
ARTICLE IN PRESS
0097-8493/$ - se

doi:10.1016/j.ca

�Correspond

E-mail addr

afra@cs.stanfor

gunnar@math.

guibas@cs.stan
1Research su

0101364.
2Research su

CARGO 01384
Computers & Graphics 28 (2004) 881–894

www.elsevier.com/locate/cag
A barcode shape descriptor for curve point cloud data

Anne Collinsa,�,1, Afra Zomorodianb,2, Gunnar Carlssona,1, Leonidas J. Guibasb,2

aDepartment of Mathematics, Stanford University, 450 Serra Mall, Bldg. 380, Stanford, CA 94305 2125, USA
bDepartment of Computer Science, Stanford University, Stanford, CA 94305, USA
Abstract

In this paper, we present a complete computational pipeline for extracting a compact shape descriptor for curve point

cloud data (PCD). Our shape descriptor, called a barcode, is based on a blend of techniques from differential geometry

and algebraic topology. We also provide a metric over the space of barcodes, enabling fast comparison of PCDs for

shape recognition and clustering. To demonstrate the feasibility of our approach, we implement our pipeline and

provide experimental evidence in shape classification and parametrization.
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1. Introduction

In this paper, we present a complete computational

pipeline for extracting a compact shape descriptor for

curve point cloud data (PCD). Our shape descriptor,

called a barcode, is based on a blend of techniques from

differential geometry and algebraic topology. We also

provide a metric over the space of barcodes, enabling

fast comparison of PCDs for shape recognition and

clustering. To demonstrate the feasibility of our

approach, we implement our pipeline and provide

experimental evidence in shape classification and para-

metrization.
e front matter r 2004 Elsevier Ltd. All rights reserve
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1.1. Prior work

Shape analysis is a well-studied problem in many

areas of computer science, such as vision, graphics, and

pattern recognition. Researchers in vision first intro-

duced the idea of using compact representations of

shapes, or shape descriptors, for two-dimensional data or

images. They derived descriptors using diverse methods,

such as topological invariants, moment invariants,

morphological methods for skeletons or medial axes,

and elliptic Fourier parameterizations [1–3]. More

recently, the availability of large sets of digitized three-

dimensional shapes has generated interest in 3D

descriptors [4,5], with techniques such as shape distribu-

tions [6] and multi-resolution Reeb graphs [7]. Ideally, a

shape descriptor should be invariant to rigid transfor-

mations and coordinatize the shape space in a mean-

ingful way.

The idea of using point cloud data or PCD as a display

primitive was introduced early [8], but did not become

popular until the recent emergence of massive datasets.

PCDs are now utilized in rendering [9,10], shape

representation [11,12], and modeling [13,14], among
d.
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other uses. Furthermore, PCDs are often the only

possible primitive for exploring shapes in higher

dimensions [15–17].

1.2. Our work

In a previous paper, we initiated a study of shape

description via the application of persistent homology to

tangential constructions [18]. We proposed a robust

method that combines the differentiating power of

geometry with the classifying power of topology. We

also showed the viability of our method through explicit

calculations for one- and two-dimensional mathematical

objects (curves and surfaces.) In this paper, we shift our

focus from theory to practice, illustrating the feasibility

of our method in the PCD domain. We focus on curves

in order to explore the issues that arise in the application

of our techniques. We must emphasize, however, that we

view curves as one-dimensional manifolds, and insist

that all our solutions extend to n-dimensional manifolds.

Therefore, we avoid heuristics based on abusing

characteristics of curve PCDs and search for general

techniques that will be suitable in all dimensions. We

briefly discuss computing our structures for two-dimen-

sional manifolds, or surfaces, in Section 5.5.

1.3. Overview

The rest of the paper is organized as follows. In

Section 2 we review the theoretical background for our

shape descriptor. We believe that an intuitive under-

standing of this material is sufficient for appreciating the

results of this paper. As such, this section is brief in its

treatment, and we refer the interested reader to our

previous paper for a detailed description [18]. Section 3

contains the algorithms for computing barcodes for

PCDs sampled from closed smooth curves. We also

describe the computation of the metric over the space of

barcodes. We apply our techniques to families of
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Fig. 1. A filtered complex with newly added simplices highlighted. W

filtration. Each persistent interval shown is the lifetime of a topologica

high endpoints, respectively.
algebraic curves in Section 4 to demonstrate their

effectiveness. In Section 5, we extend our system to

general PCDs that may include non-manifold points,

singularities, boundary points, or noise. We then

illustrate the power of our methods through applications

to shape classification and parametrization in Section 6.
2. Background

In this section, we review the theoretical background

necessary for our work. To make the discussion

accessible to the non-specialist, our exposition will have

an intuitive flavor.

2.1. Filtered simplicial complex

Let S be a set of points. A k-simplex is a subset of S of

size k þ 1 (19). A simplex may be realized geometrically

as the convex hull of k þ 1 affinely independent points in

Rd ; dXk: A realization gives us the familiar low-

dimensional k-simplices: vertices, edges, and triangles.

A simplicial complex is a set K of simplices on S such

that if s 2 K then t � s implies t 2 K : A subcomplex of

K is a simplicial complex L � K : A filtration of a

complex K is a nested sequence of complexes ; ¼ K0 �

K1 � � � � � Km ¼ K : We call K a filtered complex and

show a small example in Fig. 1.

