least two as a non-critical
event may not involve just vertices and edges: if an edge
is early, it has to be critical as by definition it is al-
ways late. By our assumption, ¢ cannot be early, so it
must have at least one (k — 1)-dimensional face p with
a(p) = a(o). If we can show that there is exactly one
such face p, then we are done as there is a straight-
forward deformation retraction of o to do \ p and the
homotopy type of the alpha shape does not change.

We need to show that there is only one (k — 1)-
dimensional face p of 0 with &(p) = &(0). Let p1, ..., Pr+1
€ P be the vertices of 0. The (k—1)-dimensional faces p;
of o are the convex hull of the vertex sets {p1, ..., pr+1}\
{pi} for 1 < i < k. Let V be the Voronoi facet dual to
o and V; be the Voronoi facet dual to p;. As o is not
a-late, there is a V; with

min{a | C*NV; # 0} = min{a | C¥NV # 0},

as &(p;) = &(o). Now assume that there is another face
pj 7 pi with the same property

min{& | C*NV; # 0} = min{a | CYNV # 0}.
Then, we have
Ny, =0 Ny =0 n.

The intersection C%(?) NV must be a single point since
&(o) is the smallest & such that C* NV # (). Let = be
the intersection point. Since &(p;) = &(o), there must
exist a vertex ¢ € p; with argmin, .y, [[¢ — y|| = =. But
any point y € V; has the same distance to all vertices of
pi- S0, for all vertices q € p;,

argmin [|¢ — y|| = =.
yeV;
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Similarly, for all vertices r € pj,
argmin |7 — y|| = z.
yevj
Since o is at least two-dimensional, i.e., kK > 2, p; and p;
must have at least one vertex p € P in common. For this
vertex p,
argmin [|p — y|| = argmin [|p — y|| =,
yeV; yeV;
and z is the center of the circumcircle of the triangle
pip;Dp:
lpi — 2 = llp; — [l = llp — =|.
By construction, the line through p and p; is orthogonal
to the affine hull of V; as the line segment pp; is an edge
of p;. Similarly, the line through p and p; is orthogonal
to the affine hull of V. But this is impossible since the

Voronoi cell V,, is convex and we assumed the point set
P is in general position, as shown in Figure 1. Therefore

P

Fig. 1 The only position of p; and p; is degenerate, taking
the convexity of V, into account.

p; = pj, arriving at a contradiction. This completes the
proof.

The following lemma implies that we get two permu-
tations of the a-critical simplices according to the o and
& values, respectively. The difference of these permuta-
tions is a measure for the non-uniformity present in the
point set P.

Lemma 4 FEvery a-critical Delaunay simplex o s also
a-critical.

Proof Let p1,...,px € P be the vertices of . We begin
by showing that if ¢ is «a-late, then it is also a-late. If
o is a-late, a(p;) < a(o) for all its (k — 2)-dimensional
faces p;, 1 <1 < k. So,
A(pi) = inf{@ | oy, (&) > alp;
Glps) = max inf{a | oy, (8) > a(p))}
J#i
inf{& (&) >
< max inf{a | ay, (@) > a(o)}
3£
inf{a (&) >
max int{a | ay, (@) > a(0))

IN

= a(o),

for 1 < i < k. That is, o is also a-late. We now show
the reverse statement: if o is a-early, then it is also &-
early. Let 7 be any k-dimensional co-face of o and let
Pr+1 be be the additional vertex of 7. Since o is a-early,
a(o) < a(r). We have
g = i A (&) >
(o) = max inf{a | ay, (@) = a(0)}
max inf{@ | a, (@) > a(r)}
< inf{a (&) >
< Jnax inf{d ] ap, () 2 a(r)}

= &(7).

A\
%

Therefore, o is also G-early. Since it was a-late from be-
fore, o is G-critical.

Note that the reverse of Lemma 4 is not true in gen-
eral. There can be more a-critical simplices then there
are a-critical ones, as demonstrated in Figure 2.

