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Abstract
In order for sensor network deployments to be successful,

users need to be able to derive relevant and interesting infor-
mation from sensor data. Information rich multimedia data
can provide high utility to users, but their interpretation is
hard in resource constrained domains. We note that humans
can derive information from images efficiently and propose
a multi-tier camera sensor network that combines simple in-
network data interpretation with a lightweight user recom-
mendation system. We explore ways of how to decrease
demands on an individual user and to balance the benefits
gained from our system with the required work that needs to
be put in. One of the advantages of this approach is that its
cost-benefit ratio will improve as the system grows in scale,
enabling techniques from large social networks, such as data
recommendation based on user similarities.

1 Introduction
One of the main objectives of sensor networks technol-

ogy is the extraction of useful information from the envi-
ronments. In the past, users were presented with graphs that
summarize long-time trends of data measured by limited sen-
sors, such as humidity or temperature sensors. The availabil-
ity of low-power microphones and CMOS cameras has re-
cently enabled sensors to capture information-rich multime-
dia data. As a result, advances in assisted living [10, 16], an-
imal species monitoring [5], and traffic monitoring and con-
trol [6] have been achieved. However, processing of this typ-
ically high bitrate data is challenging in resource constrained
domains. In addition to significant energy requirements of
transporting multimedia data to users over low power multi-
hop wireless links, computationally intensive algorithms are
required to extract useful information from the data.

The fact that humans can extract information from multi-
media data efficiently motivated the design of the USer Inter-
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pretation CAmera SEnsornet (USICASE) system presented
in this paper. The novel aspect of our system is that it allows
users to collaboratively extract information from real-time or
historical sensor data, focusing specifically on camera sen-
sors. Users attach their interpretations to the images through
textual annotations, and the system proactively recommends
the interpreted data to other users if the data matches their
interests. Some plausible application scenarios are the no-
tification of research group members about a joint lunch in
cafeteria or the availability of conference rooms; taking im-
ages of an ongoing experiment in a bio-chemistry lab and
allowing researchers to discuss its progress using real-time
data; or notifying security personnel if an unfamiliar person
or object is observed in the office space.

One of the main challenges of our system is to carefully
balance the effort that users need to put in and the utility
that the system provides. USICASE implements a number
of techniques that help to focus data interpretation efforts.
Each user defines his region and time of interest as well as
a set of keywords expressing his work or hobby related in-
terests. USICASE uses in-network processing techniques to
detect changes in the regions of interest and delivers images
capturing such changes to the users for interpretation. In re-
turn, each user gets a sensor data Inbox where he receives
annotated sensornet images that match his interests and are
constrained to his region and time of interest. Additionally,
the system allows each user to retrieve data from available
sensors through an intuitive map-based interface.

We have implemented and tested USICASE on a small
testbed deployed in our office space. Motivated by the fact
that our system reaches its full potential when it grows to
large size, we designed its architecture in multiple tiers. The
system consists of camera sensor nodes, micro-servers, and
a central server. Sensor nodes provide cost-efficient dense
sensing, micro-servers enable network to scale, and the cen-
tral server orchestrates all components by resolving user
queries and maintaining information about sensors, micro-
servers, users, and annotated images in a central database.

The growing popularity of mobile computing devices
makes them an ideal platform for accessing data from sen-
sornet deployments. Since interfaces of these devices are
somewhat limited, our main design criterion for the user an-
notation process was simplicity. We achieved this goal by
constructing an ontology tree of data annotations that con-
tains both annotations and relations between them. User is



initially presented with a small set of general tags. Depend-
ing on the tag selection, the system suggests more specific
tags until the user is satisfied, potentially significantly de-
creasing the time required to annotate images.