2.2. Persistent homology

Suppose we are given a shape X that is embedded in

R3: Homology is an algebraic invariant that counts the

topological attributes of this shape in terms of its Betti

numbers bi [19]. Specifically, b0 counts the number of

components of X. b1 is the rank of a basis for the tunnels

through X. These tunnels may be viewed as forming a

graph with cycles [20]. b2 counts the number of voids in

X, or spaces that are enclosed by the shape. In this
d

a
b

cd

a
b

c

b

c

acd

abcac

e show the persistent interval set in each dimension below the

l attribute, created and destroyed by the simplices at the low and
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manner, homology gives a finite compact description of

the connectivity of the shape. Since homology is an

invariant, we may represent our shape combinatorially

with a simplicial complex that has the same connectivity

to get the same result.

Suppose now that we are also given a process for

constructing our shape from scratch. Such a growth

process gives an evolving shape that undergoes topolo-

gical changes: new components appear and connect to

the old ones, tunnels are created and closed off, and

voids are enclosed and filled in. Persistent homology is an

algebraic invariant that identifies the birth and death of

each topological attribute in this evolution [21,22]. Each

attribute has a lifetime during which it contributes to

some Betti number. We deem important those attributes

with longer lifetimes, as they persist in being features of

the shape. We may represent this lifetime as an interval,

as shown in Fig. 1 for our small example. A feature, such

as the first component in any filtration, may live forever

and therefore have a half-infinite interval as its lifetime.

Persistent homology describes the connectivity of our

evolving shape via a multiset of intervals in each

dimension. If we represent our shape with a simplicial

complex, we may also represent its growth with a filtered

complex.

2.3. Filtered tangent complex

We examine the geometry of our shape by looking at

the tangents at each point of the shape. Although our

approach extends to any dimension, we restrict our

definitions to curves as they are the focus of this paper

and simplify the description.

Let X be a curve in R2: We define T0ðX Þ � X 
 S1 to

be the set of the tangents at all points of X. That is,

T0ðX Þ ¼ ðx; zÞ lim
t!0

dðx þ tz;X Þ

t
¼ 0

����
� �

:

A point ðx; zÞ in T0ðX Þ represents a tangent vector at a

point x 2 X in the direction z 2 S1: The tangent complex

of X is the closure of T0;TðX Þ ¼ T0ðX Þ � R2 
 S1:
T(X) is equipped with a projection p : TðX Þ ! X that

projects a point ðx; zÞ 2 TðX Þ in the tangent complex

onto its basepoint x 2 X ; and p�1ðxÞ � TðX Þ is the fiber

at x.

We may filter the tangent complex using the curvature

at each point. We let T0
kðX Þ be the set of points ðx; zÞ 2

T0ðX Þ where the curvature kðxÞ at x is less than k; and

define TkðX Þ be the closure of T0
kðX Þ in R2 
 S1: We call

the k-parametrized family of spaces fTkðX ÞgkX0 the

filtered tangent complex, denoted by TfiltðX Þ:

2.4. Barcodes

We get a compact descriptor by applying persistent

homology to the filtered tangent complex of our shape.
That is, the descriptor examines the connectivity of not

the shape itself, but that of a derived space that is

enriched with geometric information about the shape.

We define a barcode to be the resulting set of persistence

intervals for TfiltðX Þ in each dimension. For curves, the

only interesting barcode is usually the b0-barcode which

describes the lifetimes of the components in the growing

tangent complex. We also define a quasi-metric, a metric

that has 1 as a possible value, over the collection of all

barcodes. Our metric enables us to utilize barcodes as

shape descriptors, as we can compare shapes by

measuring the difference between their barcodes.

Let I, J be any two intervals in a barcode. We define

their dissimilarity dðI ; JÞ to be the length of their

symmetric difference: dðI ; JÞ ¼ jI [ J � I \ Jj: Note that

dðI ; JÞ may be infinite. Given a pair of barcodes B1 and

B2, a matching is a set MðB1;B2Þ � B1 
 B2 ¼ fðI ; JÞ j I 2

B1 and J 2 B2g; so that any interval in B1 or B2 occurs in

at most one pair ðI ; JÞ: Let M1, M2 be the intervals from

B1, B2, respectively, that are matched in M, and let N be

the non-matched intervals N ¼ ðB1 � M1Þ [ ðB2 � M2Þ:
Given a matching M for B1 and B2, we define the distance

of B1 and B2 relative to M to be the sum

DM ðB1;B2Þ ¼
X

ðI ;JÞ2M

dðI ; JÞ þ
X
L2N

jLj: (1)

We now look for the best possible matching to define the

quasi-metric:

DðB1;B2Þ ¼ min
M

DM ðB1;B2Þ:

3. Computing barcodes

In this section, we present a complete pipeline for

computing barcodes for a PCD. Throughout this

section, we assume that our PCD P contains samples

from a smooth closed curve X � R2: Before we compute

the barcode, we need to construct the tangent complex.

Since we only have samples from the original space, we

can only approximate the tangent complex. We begin by

computing a new PCD, p�1ðPÞ � TðX Þ; that samples the

tangent complex for our shape. To capture its homol-

ogy, we first approximate the underlying space and then

compute a simplicial complex that represents its

connectivity. We filter this complex by estimating the

curvature at each point of p�1ðPÞ: We conclude this

section by describing the barcode computation and

giving an algorithm for computing the metric on the

barcode space.