Fig. 2 The reverse of Lemma 4 is not always true. Triangle
pqr is &-critical but not a-critical, if we assume that the poles
p* and r* are somewhere below (not shown in the figure) and
the pole ¢* is the circumcenter ¢ of the triangle pgr.

4 Surface Reconstruction

We wish to use conformal alpha shapes to reconstruct a
smooth surface S in R? from a finite sampling P. In this
section, we describe a geometrical approach very much
in line with the philosophy behind the Crust and Co-
cone algorithms. We begin with the common geometric
definitions and then examine the geometry of the recon-
struction.

4.1 Preliminaries

Suppose we are given a smooth surface S embedded in
R3. An open ball is empty, if it does not contain any point
from S. An empty ball is mazimal, if it is not contained
in a larger empty ball. The medial axis M(S) of S is
the union of the centers of all maximal open balls. The
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distance of a point = € S to the medial axis M (.S) is its
local feature size. We define f: S — R,

fz) =

inf

T — )
ok lz =yl

to be the function that assigns the local feature size to
a point.

An e-sample of S is a subset P C S such that every
point z € S has a point p € P at distance at most
ef(z). An e-sampling is wuniform, if every point has a
point in P at distance at most inf,cg f(z). Although
the sampling density may vary non-uniformly across S,
the density is bounded below by the smallest feature size.
For sufficiently small €, every e-sample is uniform but it
depends on S what sufficiently small means.

Let V, be the Voronoi cell of a sample point p € P.
If V,, is bounded, we let u be the vector from p to the
Voronoi vertex in V,, that has the largest distance to p.
Otherwise, V,, is unbounded and we let u be a vector in
the average direction of all unbounded Voronoi edges in-
cident to V,,. The second pole of V,, is the Voronoi vertex
p* in V, with the largest distance to p such that the vec-
tor u and the vector from p to p* make an angle larger
than /2 [1]. For brevity we want to refer to the second
pole in the following simply as pole.

4.2 Theoretical Guarantees

We begin by specifying the internal alpha scale param-
eters a;, and a;‘ for a sample point p € P. Let o, =
a; = 0. Let a;‘ be the o value at which the simplex dual
to the pole p* appears in the ordinary alpha shape, that
is, i = [|[p — p*||. Note that with these values for the
parameters, the points in P all appear at @ = 0. This
implies that all the simplices appear at non-negative &
values.

The restricted Voronoi diagram Vs(P) is the Voronoi
diagram V(P) intersected with the surface S. The re-
stricted Delaunay triangulation Dg(P) is its dual and is
necessarily a subset of the Delaunay triangulation. In the
rest of the section, we use n = ¢/(1 — ¢€) for notational
brevity. We begin with the following result.

Lemma 5 Let P be an e-sample of a smooth surface
S. Then, all conformal alpha shapes for & > n contain

Ds(P).

Proof For p € P, let a; be the largest o value at which
a simplex from Dg(P) incident to p appears in the ordi-
nary alpha shape. By Lemma 6 we have that

ol < nf(p).

We also have o, > f(p) by our choice of ;. Therefore,

~i
Ap

This implies the statement of the lemma.

Essentially, Lemma 5 asserts that the alpha shape
for a large enough & contains certain simplices, i.e., the
restricted ones, of the Delaunay triangulation of a sur-
face sampling. In the following we want to show that
the conformal alpha shape does not contain certain sim-
plices, namely, simplices that are too large. For the proof
we need an auxiliary lemma.

Lemma 6 Let P be an e-sample of a smooth surface S
and let p € P be a sample point. Then,

(1) For any point x in the cell V, in Vs(P), ||p — z|| <

nf(p)-
(2) For any point x in the intersection of V, with the

hyperplane containing p and orthogonal to p* — p,

nf(p)

sin (3 — 3arcsing)

[l —pll <

Proof By the e-sample condition we have

lp— x|l < ef(x)

since p is the closest sample point to x. The 1-Lipschitz
continuity of the local feature size, see [1], implies that
f(p) < f(z)/(1 — ¢). Putting both inequalities together
proves claim (1).

