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Figure 1: 3D models created with our assembly-based 3D modeling tool.

Abstract

Assembly-based modeling is a promising approach to braagen
the accessibility of 3D modeling. In assembly-based madeli
new models are assembled from shape components extracted fr
a database. A key challenge in assembly-based modeling is th
identification of relevant components to be presented tauties.

In this paper, we introduce a probabilistic reasoning agginoto
this problem. Given a repository of shapes, our approaaimdea
probabilistic graphical model that encodes semantic andgé&ic
relationships among shape components. The probabiligideirs
used to present components that are semantically andtisglli
compatible with the 3D model that is being assembled. Oueexp
iments indicate that the probabilistic model increasese¢l®/ance

of presented components.
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Introduction

What remains hard is modeling. The structure inher-
ent in three-dimensional models is difficult for people
to grasp and difficult too for user interfaces to reveal
and manipulate. Only the determined model three-
dimensional objects, and they rarely invent a shape at
a computer, but only record a shape so that analysis or
manufacturing can proceed. The grand challenges in
three-dimensional graphics are to make simple model-
ing easy and to make complex modeling accessible to
far more people.

— Robert F. Sproull1997

Providing easy-to-use tools for the creation of detaileckeh
dimensional content is a key challenge in computer graph-
ics.  With the accessibility of comprehensive game develop-
ment environments, individual programmers and small tegams
build and deploy realistic computer games and virtual world
[Epic Games 2011Unity Technologies 2011 Yet the creation of
compelling three-dimensional content to populate sucHdsae-
mains out of reach for most developers, who lack 3D modeliag e
pertise.

A promising approach to 3D modeling is assembly-based
modeling, in which new models are assembled from pre-
existing components.  The set of components can be de-
signed specifically for this purpose or derived from a repos-
itory of shapes Funkhouser et al. 2004 Kraevoy et al. 2007
Maxis Software 2008 Chaudhuri and Koltun 2030 The advan-
tage of assembly-based modeling is that users do not negede s
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ify new geometry from scratch; modeling reduces to selaciod
placement of components.

A key challenge in assembly-based 3D modeling is the iden-
tification of relevant components to be presented to the. user
Unless the modeling task is fixed in advance, an assembly-

Kraevoy et al. 2007 describe an assembly-based modeling tool
in which the user can load a small set of compatible shapes and
interchange parts between them. The method relies on a titepa
segmentation of all shapes and does not handle heterogshapes
libraries.

based modeling tool must use a large and varied database ofChaudhuri and KoltunZ01q describe a data-driven technique for

components.  The interface thus needs to provide effective
mechanisms for identifying the most relevant available jgom
nents at any stage of the modeling process. Previous work
used either text search or geometric matching to retrieegpesh
and componentsHunkhouser et al. 20045hin and lgarashi 2007
Lee and Funkhouser 2008Chaudhuri and Koltun 2030 Such
techniques do not take into account the semantic and #tylist
relationships between the current model and the comporients
the database. In this paper, we present an approach that stud
ies a model library to learn how shapes are put together, and
uses this knowledge to suggest semantically and stylitstical-
evant components at each stage of the modeling process.
work aims to support open-ended 3D modelifiglfon et al. 2009
Chaudhuri and Koltun 2010

We use a probabilistic graphical model called a Bayesiawaort
[Pearl 1988 Koller and Friedman 20090 represent semantic and
stylistic relationships between components in a shapebdata
When new models are assembled, inference in the Bayesian net
work is used to derive a relevance ranking on categories i co
ponents, and on individual components within each categéoy
example, when a user begins a modeling session by placing-an a
plane fuselage, the probabilistic model identifies comptsim the
repository that are more likely to be adjacent to a fuselageh

as wings, stabilizers, and engines. The presented com{zooemn-
tinue to be dynamically updated as the current model is coctstd.
Thus when the user augments the fuselage with an engine from
a military jet, the probabilistic model decreases the pdlig of
propellers and increases the probability of rockets anditais Af-

ter the user adds two wings, the probabilistic model lowsegprob-
ability of wings, since the presence of more than two wingsa get

is unlikely.