3.1. Fibers

Suppose we are given a PCD P, as shown in Fig. 2(a).

We wish to compute the fiber at each point to generate a
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(a) PCD P (b) Fibers (c) ≈T(X)

(d) (e) Barcode

κ = 0.5 4.5

Fig. 2. Given a noisy PCD P (a), we compute the fibers p�1ðPÞ

(b) by fitting lines locally. In the volume, the z-axis corresponds

to tangent angle, so the top and the bottom of the volume are

glued. We center �-balls with � ¼ 0:05 at the fiber points to get a

space (c) that approximates the tangent complex TðX Þ: The

fibers and union of balls are colored according to curvature

using the hot colormap shown. The curvature estimates appear

noisy because of the small variation. We capture the topology

of the union of balls using the simplicial complex (d). We show

the a-complex A� for the union of balls in the figure (with

a ¼ �) as it has a nice geometric realization. In practice, we

utilize the Rips complex. Applying persistent homology, we get

the b0-barcode (e).
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new PCD p�1ðPÞ that samples the tangent complex

TðX Þ: Naturally, we must estimate the tangent direc-

tions, as we do not have the underlying shape X from

which P was sampled. We do so by approximating the

tangent line to the curve X at point p 2 P via a total least

squares fit that minimizes the sum of the squares of the

perpendicular distances of the line to the point’s nearest

neighbors. Let S be the k nearest neighbors to p, and let

x0 ¼ 1
k

Pk
i¼1 xi be the average of the points in S. We

assume that the best line passes through x0. In general,

the hyperplane Pðn; x0Þ in Rn which is normal to n and

passes through the point x0 has equation ðx � x0Þ � n ¼

0: The perpendicular distance from any point xi 2 S to

this hyperplane is jðxi � x0Þ � nj; provided than jnj ¼ 1:
Let M be the matrix whose ith row is ðxi � x0Þ

T: Then

Mn is the vector of perpendicular distances from points

in S to the hyperplane Pðn;x0Þ; and the total least

squares (TLS) problem is to minimize jMnj2: The

eigenvector corresponding to the smallest eigenvalue of

the covariance matrix MTM is the normal to the

hyperplane Pðn; x0Þ that best approximates the neighbor

set S. Therefore, for a point p in two dimensions, the
fiber p�1ðpÞ contains the eigenvector corresponding to

the larger eigenvalue, as well as the vector pointing in

the reverse direction.

We note that it is better to use TLS here than ordinary

least squares (OLS), as the optimal line found by the

former method is independent of the parametrization of

the points. Also, when the underlying curve is not

smooth, we may use TLS to identify points near the

singularities by observing when the eigenvalues are close

to each other.

Choosing a correct neighborhood set is a fundamental

issue in PCD computation and relates to the correct

recovery of the lost topology and embedding of the

underlying shape. The neighbor set S may contain either

the k nearest neighbors to p, or all points within a disc of

radius �: The appropriate value of k or � depends on

local sampling density, local feature size, and noise, and

may vary from point to point. It is standard practice to

set these parameters empirically [14,15,17], although

recent work on automatic estimation of neighborhood

sizes seems promising [23]. In our current software, we

estimate k for each data set independently. We hope to

incorporate automatic estimation into our software in

the near future.

3.2. Approximated TðX Þ

We now have a sampling p�1ðPÞ of the tangent

complex TðX Þ; as shown in Fig. 2(b) for our example.

This set is discrete and has no interesting topology. The

usual approach is to center an �-ball B�ðpÞ ¼

fx j dðp; xÞp�g; a ball of radius �; at each point of

p�1ðPÞ: This approach is based on the assumption that

the underlying space is a manifold, or locally flat. Our

approximation to T(X) is the union of �-balls around the

fiber points:

TðX Þ �
[

p2p�1ðPÞ

B�ðpÞ:

Two issues arise, however: first, we need a metric d on

R2 
 S1 so that we can define what an �-ball is, and

second, we need to determine an appropriate value for �:
We define a Euclidean-like metric generally on Rn 


Sn�1 as ds2
¼ dx2

þ o2dz2: That is, the squared distance

between the tangent vectors t ¼ ðx; zÞ and t0 ¼ ðx0; z0Þ is

given by

d2
ðt; t0Þ ¼

Xn

i¼1

ðxi � x0
iÞ

2
þ o2

Xn

i¼1

ðzi � z0iÞ
2;

where o is a scaling factor. Here, the distance between

the two directions z; z0 2 Sn�1 is the chord length as

opposed to the arc length. The first measure approx-

imates the second quite well when the distances are

small, and is also much faster computationally. The

choice of the scaling factor o in our metric depends on
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the nature of the PCD and our goals in computing the

tangent complex. A large value of o will spread the

points of p�1ðPÞ out in the angular directions. This is

useful for segmenting an object composed of flat pieces,

such as the letter ‘V’. However, too much separation can

lead to errors for smooth curves with high curvature

regions, such as an eccentric ellipse. In such regions, the

angular separation at neighboring basepoints changes

rapidly, yielding points that are further apart in p�1ðPÞ:
In these cases, a smaller value of o maintains the

connectivity of X, while still separating the directions

enough to compute the barcodes for T(X). Setting o ¼ 0

projects the fibers p�1ðPÞ back to their basepoints P.