We evaluated the scalability of USICASE by measur-
ing the latency of the end-to-end data delivery of data
to users and the run-time of various in-network process-
ing algorithms. The system supports multiple parallel data
streams within a cluster without the users incurring addi-
tional penalty. Both in-network compression and data pro-
cessing take approximately 1 second per image. We also
evaluated the accuracy of image processing in capturing
events of interest in the environment. In an 83 minute ex-
periment with a camera pointed at a dynamic environment,
our system was able to identify 6 out of 10 major events
while successfully filtering out over 97% of motion detection
events. Since any meaningful evaluation of the recommenda-
tion system would require larger deployment and more users,
we leave it for future work.

2 Related Work
A number of wireless sensor network (WSN) systems

with multimedia sensors were deployed in the past few years.
Cyclops [14] was perhaps the first mote-class compliant de-
vice that enabled image capture in resource constrained do-
main and identified a number of lightweight image process-
ing techniques successfully used for object detection and
recognition. However, both the low image resolution and
the low speed of its embedded MCU limited the types of ap-
plications that the Cyclops platform could support. Higher
end camera sensor nodes such as CMUcam3 [15], or Enal-
abCam [1] have higher power demands, but provide signifi-
cantly better image resolution and processing.

Multi-tier architecture is a popular design of camera sen-
sor networks, because it combines benefits of both the dense
sampling with low-end cameras and the better data fidelity of
high-end cameras. For example, Xie et al. [16] have coupled
Cyclops cameras with the higher-end EnalabCam. Helping
elderly people in finding lost objects, the system uses low
power cameras to detect new objects in the scene and then
wakes up the high-end camera node to recognize the object.
SensEye [9] used even higher-end pan-tilt-zoom (PTZ) cam-
eras, to provide additional coverage.

Querying languages utilizing in-network processing to
extract information from WSNs have been studied exten-
sively. TinyDB [11] views WSN as a large distributed
database and offers a simple SQL-extended language for
energy- and bandwidth- optimized acquisition and collec-
tion of sensor data. Going one step further, Deep Vision
system [13] proposed a declarative querying language that
encapsulates low-level image processing operations in the
language attributes. Users can extract high-level informa-
tion from the network, such as probability of intruder in a
monitored area by specifying how and when should data for
the queries be collected. In our work, we proposed similar
techniques to detect events of interest in the environment.
However, we focused on the simplicity of the user interface
and provide map based interface to retrieve data from sen-
sors, instead of a querying language.

Figure 1. A multi-tier camera sensor network. Motes are
organized in ad-hoc clusters. Users access data through
both the server and micro-servers.

Substantial body of literature on recommendation sys-
tems exists, most of which focused on content-based and
collaborative recommendation [4]. Also, ontology trees have
been studied [12] to increase the performance of recommen-
dation systems. However, most of these approaches target
Internet-based web applications and their applicability to the
WSN domain is yet to be studied.

3 USICASE System Overview
We describe USer Interpretation CAmera SEnsor Net-

work (USICASE) system, a sensor network service that al-
lows users to retrieve information rich historical and real-
time sensor data related to their interests. The novel aspect
of our system is its support for user collaboration in inter-
preting sensor data.

The utility of USICASE improves with an increasing
number of users, as they share the task of data interpretation.
Consequently, we designed it as a multi-tier system, con-
sisting of Tier-1 camera sensor nodes, Tier-2 micro-servers
and a centralized server (see Fig. 1). Similar configurations
were used in camera network deployments in the past [5, 9]
due to their numerous advantages: they allow sensornets to
run advanced processing algorithms at Tier-2 devices and to
scale well due to the higher network capacity of Tier-2 ra-
dios. Next, we describe our choice of hardware and software
in more detail and describe how the system operates.