To evaluate the effectiveness of the presented approactnawes
developed an assembly-based 3D modeling tool. Our modigling
terface is inspired by the successful Spore creation toulsuses
the probabilistic model to dynamically update the presgntampo-
nents. Experiments with this interface indicate that tlbpbilistic
model produces more relevant suggestions than a staterjeg®n
of components or a purely geometric approach.

In summary, this paper introduces a probabilistic modelhafpe
structure that incorporates both semantics and geoméglee he
model is trained on a shape database and is used to pressaintel
shape components during a 3D modeling session. The exp#eme
results demonstrate that the model significantly incretisesele-
vance of presented components.

2 Prior Work

Assembly-based 3D modeling was pioneered by Funkhouser et
al. [2004, whose Modeling by Example system allows users to
retrieve source models using text- or shape-based searom- C
ponents are then cut out of some of the retrieved models and
glued onto the current one. Subsequent research has gatesti

presenting components that can augment a given shape. The ap
proach is purely geometric and does not take into accounsehe
mantics of components. Our results show that the incorjporatf
semantic relationships increases the relevance of pexbentnpo-
nents.

Fisher and Hanrahar2Q1q describe a probabilistic model of spa-
tial context for 3D model search. Given a query bounding box
placed by the user in a 3D scene, their approach returnsatsab
shapes that are appropriate in the context of the surrogrstiene.
Our probabilistic model is substantially different fronattof Fisher

Ourand Hanrahan and is designed for interactive shape modeling

Our use of probabilistic graphical models is influenced eiork

of Merrell et al. 014, who generate residential building layouts
using a Bayesian network trained on architectural prografie
probabilistic model of Merrell et al. is designed specificéd rep-
resent architectural programs. We introduce a probabilisbdel
for the structure of general 3D shapes. Our model represertis
component categories and a variable number of individualpm
nents, and augments existence and adjacency relationsyvith
metry and geometric style.

The interface of our assembly-based modeling tool is iespir
by the Spore creature creator, which allows creatures to be
assembled from components such as heads, legs, and arms
[Maxis Software 200B The Spore creature creator has been used
to create over one hundred million creature models in theyfaar
after release. While our interface closely follows the ssstul ap-
proach of Spore, the presented categories and parts arsityably
updated in light of the current model, in order to presentritost
relevant components from a large heterogenous librarythBur
more, we do not require specially crafted components, binaeix
them semi-automatically from a shape library.

3 Overview

Our approach consists of two stages, illustrated in Figur@he
firstis an offline preprocessing stage in which a probakilisiodel
is trained on a shape database. The second is an interdetjeeis
which inference in the probabilistic model is used to présele-
vant shape components during a 3D modeling session.

Preprocessing. The input to the preprocessing stage is a repos-
itory of segmented and labeled shapes. Each label repseaent
component category, such head arm, andtorso. The labeling

is hierarchical and each component may contain subpartsasit
sociated subcategories; for example, torsos are compddeder
torsoandupper torso We use the technique of Kalogerakis et al.
[201Q to produce the segmentation and labeling from a set of-train
ing examples. Thus we preprocess a shape repository intpazom
nents semi-automatically, relieving the chore of manusdigment-

ing each model and labeling all components.

Given the set of segmented components, we further cluséen th

sketch-based retrieval of componentShin and Igarashi 2007 based on geometric style. For each category, the components
Lee and Funkhouser 20D8In all these approaches, the user must are partitioned into a set of clusters with similar geoneefda-
search for each specific component. This is less approdidate  ture vectors. The feature vectors incorporate descripsoch
open-ended 3D modeling, when the composition of the model is as shape diameteShapira et al. 2049 curvature, shape context
not specified in advance and the user can benefit from a varfety [Mori et al. 200], and PCA-based parameters (Appendix An
suggestionsGhaudhuri and Koltun 2010 example of this clustering is illustrated in FiguPe where arms
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Figure 2: Overview of our approach. Thereprocessing stage (top) begins with a library of models, segmented abhélé using the
technique of Kalogerakis et al. [2010]. The componentsaetéd from the models are further clustered by geometrie. st Bayesian
network is then learned that encodes probabilistic depraigs between labels, geometric styles, part adjacennigsber of parts from
each category, and symmetries. The figure shows a subseafreahnetwork learned from a library of creature models. Thatime stage

(bottom) performs probabilistic inference in the learneayBsian network to generate ranked lists of category ladetscomponents within
each category, customized for the currently assembled Imode

with a roughly humanoid appearance are grouped into onéeclus  a symmetric counterpart and computes the symmetry plane. Th

while thin and alien arms are grouped into another. The etirgy interface supports sliding any component along the suréddbe

allows the probabilistic model to operate not only on the aetic model, as well as translation, rotation, scaling, dupitatand glu-

labels, but also on the geometric appearance of components. ing, thus assisting the assembly of a 3D model from choser com
ponents.