There is, of course, no perfect choice for �; as it

depends not only on the factors described in the

previous section, but also on the value of the scale

factor o in the metric. We need to choose � to be at least

large enough so that the basepoints are properly

connected when o ¼ 0: When o is small, then the

starting � is usually sufficient. When o is large, the union

of �-balls is less connected, which may be precisely what

we want, such as for the letter ‘V’. We have devised a

rule of thumb for setting �: Recall that curvature is

defined to be k ¼
dj
ds
; where j is the tangent angle and s

is arc-length along X. Then, two points that are Dx apart

in a region with curvature k have tangent angles roughly

Dj � kDx apart. Since the chord length Dz approx-

imates the arc length Dj on S1 for small values, the

squared distance between neighboring points in p�1ðPÞ

is approximately Dx2ð1 þ ðokÞ2Þ: So,

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2ð1 þ ðokÞ2Þ

q
2

: (2)

3.3. Complex

We now have an approximation to the tangent

complex as a union of balls. To compute its topology

efficiently, we require a combinatorial representation of

this union as a simplicial complex. This simplicial

complex T(P) must have the same connectivity as the

union of balls, or the same homotopy type.

A commonly used complex in algebraic topology is

the Čech complex. For a set of m points M, the Čech

complex looks at the intersection pattern of the union of

�-balls:

C�ðMÞ ¼ conv T jT � M;
\
t2T

B�ðtÞa;

( )
:

Clearly, the Čech complex is homotopic to the union of

balls. Unfortunately, it is also expensive to compute, as

we need to examine all subsets of the point set for

potentially
Pm

k¼0
m
k

� 

¼ 2mþ1 � 1 simplices. Further-

more, the complex may have high-dimensional simplices
even for low-dimensional point sets. If four balls have a

common intersection in two dimensions, the Čech

complex for the point set will include a four-dimensional

simplex.

A common approximation to the Čech complex is the

Rips complex [24]. Intuitively, this complex only looks at

the intersection pattern between pairs of balls, and adds

higher simplices whenever all of their lower sub-

simplices are present:

R�ðMÞ ¼ fconv T jT � M; dðs; tÞp�; s; t 2 Tg:

Note that C�=2ðMÞ � R�ðMÞ for all �; and that the Rips

complex may have different connectivity than the union

of balls. The Rips complex is also large and requires

O m
k

� 
� 

time for computing k-simplices. However, it is

easier than the Čech complex to compute and is often

used in practice.

Since we are computing b0-barcodes in this paper, we

only require the vertices and edges in T(P). At this level,

the Čech and Rips complexes are identical. For higher

dimensional PCDs such as points from surfaces, however,

we will need triangles and, at times, tetrahedra, for

computing the barcodes. We are therefore examining

methods for computing small complexes that represent the

union of balls. A potential approach utilizes a-complexes

Aa; subcomplexes of the Delaunay complex, the dual to

the Voronoı̈ diagram of the points [25,26]. These

complexes are small and geometrically realizable, and

their highest-dimensional simplices have the same dimen-

sion as the embedding space. We may view our metric

Rn 
 Sn�1 as a Euclidean metric by first scaling the

tangents on Sn�1 to lie on a sphere of radius o: Then, we

may compute a-complexes easily, provided we connect the

complex correctly in the tangent dimension across the top/

bottom boundary. Fig. 2 displays renderings of our space

with the correct scaling as well as an a-complex with a ¼

�: A fundamental problem with this approach, however, is

that we need to filter a-complexes by curvature. Currently,

we do not know whether this is possible. An alternate but

attractive method is to compute the witness complex [27].

This complex utilizes a subsample of landmark points to

compute small complexes that approximate the topology

of the underlying ball-set.

3.4. Filtered tangent complex

We now have a combinatorial representation of the

tangent complex. We next need to filter the tangent

complex using the curvature at the basepoint. Recall

that the curvature at a point x 2 X in direction z is

kðx; zÞ ¼ 1=rðx; zÞ; where r is the radius of the osculating

circle to X at x in direction z: We need to estimate this

curvature at each point of p�1ðPÞ; in order to construct

the filtration on T(P) required to compute barcodes. We

then assign to each simplex the maximum of the

curvatures at its vertices.
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Rather than estimating the osculating circle, we

estimate the osculating parabola as this estimation is

computationally more efficient. Two curves y ¼ f ðxÞ

and y ¼ gðxÞ in the plane have second order contact at x0

iff f ðx0Þ ¼ gðx0Þ; f 0
ðx0Þ ¼ g0ðx0Þ and f 00

ðx0Þ ¼ g00ðx0Þ: So,

if X admits a circle of second-order contact, then it also

admits a parabola of second-order contact. Consider the

coordinate frame centered at x 2 X with vertical axis

normal to X. Suppose the curvature at x is k ¼ 1=r; that

is, the osculating circle has equation x2 þ ðy � rÞ2 ¼ r2:
This circle has derivatives y0 ¼ 0 and y00 ¼ 1=r at x.

Integrating, we find that the parabola which has second-

order contact with this circle, and hence with X, has

equation y ¼ x2=2r; as shown in Fig. 3.