In [1] it is shown that for any point y € V, with
lly — p|l > pf(p) the angle between the vector y — p and
the normal of S at p is upper bounded by

arcsin(n/p) + arcsin.

Since p* € V,, and |[p* — p|| > f(p) we have that the
angle between the vector p* — p and the normal of S
at p is upper bounded by 2arcsinn and thus the angle
between the vector z — p and the normal of S at p is
lower bounded by 7 — 2arcsinn. Comparing the latter
bound to arcsin(n/p) + arcsinn and solving for p gives

n
~ sin (g -3 arcsinn) ’

which proves claim (2).

The idea behind the next lemma is that the Voronoi
cells of the sample points are long and thin and directed
almost along the normals at the sample points. There-
fore, edges that are almost tangential to the surface will
appear early in the conformal alpha shape. We say that
p,q € P are neighbors in a (conformal) alpha shape, if pg
is a Delaunay edge that is contained in the alpha shape.

Lemma 7 Let P be an e-sample of a smooth surface S.
The neighbors of p € P in a conformal alpha shape for
small values of & are at distance at most

G s z) <sin (z _?arCSinn)) f(p).
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Proof Let [ be the vector p* — p as in Figure 3 to the
left. We first want to bound the width of the smallest
cylinder with axis [ that contains the intersection of the
Voronoi cell V,, of p with the ball of radius oy, centered at
p. Let « be any point in the intersection of the boundary
of V,, and the hyperplane containing p and orthogonal
to {. Any hyperplane H supporting V,, at £ must have
p and p* on the same side. In the limiting case, p* is
contained in H and so we consider this case. Then H
contains a line I’ through p* and z. Let 3 be the acute
angle made by [ and I’ at p*, shown in Figure 3 to the
left. By Lemma 6,

|z —pl nf(p)

tanp = .
Y lp —p*ll ~ o sin (% — 3arcsinn)

The line I’ intersects the boundary of the ball of ra-
dius o, (&) centered at p in at most two points, as shown
in Figure 3 to the right. Let y be the intersection point
furthest from p*. Since we have chosen p* and H to be
the limiting case, the distance of y to [ is an upper bound
for the width w of the cylinder we are looking for. Let 3’
be the projection of y onto [. Then,

w < ||y —p*| tan 8
= (lp—p* Il + Iy’ — pll) tan 8
< (o5 4 ap(@)) tan 3.

Now let F' be the affine hull of a Voronoi facet in V), that
is intersected by Cg‘ . Again, p* must be on the same
side of F' as p. The line [ intersects F in a unique point.
Let v be the minimum angle between [ and F' at this
intersection point, as shown in Figure 4 to the right.
Then, we have

tany < *w — =
lp = p*Il = (@)

y w B
X\ |p " o?
|
B
l
I\ r
P P

Fig. 3 Bounding tan 8 and the width w of the cylinder.

T L
d
Dp ilp
w
|
Y
I I
\p* \P*

Fig. 4 Bounding tan+y and the distance d to a neighbor in
the conformal alpha shape.

The length d of the Delaunay edge dual to the Voronoi
facet corresponding to F' may be bounded by:

d < 2|lp — p*|| siny
= 204;; sin vy

< 2a; tan y

o *
———— | 2llp —p*[| tan 3
Q

2n
) <sin (g — 3arcsinn)> /)

This implies that all neighbors of p in a conformal alpha
shape are at distance at most

af +afa 21 )
af —afa sin (3 — 3arcsin) b

- G t Z) <sin (z _23narcsinn)> f(p).

This completes the proof.