3.1 System Components
Tier-1. Our sensor nodes must provide dense and unobtru-
sive sensing of the environment and therefore should have
low cost and small size. We have selected a higher-end sen-
sor node, the iMote2 [3], to be able to process and com-
press images at the sensor node level. iMote2 platform offers
dynamically scalable voltage (from 13MHz to 416MHz),
256KB of SRAM, 32MB of SDRAM, 32MB of Flash mem-
ory and 250kbps CC2420 radio. We equipped iMote2s with
EnalabCam [1] which can capture QVGA(320x240) images
at 60fps. Fully active, iMote2 consumes about 140mW or
240mW at 13MHz or 104MHz, respectively. Both radio and
the camera board consume additional 40mW each. We pro-
grammed the iMote2s in TinyOS [8].
Tier-2. The micro-servers run advanced image processing
algorithms, maintain database of sensors in a cluster, and



provide higher bandwidth communication. Since transfer-
ring image data over the low bandwidth Tier-1 radios takes
substantial time, clusters of Tier-1 nodes should be relatively
small, requiring the micro-servers to be low cost as well. We
have used Gumstix Verdex XL6P [2] computers which pro-
vide 600MHz CPU, 128MB RAM, and Wi-Fi, USB host,
and MicroSD extension cards. Gumstix supports Linux op-
erating system which allowed us to use open source libraries
for image processing, database management, and web frame-
works. Micro-servers communicate with Tier-1 nodes via a
USB-attached gateway sensor node.
Central Server. The central server is a PC class device, run-
ning the Linux operating system. The main role of the server
is to maintain the central database that holds all of the sen-
sor data collected in the past as well as information about the
subscribed users. Users primarily connect to a web server
running on the central server via an Internet connected de-
vice. Each user has a personalized sensor data Inbox, where
the system pushes data relevant to his interests as well as new
data that needs to be annotated.
3.2 System Operation

The main objective of the USICASE system is to deliver
relevant sensor data to users in near real-time. To accom-
plish this goal, the system needs to 1) obtain information
about users, 2) extract contextual information from sensor
data, and 3) match and deliver data to the users.

Information about users is collected primarily during user
subscription process. Each user creates a profile by selecting
regions of interest (RoI) and times of interest (ToI). The user
also specifies his interests through a set of data annotations
which are flickr-style textual tags described in Section 4.2.

Interpretation of sensor data is primarily user-driven. Im-
ages are periodically collected at sensors whose region of
coverage (RoC) intersects with RoI of at least one user. To
prevent sending users large number of images, USICASE
only asks users to interpret and annotate new data if the envi-
ronment in their RoI changes. The system uses a suite of im-
age processing algorithms to detect the environment changes
which are described in more detail in Section 4.1.

There are two ways users get information from USI-
CASE. First, the central server determines relevance of each
new data item against all user profiles using a data matching
procedure described in Section 4.3. If the relevance is above
certain threshold, data is pushed to the user’s Inbox. Second,
the system allows users to request data from any available
sensor. Instead of providing an extension of SQL language
to query data from the network, USICASE provides a map
of the deployment area where users can intuitively select the
sensor node and the type of data they want to retrieve.

4 Data Interpretation and Matching
We describe the techniques that USICASE uses to inter-

pret and match data to users in this section.
4.1 In-network Image Processing

Due to the limited processing power of sensor nodes, we
decided to partition the data processing between the Tier-
1 sensor nodes and the Tier-2 cluster heads. In Tier-1, we
chose computationally simple image processing algorithms
to highlight possible regions of interest in each frame. Once

Figure 2. Flowchart of USICASE’s image processing al-
gorithm.

these regions are passed to Tier-2, we performed additional
processing by generating descriptors for each such region.
Tier-1 Processing. We primarily focused on detecting mov-
ing objects in view of our cameras. We used background
subtraction to detect changes from frame to frame and then
applied region labeling to both recognize moving objects and
to filter these objects by their pixel size. All processing was
done using a sub-sampled gray-scale image, converted from
the original QVGA RGB image.

We used moving an average filter in our background sub-
traction algorithm, defined by Eq.(1), with α = 0.125.