We again approximate the shape locally using a set of

neighborhood points for each point in P. To find the best-

fit parabola, we do not utilize the TLS approach as in

Section 3.1, as the equations that minimize the perpendi-

cular distance to a parabola are rather unpleasant. Instead,

we use OLS which minimizes the vertical distance to the

parabola. Naturally, the resulting parabola depends upon

the coordinate frame in which the points are expressed.

Fortunately, we have already determined the appropriate

frame to use in computing the fibers in Section 3.1. Once

we compute the fiber at p, we move the nearest neighbors

S to a coordinate frame with vertical axis the TLS best-fit

normal direction. We set the origin to be x0 in this

coordinate frame (the average of the points in S) although

we do not insist that the vertex of the parabola lies

precisely there. We then fit a vertical parabola f ðxÞ ¼

c0 þ c1x þ c2x2 as follows. Suppose the collection S of k

neighbor points is S ¼ fðx1; y1Þ; . . . ; ðxk; ykÞg: Let

A ¼

1 x1 x2
1

1 x2 x2
2

..

. ..
. ..

.

1 xk x2
k

0
BBBBB@

1
CCCCCA;
X
x

(0,ρ)

(0,ρ/2)

Fig. 3. The osculating circle and parabola to X (dashed) at x.

The circle has center ð0; rÞ; the parabola has focus ð0; r=2Þ: The

curvature of X at x is k ¼ 1=r:
C ¼ ðc0; c1; c2Þ
T;

Y ¼ ðy1; . . . ; ykÞ
T:

If all points of S lie on f, then AC ¼ Y ; thus Z ¼ AC � Y

is the vector of errors that measures the distance of f from

S. We wish to find the vector C that minimizes jZj: Setting

the derivatives of jZj2 to zero with respect to fcig; we solve

for C to get

C ¼ ðATAÞ
�1ATY :

The curvature of the parabola f ðxÞ ¼ c0 þ c1x þ c2x2 at

its vertex is 2c2; and this is our curvature estimate k at p.

We use this curvature to obtain a filtration of the simplicial

complex T(P) that we computed in the last section.

This filtered complex approximates TfiltðX Þ; the filtered

tangent complex described in Section 2.3. For our

example, Fig. 2(b) and 2(c) show the fibers p�1ðPÞ and

union of �-balls colored according to curvature, using the

hot colormap.

3.5. Metric space of barcodes

We now have computed a filtered simplicial complex

that approximates Tfilt for our PCD. We next compute

the b0 barcodes using an implementation of the

persistence algorithm [22]. Fig. 2(e) shows the resulting

b0-barcode for our sample PCD. As expected, the

barcode contains two long intervals, corresponding to

the two persistent components of the tangent complex

that represent the two tangent directions at each point of

a circle. The noise in our PCD is reflected in small

intervals in the barcode, which we can discard easily.

To compute the metric, we modify the algorithm that

we gave in a previous paper [18] so it is robust

numerically. Given two barcodes B1, B2, our algorithm

computes the metric in three stages. In the first stage, we

simply compare the number of half-infinite intervals in

the two barcodes and return 1 in the case of inequality.

Note that this makes our measure a quasi-metric. In the

second stage, we compute the distance between the half-

infinite intervals. This problem now reduces into finding

a matching that minimizes the distance between two

pointsets, namely the low endpoints of the two sets of

half-infinite intervals. We sort the intervals according to

their low endpoints and match them one-to-one accord-

ing to their ranks. Given a matched pair of half-infinite

intervals I 2 B1; J 2 B2; their dissimilarity is dðI ; JÞ ¼
jlowðIÞ � lowðJÞj; where lowð�Þ denotes the low endpoint

of an interval.

In the third stage, we compute the distance between

finite intervals using a matching problem. Minimizing

the distance is equivalent to maximizing the intersection

length [18]. We accomplish the latter by recasting the

problem as a graph problem. Given sets B1 and B2, we

define GðV ;EÞ to be a weighted bipartite graph [20]. We
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place a vertex in V for each interval in B1 [ B2: After

sorting the intervals, we scan the intervals to compute all

intersecting pairs between the two sets [28]. Each pair

ðI ; JÞ 2 B1 
 B2 adds an edge with weight jI \ Jj to E.

Maximizing the similarity is equivalent to the well-

known maximum weight bipartite matching problem. In

our software, we solve this problem with the function

MAX_WEIGHT_BIPARTITE_MATCHING from the

LEDA graph library [29,30]. We then sum the dissim-

ilarity of each pair of matched intervals, as well as the

length of the unmatched intervals, to get the distance.
κ = 0 50

Fig. 4. Family of ellipses: PCD P, fibers p�1ðPÞ colored by

curvature, and b0-barcode.
4. Algebraic curves

Having described our methods for computing the

metric space of barcodes, we examine our shape

descriptor for PCDs of families of algebraic curves.

Throughout this section, we use a neighborhood of k ¼

20 points for computing fibers and estimating curvature.