Basically, Lemma 7 states that the conformal alpha
shape is contained in a thickening of the surface S where
the thickening factor with respect to the feature size de-
pends on & and 7 via

<1+6¢> 2n
1-a sin (% — 3arcsinn) '

Note that the thickening factor has two terms: a first
part that only depends on the scale parameter &, and a
second part that only depends on the sampling density
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(a)

(c)

Sa

‘

05

Fig. 5 Adapting the growth of the balls at the sample points as it is done for conformal a-shapes illustrates the superiority
of conformal a-shapes (e) over uniform a-shapes (b,c) for curve and surface reconstruction from non-uniform samples (a).
Uniform a-shapes would need uniform sampling as in (d). In (f) two scaled versions of a uniform sub-samples of the Stanford
Bunny are shown in one scene to illustrate non-uniform sampling on a global scale. An a-shape for this sample is shown in

(g) and a conformal a-shape is shown in (h).

e. If & =n and € < 0.1, then 7 < 0.112 and this factor
is less than 1. That is, the conformal alpha shape of an
e-sample with € < 0.1 does not contain any point from
the medial axis of the surface. This is true regardless of
what the surface is, provided it is smooth. This contrasts
with ordinary alpha shapes where for any € > 0, we can
give a surface such that the alpha shape contains a point
of the medial axis.

Lemma 7 provides also further insight regarding the
two permutations of the a-critical simplices according
to the a and & values, respectively. Suppose P is an &-
sample of a smooth surface S with € < 0.1. Recently, it
was shown that the intersection points of an a-critical
simplex with its dual Voronoi cell is either very close
to the surface S or very close to the medial axis M(S5),
see [4]. Therefore, we can classify an a-critical simplex as
either surface- or medial-axis-critical. By Lemma 7, we
know that in the &-permutation of a-critical simplices,
the surface-critical ones all appear before the medial-
axis-critical. Therefore, conformal alpha shapes incorpo-
rate a local filtering that will allow surface reconstruction
based on critical simplices.

The Crust and Cocone algorithms for surface recon-
struction begin by filtering a set of candidate triangles
from the Delaunay triangulation. An edge is sharp, if it
has either a single incident triangle, or if any two con-
secutive triangles incident to it form an angle more than
3m/2. In the second step, the algorithms remove all tri-
angles incident on sharp edges. Finally, the algorithms
compute a reconstruction by “walking” on either the in-
side or outside of the remaining set of candidate trian-

gles. The resulting surface is homeomorphic to the orig-
inal surface S, if P is a sufficiently dense e-sample. The
homeomorphism proof needs two properties of the set of
candidate triangles. First, it has to contain all triangles
of the restricted Delaunay triangulation Dg(P). Second,
all edges and triangles need to have a small circumradius
compared to the feature size at their vertices.

We now show that a conformal alpha shape for a suit-
able value of & may be used as the source of the candidate
triangles, still giving us the topological guarantees after
pruning and walking. Suppose we are given an e-sample
P of a smooth closed surface S with € < 0.1. To show the
homeomorphism property, we need to satisfy the two re-
quirements discussed above. By Lemma 5, we know that
the conformal alpha shape for & = = ¢/(1—¢) contains
the restricted Delaunay triangulation Dg(P). It remains
to show that all triangles in this conformal alpha shape
have a small circumradius.

Lemma 8 Let P be an e-sample of a smooth surface S.
All edges and triangles incident to p € P in a conformal
alpha shape for & < 1 have circumradius at most

(15) (Sm ( >f<p>.

Proof For edges the statement is implied by Lemma 7.
The circumradius of a Delaunay triangle is the distance d
of any of its vertices to the line through its dual Voronoi
edge. For a vertex p of a Delaunay triangle contained
in the conformal alpha shape twice this distance can be

1+aé
1-a

n
5 — Jarcsin 7])
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bounded exactly same way as in the proof Lemma 7,
where we bounded the length of the longest Delaunay
edge incident to p and contained in the conformal alpha
shape.