Bn+1 = αBn +(1−α)Fn (1)

Before calculating the next background image, we sub-
tracted the background from the current frame to obtain a dif-
ference image. We then applied a threshold based on the ab-
solute average difference so areas with either small or large
changes from the background will be adequately recognized.
Next, we applied a binary morphological dilation operation
using a 3 by 3 square structuring element to close small holes
and connect close regions together. To identify regions of
interest, we used a standard 4-neighbor region labeling al-
gorithm to find the largest connected areas of our difference
image [7]. We discarded all regions smaller than 150 pix-
els and returned five largest regions to the cluster-head for
further processing and user annotation.
Tier-2 Processing. After the Tier-1 devices forward the re-
gion data, we calculated the RGB histograms of the possi-
ble regions of interest. We made the assumption that objects
that were in motion were distinctive from the background
and had unique histograms. We then compared these regions
against those in the database of recent images by taking the
Euclidian distance between the histogram vectors to deter-
mine their similarity. Similarity of histograms of regions
allowed us to classify regions as objects that we can track
across time and space in our camera network.



Figure 3. Ontology tree of annotations (left) and the an-
notation process (right).

4.2 User Annotations
As described in the previous section, USICASE allows

users to attach interpretations to sensor data through textual
tags. Since our system may be used in time and resource
constrained environments, the image interpretation user in-
terface needs to be efficient. Therefore, instead of requiring
users to type in the interpretations, the system provides users
a concise set of predefined data tags. We derive the tags from
a predefined ontology tree of annotations with general tags at
the root and more specific tags at the leaves. The tree itself
is not shown in the annotation process, users are typically
shown a few entries from the same level in the tree. For ev-
ery selection, the process iteratively provides the next set of
tags, generally following specialization relation in the tree
(see Fig. 3). USICASE also provides an option for the user
to directly enter annotations, thus satisfying the requirement
of an efficient yet comprehensive annotation system.

4.3 Recommending Sensor Data to Users
We use two sensor data recommendation schemes. Per-

sonal recommendation delivers data according to the inter-
ests i specified by each user in his profile (see Table 1). Col-
laborative recommendation delivers data that matches an-
other user’s interest, in case the two users share similar at-
tributes. We measure user similarities by finding correla-
tions in the Attributes sections of their user profiles, using
information such as job title, affiliation, and clearance.
Personal recommendation. Each piece of data is matched
with each user’s interests and given a value of 1 or 0 to in-
dicate a match mi. This is weighted with a factor wi, that
specifies how much the user is interested in that specific cat-
egory. Eq. (2) defines the personal recommendation score
for user u as the normalized weighted sum of all matching
interests.

sp(u) = ∑
N
i=1 miwi(u)
∑

N
i=1 wi(u)

(2)

Collaborative recommendation. Users with similar at-
tributes are likely to be interested in the same data. This
allows our system to recommend data to larger number of
users, including new users that have not yet specified any In-
terests in their profiles. Similarity of users u and u′, sim(u,u′)
is simply calculated as the ratio of the tags in Profiles of the

Table 1. User profile, used to calculate personal and col-
laborative recommendation scores.

Attributes

Category Data
Name Eunjoon Cho

Password *******
Title Graduate Student

Affiliation Electrical Engineering
Clearance Low

Interests

Category Data Weight(0-5)
Region Room S255 4
Time 19:00 - 04:00 1
Tags Security 5

users that are the same. To determine the collaborative rec-
ommendation, we use the weighted sum approach described
in [4], utilizing Eq.(3). The personal recommendation score
of the data of user u′ is weighted with the similarity measure
between users u′ and u. U is the set of all users whose sim-
ilarity to user u is greater than 0. The final recommendation
is then defined as the sum of the weighted recommendations
of other users, normalized by the sum of the similarity mea-
sures of all similar users.

sc(u) =
∑u′∈U sim(u,u′)sp(u′)

∑u′∈U sim(u,u′)
(3)

Combined recommendation. The scores from personal and
collaborative recommendation are adjusted with a collabora-
tive factor α(u), to indicate how much a user prefers to rely
on his personal settings over others. The total score, Eq. (4),
is then compared to a threshold to decide whether the data is
to be pushed to the user.

s(u) = (1−α(u))sp(u)+α(u)sc(u)≥ sth(u) (4)