4.1. Family of ellipses

Our first family of spaces are ellipses given by the

equation x2

a2 þ
y2

b2 ¼ 1: We compute PCDs for the five

ellipses shown in Fig. 4 with semi-major axis a ¼ 0:5 and

semi-minor axes b equal to 0.5, 0.4, 0.3, 0.2, and 0.1,

from top to bottom. To generate the point sets, we select

50 points per unit length spaced evenly along the x- and

y-axis, and then project these samples onto the true

curve. Therefore, the points are roughly Dx ¼ 0:02

apart. We then add Gaussian noise to each point with

mean 0 and standard deviation equal to half the inter-

point distance or 0.01. For our metric, we use a scaling

factor o ¼ 0:1: To determine an appropriate value for �
for computing the Rips complex, we utilize our rule-of-

thumb: Eq. (2) from Section 3.2. The maximum

curvature for the ellipses shown is kmax ¼ 50; so � �
0:02

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 52

p
=2 � 0:05: This value successfully connects

points with close basepoints and tangent directions,

while still keeping antipodal points in the individual

fibers separated.

4.2. Family of cubics

Our second family of spaces are cubics given by the

equation y ¼ x3 � ax: The five cubics shown in Fig. 5

have a equal to 0, 1, 2, 3, and 4, respectively. In this case,

the portion of the graph sampled is approximately three

by three. In order to have roughly the same number of

points as the ellipses, we select 15 points per unit length

spaced evenly along the x- and y-axis, and project them

as before. The points of P are now roughly 0.06 apart.

We add Gaussian noise to each point with mean 0 and

standard deviation half the inter-point distance or 0.03.

For our metric, we use o ¼ 0:5; primarily for aesthetic
reasons as the fibers are then more spread out. The

maximum curvature on the cubics is kmax � 8; and our

rule-of-thumb suggests that we need � � 0:4: However,

� ¼ 0:2 is sufficient in this case.
5. Extensions

In Section 3, we assumed that our PCD was sampled

from a closed smooth curve in the plane. Our PCDs in

the last section, however, violated our assumption as

both families had added noise, and the family of cubics

featured boundary points. Our method performed quite

well, however, and naturally, we would like our method

to generalize to other misbehaving PCDs. In this section,

we characterize several such phenomena. For each

problem, we describe possible solutions that are restric-

tions of methods that work in arbitrary dimensions. In
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κ = 0 8

Fig. 5. Family of cubics: PCD P, fibers p�1ðPÞ colored by

curvature, and b0-barcode.

Fig. 6. PCD for the letter ‘T’, all fibers in p�1ðPÞ; and fibers

with eigenvalue ratio less than 0.25.
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the final section, we briefly discuss computing our

structures for point cloud data sampled from surfaces

embedded in three dimensions.

5.1. Non-manifold points

Suppose that our PCD P is sampled from a geometric

object X that is not a manifold. In other words, there are

points in the object that are not contained in any

neighborhood that can be parametrized by a Euclidean

space of some dimension. In the case of curves, a non-

manifold point appears at a crossing, where two arcs

intersect transversally. For example, the junction point

of the letter ‘T’ is a non-manifold point. We would like

our method to manage nicely in the presence of non-

manifold points.
Our approach is to create the tangent complex for P

as before, but remove points for which there is no well-

defined linear approximation due to proximity to a

singular point in X. Such points are identified by a

relatively large ratio between the eigenvalues of the TLS

covariance matrix constructed for computing fibers in

Section 3.1. The point removal effectively segments the

tangent complex into pieces. With appropriately large

values of � and o; we can still connect the remaining

pieces correctly.

Fig. 6 shows a PCD for the letter ‘T’. Near the non-

manifold point, the tangent direction (height) and

curvature (color) estimates deviate from the correct

values, and the fiber over the crossing point appears as

two rogue points away from the main segments. By

removing all points whose eigenvalue ratio is greater

than 0.25, we successfully eliminate both rogue and

high-curvature points. The gap introduced in the fibers

over the crossbar of the ‘T’ is narrower than the vertical

(angular) spacing between components. With a well-

chosen value of �; the �-balls will bridge this gap yet

leave four components, as desired. For the images here,

we perturbed points 0.01 apart by Gaussian noise with

mean 0 and standard deviation 0.005—half the inter-

point distance. The tangent complexes are displayed

with angular scaling factor o ¼ 0:2: Balls of radius � ¼
0:1 give the correct T(P).

5.2. Singularities

Our PCD may be sampled from a non-smooth

manifold. For curves, a non-smooth point typically

appear as a ‘‘kink’’, such as in the letter ‘V’. We say a

corner is a singular point in the PCD. If the goal is

simply to detect the presence of a singular point, then

our solution to non-manifold points above—to snip out

those points with bad linear approximation—works

quite well here, as Fig. 7 displays for the letter ‘V’ and

parameters as above.

Sometimes, however, we would like to study a family

of spaces that contain singular points to understand

shape variability. Since our curvature estimates at a non-

smooth point are large, they are included in the filtered

tangent complex relatively late, breaking the complex

into many components early on. Moreover, the curva-

ture estimates correlate well with the ‘‘kinkiness’’ of the
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Fig. 7. PCD for the letter ‘V’, all fibers in p�1ðPÞ; and fibers

with eigenvalue ratio less than 0.25.
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singularity, and enable a parametrization of the family,

as an example illustrates in the next section. This

method extends easily to higher dimensions with high-

er-dimensional barcodes.

5.3. Boundary points

We may have a PCD sampled from a space with

boundary. Counting boundary points of curves could be

an effective tool for differentiating between them.