Given the set of category labels and style clusters withi éabel,
the method learns a probabilistic model that encodes deperas g
between labels, style clusters, part adjacencies, nundiguarts 4 Probabilistic Model

from each category, and symmetries. Our probabilistic model is designed for the purpose of reoemd-

ing components that can augment a given 3D model. The proba-
Runtime. During an interactive 3D modeling session, our method bilistic model is trained on a set of segmented and labelagesh
performs probabilistic inference in the learned model wegate a ~ Each shape is represented by the existence, adjacenceagge
ranked list of components that may be useful for augmentieg t  ric style, symmetries, and number of components from eatd#t ca

current shape. The ranking reflects compatibility with congnts gory, as described below. These attributes are represastegh-
that are already part of the assembled shape. dom variables. Each shape is thus treated as a sample framt a jo

probability distributionP (X)), whereX contains the following sets
In order to evaluate the relevance of the suggestions peatibg of variables:

the learned model, we have developed a tool for assembbgbas
3D modeling. The modeling interface is illustrated in Figdrand

in the supplementary video. On the left, the interface prisseabs
with semantic labels such asrso, head andarm. The tabs can
expand hierarchically to show subcategories, suclowasr torsq
upper torsg andbelt When a user selects a tab, the interface shows Cardinality N = {N;} whereN, € {O}UZ+ represents the num-

Existence E = {E;} whereE; € {0, 1} represents whether a
component from category € L exists in a shape, whet# is
the set of component labels in the repository. There is ook su
random variable for each label.

a list of parts that belong to the associated category. Theaan ber of components from categare £ in a shape. There is also
select a component and drag it onto the current model. When a one such random variable for each label. For tractableenfss,
component is added in this way, the lists of categories antpoe we limit the range td0, 1, 2, 3,4, 5+ }, where5+ represents the
nents are re-ranked to reflect their semantic and stylistigaatibil- case of 5 or more existing components from the category. Note
ity with the current 3D model. Using the probabilistic madile that the random variableg represent information for the exis-

interface also estimates whether the new component sheawe h tence of components, whereas the cardinality variableaake



it specific in terms of their exact number. The random vaeabl

E are still useful in our model as an intermediate represiemtat
since the number of components cannot be directly obsenved i
the user’s incomplete shape. In addition, certain deperiegiof
components are more compactly expressed in terms of their ex
istence rather than their exact cardinality (e.g., a tadybeeiists
when table legs exist, regardless of their exact numberichwh
helps decreasing the number of parameters in our model.

Adjacency A = {A;; } whereA; ;, € {0, 1} represents whether
a component from categorly € L is adjacent to a component
from categoryl’ € L in a shape. There is one such random
variable for each pair of distinct labels that appear adjaireat
least one of the shapes in the repository.

Style S = {S;,} whereS;; € {0, 1} represents whether a com-
ponent of geometric style € S; exists in a shape, whei®,
is the set of clusters for categoty There is one such random
variable for each style cluster within each category.

Symmetry R = {R, ;/} whereR; ;» € {0, 1} represents whether
a component from categoiye £ has a symmetric counterpart
with respect to a component from categdrg £. For example,
an arm has a symmetric counterpart with respect to the torso.
There is one such random variable for each distinct pair -of la
bels that have such a symmetry relationship in at least otteeof
shapes in the repository.

The probabilistic model encodes the joint distributiB(X). The
purpose of the model is to support estimation of compatybile-
tween each component from the repository and a given 3D model
The given model is the current 3D model observed during the ru
time stage. The given model imposes specific values on same ra
dom variables inX. For example, if the current model contains a
component from categoryand styles, the corresponding random
variablesE; and S, ; are set tol. Similarly, if a component with
label [ is adjacent to a component with lakié) the correspond-
ing random variabled, ;/ is set tol. Such variables are said to be
observed The rest of the random variables are unobserved. In addi-
tion, the cardinality random variables are never obsersiede we
also do not know the final number of components in the assemble
shape; although unobserved, cardinality variables areiitapt for
querying our model, as explained below.