5 Evaluation
We evaluated how well the USICASE implementation

supports the system’s goals, namely delivery of sensor data
to users and in-network identification of relevant data.
5.1 USICASE Architecture

To test the performance of our system, we requested im-
ages from one, two, and three sensors (in parallel) located in
the same cluster. We measured how much time each sensor
spent to acquire image from the camera board (IMG ACQ),
execute the motion detection algorithm (IMG PROC), com-
press the image (JPEG), and route the data to its cluster-head
(ROUTEx). We also measured how long the cluster-head
takes to save data in the central database (MYSQL). We re-
peated each experiment 10 times and present the results in
Table 2, denoting different experiments as ROUTEx where x
is the number of simultaneous data streams. We requested
both gray-scale and color images, with the average com-
pressed size of 11.3kB and 26.5kB, respectively. As we see
in Table 2, our transport protocol assures fairness to multiple
users with a negligible drop in performance for multiple par-
allel streams. We also experimented with retrieving images
from different clusters and have not observed any significant



Table 2. Statistics of reliable delivery of QVGA images
from sensors to a user. We show mean times in seconds
and standard deviations in parenthesis.

Time (GRAY) Time (RGB)
IMG ACQ 0.9 (0.0) 0.3 (0.0)

IMG PROC n/a 1.4 (0.3)
JPEG 0.3 (0.001) 1.0 (0.003)

ROUTE1 5.8 (0.1) 13.8 (0.1)
ROUTE2 6.0 (0.1) 14.1 (0.2)
ROUTE3 6.0 (0.6) 14.3 (0.4)
MYSQL 1.4 (2.6) 1.6 (3.2)

increase in the delivery times as nodes in different clusters
use non-interfering radio channels.

5.2 In-network Processing
To evaluate our in-network processing algorithms, we col-

lected 500 images of our workspace over a period of 83
minutes. We established a ground truth by manually iden-
tifying 10 key events, such as people entering and leaving
the camera’s field of view. Movement outside these key
events consisted of people working on computers with min-
imal movement. Our motion detection algorithm located
1264 events which was further decreased to 35 events by his-
togram matching, containing 6 of our key test events. This
illustrates the trade-offs between the detection accuracy and
the amount of work that users need to expend.

Our image algorithm was able to correctly identify events
where people left the area, but it was not as accurate in de-
termining when a person returns. For example, if a person
returns between frames and resumes working, the histogram
matching would treat this as an already classified object and
ignore the event. Other spurious events included small move-
ments within the image, which a human typically would not
consider as important, or large changes in lighting, which
histograms can not capture. Our pruning processing was
simple by contemporary standards, and could be improved
by using descriptors which are more robust against object
illumination changes, rotation, or scaling.

6 Discussion and Future Work
We have designed, implemented, and deployed a camera

sensor network service that allows users to work together to
extract information from images collected by wireless cam-
era sensors. Since the users are the primary information
providers, we have proposed a combination of in-network
processing techniques and an efficient data annotation inter-
face to decrease the load on an individual user. We have
designed our system to be scalable in size, observing that the
cost-benefit ratio of our system will improve as more users
join in and share the data interpretation load.

Our work can be extended in a number of exiting ways.
We would like to allow users to rate how well our system
estimates relevance of the data and to rate the data itself.
Through correlations of ratings of different users, we would
be able to improve the collaborative recommendation ca-
pabilities of our system. Using high level image process-
ing techniques techniques such as object recognition and

tracking, we could match objects and automatically trans-
fer user annotations between images containing identical ob-
jects. Object recognition would also allow users to retrieve
all images with similar objects, track a mobile object both
spatially and temporarily across multiple cameras, or spec-
ify a higher level query that could return objects that exhibit
a specific mobility pattern between rooms or cameras. Fi-
nally, we would like to further improve the annotation pro-
cess by customizing the ontology tree to a particular user or
data item and by using relations other than specialization for
annotation suggestions.
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