Currently, our method does not distinguish boundary

points, but simply allows them to get curvature

estimates similar to their neighboring points in the

PCD, as seen for the shapes in Figs. 5, 6, and 7. We

propose a method, however, that distinguishes boundary

points via one-dimensional relative homology. Around

each point p, we may construct B�ðpÞ with its boundary

S�ðpÞ: For a manifold point, the relative homology

group H1ðB�ðpÞ;S�ðpÞÞ has rank 1. Around non-mani-

fold points, the group has rank greater than 1. At a

boundary point, the group has rank 0. This strategy

would empower our method, for example, to distinguish

between the letters ‘I’ and ‘J’ with serifs. We plan to

implement this strategy in the near future.
5.4. Noise

Our PCD samples may contain noise, which affects

our method in two different ways:
Fig. 8. Two examples of hand printed scanned-in digits ‘0’ from

(1)
the MNIST Database. We successfully construct T(P) on the

left, but the mishappen left side of the right ‘0’ is too thick,

resulting in tangent estimate errors and an incorrect T(P).
Noise may effectively thicken a curve so that it is no

longer a one-dimensional object. Once the curve is

thick enough, it becomes significantly difficult to

compute reliable tangent and curvature estimates.
(2)
ζ
T(X)x

x

Noise may also create outliers that disrupt homol-

ogy calculations by introducing spurious compo-

nents that result in long barcode intervals

that are indistinguishable from genuine persistent

intervals.
X

Fig. 9. Surface X with the tangent plane at x and the unit

tangent circle TðX Þx: We also show a dotted portion of the

osculating circle in the direction z:
We resolve the first problem in part by averaging the

estimated curvature values over neighborhoods of each

point. This averaging smooths the curvature calcula-

tions, but does not fix incorrect tangent estimates, which

can result in a mis-connected tangent complex. For some

real-world datasets, our technique encounters problems

in computing reliable tangent estimates. Fig. 8 gives an
example of the resulting misconnected tangent complex

for a scanned-in number from the MNIST database of

handwritten digits [31].

We may resolve the second problem by considering

the density of points in the point cloud, and preproces-

sing the PCD by removing points with low density

values. Another strategy which shows promise is to

postpone including a point in the filtration of T(P) until

it is part of a component with at least k points, for some

threshold size k. Not only does this omit singleton

outliers, but it also reduces the number and size of the

noisy short intervals we see for small k in our barcodes.

5.5. Surfaces

We end this section with a short discussion on

computing tangent complexes for PCDs that are

sampled from two-dimensional manifolds or surfaces.

We have a formal presentation of our techniques for

surfaces in our previous paper, where we also analyze

several families of mathematical surfaces [18]. Recall

that on a curve, there is at most a single osculating circle.

On a smooth surface, however, the tangent space at each

point is a plane, giving us a whole circle of tangent

directions, as shown in Fig. 9. For each point x and

direction z; there exists an osculating circle. The radius

of this circle determines the curvature at that point and

direction. As before, we use this curvature to filter the

points ðx; zÞ in the tangent complex.

In practice, we only have a PCD sampled from a

surface and need to approximate the tangent complex

using the fibers of the points. At each point, we may

approximate the surface locally fitting a quadratic
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surface, sample the circle of directions, and compute

curvatures for those directions. This computation gives

us the fibers p1ðPÞ � TðX Þ that sample the tangent

complex. We may then compute barcodes for the surface

by completing the pipeline outlined in Fig. 2. Observe

that the tangent complex for a surface will be embedded

in R5; making the Rips complex rather large and the

computation potentially expensive. We are exploring

utilizing alternative structures, such as the witness

complex [27], as well as alternative techniques to make

the computation manageable.
6. Applications

In this section, we discuss the application of our work

to shape parametrization and classification. We have

implemented a complete system for computing and

visualizing filtered tangent complexes, and for comput-

ing, displaying, and comparing barcodes.
6.1. Parameterizing a family of shapes

The two families of shapes we saw in Section 4 may be

easily parametrized via barcodes. For a family of ellipses

x2

a2
þ

y2

b2
¼ 1;

with parameters aXb40; we can show mathematically

that the b0-barcode consists of two half-infinite intervals

b

a2
;1

� �

and two long finite intervals

b

a2
;

a

b2

� �
:

For fixed a and decreasing b, the intervals should grow

longer, and this is precisely the behavior of the barcodes

in Fig. 4. Similarly, for a family of cubics with equation

y ¼ x3 � ax parametrized by a, the barcode should

contain two half-infinite intervals and four long finite

ones, with the exact equations being rather complex [18].

As the parameter a grows in value, the length of the
Fig. 10. A bending two-link articulated arm. The b0-barcodes e
finite intervals should increase. Once again, the barcode

captures this behavior in practice as seen in Fig. 5.

An interesting application to shape parametrization is

the recovery of the motion of a two-link articulated arm,

as shown in Fig. 10. Suppose we have PCDs for the arm

at angles from 0 to 901 in 151 intervals, and we wish to

recover the sequence that describes the bending motion

of this arm. As the figure illustrates, sorting the PCDs by

the length of the longest finite interval in their b0-

barcodes recovers the motion sequence. The noise in the

data creates many small intervals. The intrinsic shape of

the arm, however, is described by the two half-infinite

intervals and the two long finite ones.