By performing inference in the probabilistic model, we vatm-
pute probability distributions on some of the unobservetbatdes
given the observed ones, and thus estimate the compatiitfiNar-
ious components with the currently assembled shape.

Specifically, the compatibility of a componenfrom categoryi;
and styles; is evaluated based on (a) how likely its categbrig to
be adjacent to any of the categoriés C £ existing in the shape,
(b) how likely the shape is to include more parts of catedarsind
(c) how likely the shape is to include components of styleThus,
we need to evaluate, for each componém the repository, the
probability of the following expression:

< \/ (Ali’l’ = 1)) A (Nli > nli) A (Ssiali = 1)7 (1)
ec!

wheren,, is the number of components from categébrin the cur-
rent shape. The probability of this query can be evaluatéugus
the conditional probability distributio®(X, | X. = e), where
X, € X is the set of the random variables involved in the above
query,X. € X is the set of observed random variables, arate
their observed values. We define tmmpatibility scoreof compo-
nent: as

comp(i) =} P(Xy =q|Xc =e), ©)
qeR

whereQ is the set of instantiations &, that satisfy Expressioh.
The compatibility score measures the suitability of cormgui for
augmenting the currently assembled shape.

The compatibility score is expressed in terms of the coowlii
probability distributionP(X, | X. = e). From the definition
of conditional probability, we have:

P(X,, X, =e)

P(XQ|X€:e): P(Xe:e) ’

®)

which can be computed from the joint distributiét{X) by sum-
ming over all possible assignments to the unobserved ranvaom
ables:

— Zu P(XCUXC :e7Xu :u)
B Zu,qp(xq :q7Xe :e,Xu :u)

P(X,|X.=e) (4

whereX, = X — X. — X, is the set of random variables that
are neither query nor evidence. However, an explicit suriumaif
this form is generally intractable, since the number of jiesas-
signments is in general exponential in the number of vaemblhe
exponential complexity can be reduced by assuming thamdlom
variables inX are independent. However, this assumption is gener-
ally incorrect. For example, if the user’s shape containsaalouped
torso, it is likely that the shape would have other quadrupes,
such as legs, a head, and a tail. The existence, numbereadjes,
and style of these parts are dependent on the existenceydaofst
the torso.

Instead of manually specifying which random variables ambp
abilistically dependent on which others, we learn the fazation
of the joint distribution from data. This factorization neskthe
computation of the compatibility score tractable. The daized
distribution is represented with a directed graphical nhadded
a Bayesian networkHearl 1988 Koller and Friedman 20Q9 A
Bayesian network represents the random variables and dbeir
ditional dependencies using a directed acyclic graph. Blodp-
resent random variables and directed edges representtiooatli
dependencies between the corresponding variables. Eadhma
variable is associated with a probability function thateslas in-
put the set of values of the node’s parent variables and titha
probability of this random variable given the input valuesince
our random variables are discrete, these probability fanstare
represented as Conditional Probability Tables (CPTs). prbee-
dure for learning the connectivity of the network and theiestof
all the CPTs is described in Sectién Information on the learned
Bayesian networks used in our experiments is provided iteThb

Inference. Given a learned Bayesian network, the joint distribu-
tion can be expressed &X) = [[. x P(z | 7(x)), wherer(x)

is the set of parent variables of Inference in the Bayesian net-
work can be used to answer conditional probability queneh s
(3). Since exact inference in probabilistic graphical modeNP-
hard, we use approximate inference. We had experimentdd wit
loopy belief propagationHrey and MacKay 1997 but with lim-
ited success, as it often returned poor approximationseajtiery
distributions. Instead, we implemented a likelihood-vixégl sam-
pling technique that stochastically samples the jointitistion and
weighs each sample based on the likelihood of the observaesno
accumulated throughout the proceBsifig and Chang 1990

Category ranking. While the compatibility score determines the
ranked order of individual components, the part categosies
need to be ranked as a whole, so that category labels can be pre
sented in order of relevance by the interface. We achiegehiji
evaluating a compatibility score similar to Equatidthat ignores



the part-specific style term. The score of a part categmgefined

as
compl) = > P(X,=q|X.=e), (5)
qeQ’
where@’ is the set of instantiations &, that satisfy
( \/ (A = 1)) A (N> ), (6)
rec

whereL’ C L is the set of categories of components in the current
shape, and; is the number of existing components from category
L.