Therefore, we may compute a homeomorphic recon-
struction of S from the conformal alpha shape of P with
a=n.

4.3 Experimental Results

We implemented the conformal alpha shape filtration
using the C++ library CGAL. Figure 5 illustrates the
fundamental difference between a-shapes and conformal
a-shapes. The point set shown in (a) contains a scaled
version of a subset of itself. The globally uniform scale
parameter of a-shapes, shown in (b) and (c) for two dif-
ferent « values, cannot recover the structure of the un-
derlying manifold for any setting of «. Instead, a glob-
ally uniform and hence very dense sampling would be re-
quired, as shown in (d). In contrast, conformal « shapes
can correctly reconstruct the correct curve (e) since the
dual set of balls conforms to the local geometry of the
point cloud. A 3D example is shown in bottom row of
Figure 5, where (f) shows the input point set, (g) the
a-complex, and (h) the conformal o complex.

Figure 6 shows a more difficult example. This data
set is the result of curvature-adaptive surface simplifica-
tion and is clearly not an e-sampling with € < 0.1. Thus
both uniform and conformal « shapes fail to reconstruct
the surface. Since the data set is highly non-uniform, «
shapes perform poorly as expected. No single value of «
provides a suitable complex for surface reconstruction.
Conformal a-shapes behave more gracefully and provide
a much better input for surface filtering as used in the
final stage of the Crust and Cocone algorithms. Note
that the latter algorithms would also fail on this data
set. Both algorithms would provide a candidate triangle
set similar to the one obtained for & = 2.0. Obviously,
some regions of the shape are not captured adequately
by the candidate triangles. For example, the mesh-based
simplification algorithm created very few samples on the
side of the nose, since this is a relatively flat region in
the shape. However, the local feature size is very small,
as the opposing parts of the nose come close together.
As a result, the local conformal alpha ball is too small
to introduce the required simplices, resulting in holes.

Although neither ordinary nor conformal alpha shapes
succeed to reconstruct the surface it’s still instructive to
see the behavior of the complexes. In the a-filtration,
triangles at more densely sampled features like the ears
appear much earlier than triangles in other regions. For
larger alpha values details at the ear get lost since already
too many many triangles have appeared there, but at the
same time sparsely sampled features like the back of the
head have not been covered by triangles at all. This is in
contrast to the G-filtration where for all values of & all

features of the shape are covered almost uniformly with
triangles (of varying size) independent of how densely
the features are sampled. For example the ears are not
covered by large Delaunay triangles even for & = 2.0
whereas they small details of the ears are no longer vis-
ible already for a = 1.0.

5 Conclusion

In this paper, we discuss conformal alpha shapes, a vari-
ation of the method of alpha shapes, that utilizes a local
scale parameter & that is invariant to scaling and Eu-
clidean transformations. The local parameter reorders
the simplices of the alpha shapes filtration into a new fil-
tration. We show that this filtration has complexes that
contain the restricted Delaunay simplices. As such, con-
formal alpha shapes can be utilized for provable surface
reconstruction algorithms that compute candidate sets
by filtering. Within the a-filtration, the critical simplices
of the alpha shapes filtration remain critical. Moreover,
the new ordering separates the critical simplices that are
near the surface from those near the medial axis. There-
fore, conformal alpha shapes may also be used by the
second type of surface reconstruction algorithms that ex-
amine critical simplices. Conformal alpha shapes shed
new light on the relationship between the two main ap-
proaches in Delaunay-based surface reconstruction algo-
rithms.
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Fig. 6 Alpha shapes (upper half) vs. conformal alpha shapes (lower half). The top row shows the a- resp. & balls and
corresponding relative values of o and &. The bottom row shows the corresponding complex, where red color denotes
singular 2-simplices and green shows faces of 3-simplices. Vertices and edges have been omitted for visual clarity.