Initial ranking. The assembled shape is initially empty. There-
fore none of the random variables X are observed initially. In
this case, we rank the parts and part categories by querkgimg t
prior probabilitiesP(E;, = 1, Ss,,;, = 1) for each part with la-
bell; and styles;, and P(E; = 1) for each label. The resulting
category ranking is determined by the frequency of occueesf
the categories in the repository: the most popular categ@gppear
first. For example, for a repository of creatures, the topgaties
are torsos, legs, and heads. Similarly, the initial ranlohgarts

is derived from the frequency of occurrence of style clissierthe
repository.

Symmetry. The probabilistic model also provides information
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Figure 3: Clusters of head parts, based on a Gaussian mixture
model. The feature space is visualized by projection orgahto
principal axes.

to each mesh face, by averaging the probabilities of labads its
nearest point samples. The unary and pairwise terms of tHesCR
are defined as in the original algorithm.

Given a segmented and labeled dataset, the method perfarsas ¢
tering to identify groups of geometrically similar partstwn each
part category. The method then learns the structure andngara
ters of the Bayesian network. The balance of this sectioories

on whether a chosen component should have a symmetric coun-these two steps in more detail.

terpart. Our implementation supports planar reflective rmgm
try, which is among the most prevalent in real-world objects
[Podolak et al. 2006 For a chosen componentwith label;, we
evaluate, for each observed categdryn the current shape, the
probability P(R;, » = 1 | X. = e), and take the observed cate-
gory Imax that maximizes this probability. If this maximal probabil-
ity is greater thard.5, the interface generates the symmetric coun-
terpart ofi about the symmetry plane of the component with label
Imax. If there are multiple such components, we select the larges
one. If there are multiple symmetry planes for that compgnen
we select the one that maximizes the projection of the adeeimb
shape onto it. Symmetry planes are computed using the agproa
of Simari et al. R00§.

5 Training

We now describe the offline procedure for learning the entoie
the conditional probability tables for the Bayesian netyais well
as the structure of the network. The input to this procedsigeset

Style clustering. For each componertwe compute a geometric
feature vectorz;. In order to capture a variety of geometric at-
tributes, this feature vector incorporates shape diamatevature,
shape context, and PCA descriptors (Appenil)x The clustering
is based on a Gaussian mixture model in the feature spaee of
so that the mixture is a superposition of Gaussian disiohatthat
have their own covariance structure. The number of Gaussiin
the mixture is estimated by penalizing the complexity offitted
mixture model. Specifically, for each part categbrwe maximize
the following objective function with respect to the numbed pa-
rameters of the mixture model:

my ky
1
Ji= log <Z ws,1 - N (2; s 1, 25,1)> = 5 Plog(mu), (7)
i=1 s=1

wherem;, is the number of parts in categotyk; is the number of
Gaussians of the mixture fér V' (z; us i, Xs,;) is @ Gaussian with

of shapes from a repository. We assume that a small set of man-meanus,; and covariance matriX; ;, ws,; is the corresponding

ually segmented and labeled models is provided as a tragehg
for a supervised segmentation and labeling procedure fttogt- p
agates the segmentations and labelings to the rest of thsedat
[Kalogerakis et al. 2010 The sizes of the training sets used in our
experiments are reported in Talde

We modified the segmentation and labeling algorithm of Kateg
akis et al. p01Q to support hierarchical labeling. For each class
of shapes, the modified algorithm learns a conditional remtield
(CRF) at each level of the segmentation hierarchy, and géser

a sequence of increasingly refined segmentations of eagie sha
by successively applying the CRFs in order. The set of geomet
ric descriptors is the same as in the original algorithm. ghe
ometric descriptors are computed at surface samples réthar
mesh faces to accommodate polygon soups. A JointBoosi-class
fier [Torralba et al. 200[7is used to output the probability distribu-
tion of labels over each sample. Then the distribution iggassl

mixing coefficient, andP is the number of parameters in the mix-
ture model. The second term penalizes model complexitychaise
the Bayesian Information Criterioisghwarz 1978

The objectiveJ; is maximized as follows. Starting fromy = 2,
we run expectation-maximization (EM) to estimate the patans
Ws,1, Ws,1, aNd s ;. If the number of partg; is less than twice
the number of parameters, we restrict the covariance miatride
diagonal to prevent overfitting. EM is initialized with cens com-
puted byk-means. We run EM separately for = 3,4, .... If
there is no increase in the objective function fsuccessive repe-
titions, we stop and accept the fitting computed by the ENatten
with the highest objective function value. The clustersaetned
as follows: each pairtis assigned to the clusterthat corresponds
to the Gaussian that maximizes ; - N'(z; | s, Xs,1). Figure3
illustrates the clustering of some of the head components the
creature dataset.



Bayesian network learning. Given training datd, our method e Ej‘gewﬂ i G

learns the graph structufe and parameter® of the Bayesian net-

. - H . . J Head i i >
work by maximizing the Bayesian Information Criterion seor ——

Complete | Misc. Head Parts

log P(D | G) ~ log P(D | G, ©) — %U log(n), (8

W :
| | | o &

wherew is the number of independent parameters in the network

andn is the number of shapes in the dataset. The first term is the

likelihood of the parametei® and the second term penalizes model Jﬁ ~
complexity. «
Structure learning is NP-hard and exact algorithms are & [Textsearch Search |

super-exponential in the number of variables. Following
Merrell et al. 010, we use a local search heuristic that explores
the space of network structures by adding, removing, angifigp
edges.

Figure 4: Modeling interface. The model is assembled from pre-
sented parts.

To assist the structure learning procedure, we enforcexibeace

of a set of edges that represent obvious conditional deperate 7 Evaluation

For each categor; we establish links from the existential noflie

to the cardinality nodeV;, as well as to the style nod¢s ; }ses, In this section, we describe an experimental evaluatioh®f¢le-
and the symmetry and adjacency nodes involving this cafedbr  vance of the components presented by the probabilistic mGte
categoryl has subcategories, we also establish links to the existen- goal of the experiments was to evaluate the relevance ofrie p
tial nodes of the subcategories. sented components during open-ended 3D modeling.

6 Modeling Interface 7.1 Experimental Setup

The presentation of components using the probabilisticahads
compared to two alternative approaches. The first altermatas
a static ordering of categories and parts. The orderingssdan
the prior probabilities of categories and style clustethentraining
data. Thus more frequently used categories and geomejtes st

with the current shape, as computed by the probabilisticahdthe appear first. Static ordering is the approach used in theeSpea-
order of the categories and parts is automatically updatezhhe ture creator [Maxis Software 2008 where the order of presented

composition of the assembled shape changes. The user ean sel Categories and components does not adapt to the current.mode
a part and drag it onto the assembly area on the right, whése it | "€ second alternative was the purely geometric suggegéioar-

snapped and glued to the current sha®ehjnidt and Singh 2010 ation approach of Chaudhuri and Koltu20[LJ. We have modified
op g i g 1 the published technique to use the same segmentations be in t

To evaluate the presented approach to suggestion gemerat®
have implemented an assembly-based 3D modeling interzaie.
egories of suggested parts are shown on the left, with iddali
parts arranged within categories (Figdje The categories and the
parts within each category are ordered based on their cduiijpat

After adding a component, the user can further adjust ittipos other two conditions, thus the set of components was ideirdiod
orientation, and scale. During these transformationsedjlcon- ~ Only the order of presentation varied across conditionse Jame
nections are maintained so that the part slides, rotatesealds ~ Modeling interface was used in all conditions, so the corapts
on the surface of the rest of the assembly. This reduces e ne Suggested by the approach of Chaudhuri and Kol201Q were
for painstaking 6-DOF manipulation of parts. This snapgdiag also presented by category.

can be disabled when desired, which is useful for assembliibs

narrow, iregular or hard-edged boundaries. To evaluate the relevance of components presented by e dipr

proaches, we recruited 42 volunteers from the student béady o
computer science department in a research university. fldests
were recruited through departmental mailing lists. Moghefpar-
ticipants had little or no prior exposure to 3D modeling. Epar-
ticipant was given a 5-10 minute orientation and was theesix
perform four modeling tasks. The tasks were of two types:

When the user drags in a part that has a symmetric counterpart
the counterpart is automatically generated and transfdrmitn re-
spect to the corresponding symmetry plane. This makes igreas
to position pairs of legs, arms, wings, and wheels. The uaer ¢
delink the symmetric pair and position each part individudbarts

can also be duplicated, reflected and deleted. To suppdiitieon
exploration, the interface provides unlimited undo/redoctional-

ity. The interface also provides a search box that suppextsial
search for category labels, but participants in our expemnis al-
most never gsed this functionality, preferring visual exation of Creature. A neighborhood game company asked you to design a
part categories. large number of creatures for an upcoming fantasy gamet€rea

one such creature using the provided application.

Toy. A neighborhood toy company asked you to design a children’s
toy that they will manufacture. Create such a toy using tlee pr
vided application.

The modeling interface is further demonstrated in the smpph-

tary video. In our experiments, new users became proficiétht w  For the Toy assignment, the tool used a large model librati wi
the tool after 5 minutes of demonstration and 5 additionalutas 491 models obtained from the Digimation ModelBank and Archive
of hands-on exploration. All models in this paper were @dafter collections. The library included models of creaturesgraift, wa-
this minimal training period. tercraft, and furniture. For the Creature assignment,dbkused a
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Figure5: Results for the Toy task (top) and Creature task (bottom).
The plots on the left show the cumulative distribution oégaties
from which parts were chosen, as a function of the rankindhef t
category at the time of selection. The plots on the right stieav
cumulative distribution of components used by participaas a
function of the ranking of the component within its categatryhe
time of selection. The probabilistic model presented melevant
categories and components than the static ordering or toeng-

ric approach of Chaudhuri and Koltur2D1d.

smaller library with173 creature models. Tableprovides further
information on the two datasets.

Generic| Creature

# of database shapes 491 173
# of hand-segmented shapes 180 64
# of categories 62 24

# of unique components 3702 1598

# of style clusters 248 115

# of nodes in Bayesian network 595 265
# of edges in Bayesian network 1224 632

Table 1: Datasets used in the evaluation.

Each participant performed two toy tasks and two creatusksta
Each task was performed in a randomly chosen condition: cemp
nents presented by the probabilistic model, static ordeoncom-
ponents suggested by the approach of Chaudhuri and Koltoa. T
modeling interface was identical in all conditions. The ditions
were not disclosed to the participants, although somerdifiges
were apparent, since in the static condition the order ofpitee
sented components never changed, and in the geometridioondi
the suggestion generation process was much longer dueitdehe
sive computational demands of that technique. Severatjpmnts
performed less than four tasks due to time constraints.téh, tol 1
modeling tasks were completed. The average modeling time pe
session with the probabilistic model was.4 minutes, the median
was 19 minutes, the shortest wasminutes and the longest was
56 minutes. The average modeling time was 25.4 minutes with the
static ordering and 34.3 minutes with the approach of Chawidh
and Koltun.
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Figure6: Number of components used in a single assembled model
(top) and number of library models that the employed compisne
originate from (bottom).

The speed of component presentation by the probabilistidemo
compared favorably with the approach of Chaudhuri and Koltu
We ran parallel modeling sessions during the evaluatioimgusn
eight-core 2.53 GHz Xeon workstation and a quad-core 3.2 GHz
Core i7 workstation. Inference in the Bayesian network wseih-

gle core and completed ih8 seconds on average. The approach of
Chaudhuri and Koltun used all available cores and requivadhly

90 seconds to generate suggestions.

7.2 Results

To evaluate the relevance of components presented by e dipr
proaches, we have analyzed logs generated by the apptidatiall
modeling sessions. Relevance was evaluated both for tezingd
of categories and for the ordering of parts within categori€ig-
ure5 (left) presents the cumulative distribution of categofiesn
which parts were chosen, as a function of the ranking of tlie ca
egory at the time of selection. Thus for the Toy ta6k,6% of
the chosen components were selected from theXicsttegories in
the probabilistic model condition, compared25% in the static
condition and21.3% in the geometric condition. For the Creature
task,75.05% of the components were chosen from the firsat-
egories presented by the probabilistic model, comparet$ 19/%

in the static condition and6.4% in the geometric condition. Fig-
ure5 (right) presents the cumulative distribution of the comgputs
used by participants, as a function of the ranking of the comept
within its category at the time of selection. For both tasfs,prob-
abilistic model outperformed the static ordering and thengetric
approach.

Figure6 (top) shows the distribution of the number of components
used by participants in their models. On average, partitgpased

9.9 components for 3D models created with the probabilisticehod
Figure 6 (bottom) shows the distribution of the number of library
models that served as sources of components for each agsembl
3D model. On average in the probabilistic model conditidre t
components used in single assembled model originate $@rhi-
brary models. The average number of components per asstmble
model and the average number of source library models pemass
bled model was similar across the three conditions.

Figuresl and7 show 3D models created by participants with the
probabilistic model. The models were created entirely wiité
assembly-based 3D modeling interface.
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Figure 7: Top: models created by participants with our assembly-8&@ modeling tool. Bottom: models shown above and in Fidure

with individual components and modeling times.

8 Discussion

We have described a probabilistic reasoning approach tprie
sentation of components in assembly-based 3D modelinga@ur
proach learns a probabilistic graphical model that encodesli-
tional dependencies between shape components. The maatel op
ates on both semantics and geometric style. During an oiteea
modeling session, inference in the probabilistic modelseduto
present relevant components.

The probabilistic model can be augmented in a number of ways.

The model represents conditional dependencies in a dirgcéph.
This captures directed dependencies in the data: when adese
from a commercial jet is added, it “activates” the existeaténo
wings and their adjacency to the fuselage, as well as théeexis
of two or four engines adjacent to the wings. However, centet
lationships can be alternatively modeled by undirectekklimvhich
are more appropriate for representing mutual constrafotsex-
ample, a fuselage from a commercial jet is unlikely to cosexi
with missiles. Future work could investigate the use of texted
graphical models, such as Markov random fields, or partidiy
rected models such as chain graphs. In addition, randorablas
that represent existence information could be omittedvnrfaf a
tree-based representation for the CPDs at the cardinalifghles.
Also, the presented model uses discrete variables, whichligy
both learning and inference; however, geometric style @mobre

precisely modeled with continuous variables, which cathiurin-

crease the relevance of presented parts. The model caneatamb
mented to support a greater variety of symmetries, as welpaisal

and functional relationships between components.

Assembly-based 3D modeling can also benefit
from developments in consistent shape segmentation
[Golovinskiy and Funkhouser 2009  Kalogerakis et al. 2010
from improved techniques for gluing and cutting components
[Sharf et al. 2006 Schmidt and Singh 2010 as well as from
integration with sketch-based interfaces for maniputptietailed
geometry Nealenetal. 2005 This will further advance the

accessibility of three-dimensional content creation.
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A Geometric Descriptors for Components

For each shape componefitfrom source mest/ in the reposi-
tory, we extract 80 + |£|-dimensional feature vector containing:
a) mean and variance of the mean curvature over the surfae of
(the curvature is estimated at multiple scales over neidtdmals of
point samples of increasing radii: 1%, 2%, 5% and 10% redativ
the median geodesic distance between all pairs of pointlesrop

the surface of\f); b) mean and variance of the shape diameter over
the surface of”, and of its logarithmized versions w.r.t. normaliz-
ing parameters 1, 2, 4 and &) the following entries, derived from
the singular value$si, sz, s3} of the covariance matrix of sample
positions on the surface &: si1/>", si, s2/ >, si, 83/ 2_; Si,
(s1+82)/ 32, sis (s1+83)/ 32, sis (s2+s3)/ 32, si 51/52, 81/ 83,
S2/83, 81/82 + s1/83, 51/82 + s2/s3, s1/s3 + s2/s3; d) surface
area and volume af’, divided by total surface area and volume of
M; e)for each label € £, the average geodesic distance between
points onC' and points on\/ with labell, measuring the proximity

of C to siblings with label. Finally, we denoise the data by retain-
ing only the principal components capturing 70% of the varéin

the data.
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