To illustrate the robustness of our barcode metric, we

compute ten random copies of each of the seven

articulations and compute the distance between them.

Fig. 11 displays the resulting distance matrix, where the

distances are computed using the barcode metric of

Section 3.5. The distance between each pair of points is

mapped to gray-scale, with black corresponding to zero

distance. Pairs whose matrix entry is near the diagonal

of the matrix are close in the sequence, and consequently

have close articulation angles. They are also close in the

barcode metric, making the diagonal of the matrix dark.

We generate each arm by placing 100 points 0.02

apart, and perturbing each by Gaussian noise with mean

0 and standard deviation 0.01. We use o ¼ 0:1 and � ¼
0:005 as for the ellipses in Fig. 4. In addition, we utilize

the curvature averaging strategy of Section 5.4 using the

twenty nearest neighbors to cope with the noise.
6.2. Classifying shapes

To demonstrate the power of our technique for shape

classification, we apply it to a collection of hand printed

scanned-in letters of the alphabet. We stress that our aim

here is not to outperform existing OCR techniques, but

to present an instructive example that illustrates the

power of our techniques. It is clear that a pure

topological classification cannot distinguish between

the letters of the alphabet as it partitions the Roman

alphabet into three classes based on the number of holes.

The letter ‘B’ has two holes, the letters ‘A’, ‘D’, ‘O’, ‘P’,

‘Q’, and ‘R’ have one hole, and the remaining letters

have none.
nable the recovery of the sequence, and hence the motion.
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Fig. 12. Hand-drawn scanned-in copies of the letters discussed

in Section 6.2, together with their b0-barcodes.

Fig. 11. Distance matrix for the two-link articulated arm in

Fig. 10. We have 10 copies of each of the seven articulations of

the arm. We map the distance between each pair to gray-scale,

with black indicating zero distance.
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However, we can utilize the techniques of this paper

to glean more information. For example, the letters ‘U’

and ‘V’ have the same topology, but ‘U’ is smooth while

‘V’ has a kink. This singularity splits the tangent

complex for ‘V’ into four pieces, as in Fig. 7, while the

tangent complex for ‘U’ has only two components. In

turn, these components translate into the half-infinite

intervals in the b0-barcodes of the letters: four for ‘V’,

and two for ‘U’, as shown in Fig. 12. Similarly, although

‘O’ and ‘D’ have the same topology, they are distin-

guishable by the number of half-infinite intervals in their

barcodes, with the singularities in ‘D’ generating two

additional intervals.

Even when two letters are both smooth, we may use

their curvature information to distinguish between them.

For example, the difference in curvature between the

letters ‘C’ and ‘I’ results in different low endpoints for

intervals in their barcodes, as seen in Fig. 12. Even

though the tangent complexes for the two letters have

the same number of components, our barcode metric

can distinguish between them. Finally, we consider the

letters ‘A’ and ‘R’, both of which have tangent

complexes that split into six components that are

represented via the six half-infinite intervals in their

respective barcodes. Again, the curved portion of ‘R’

results in a different low endpoint for one pair of

half-infinite intervals, and hence a different barcode

than for ‘A’.

For our experiments, we scan ten hand printed copies

of each of the eight letters discussed. Each letter has

between 69–294 points, spaced 0.025 apart. We remove
points whose eigenvalue ratio is greater than 0.1, as

discussed in Section 5.1. We then use k ¼ 20 nearest

neighbors to estimate the normal direction and curva-

ture at each point, and use ball radius � ¼ 0:2 and scale

factor o ¼ 0:1 to compute the filtered tangent complex.

Fig. 13(a) displays the resulting distance matrix, where

distance is mapped as before. The letters are grouped

according to the number of infinite components in

T(P):6, 4, and 2, respectively. The distance between

letters from different groups is infinite, as reflected in the

large white regions of the matrix. The matrix illustrates

that we may exploit tangent information to distinguish

between letters that have the same topology.

6.3. Multiple signatures

In the last section, we showed how tangent informa-

tion provides additional power for discriminating

between letters. It is clear from the resulting matrix in

Fig. 13(b), however, that the tangent information, by

itself, is insufficient for a full classification. In the

tangent domain, the letters ‘D’ and ‘V’ look very similar.

But we already know how to distinguish between them

using a pure topological method: ‘D’ has one hole, and

‘V’ has none. So, we must employ information from

both domains for classifying letters. We generalize this

insight to advocate a framework for distinguishing

shapes via multiple barcodes. Within our framework,

each shape has several associated barcodes derived from

different geometric filtrations. For example, we may

consider the shape itself, various metrics or Morse

functions on the space, or derived complexes, such as the

tangent complex. Each barcode captures a different

shape invariant. Since we have a single shape descriptor

throughout our system, we utilize our metric to find
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Fig. 14. Filtering the original point clouds from top to bottom

gives different b0 barcodes for ‘C’ and ‘U’.

(a) (b)

(c) (d)

(e) (f)

Fig. 13. Distance matrices for 10 scanned instances of the

letters ‘A’, ‘R’, ‘D’, ‘V’, ‘U’, ‘C’, ‘I’ and ‘O’. We map the

distance between each pair to gray-scale. (a) b0-barcodes for the

tangent complex T(P) filtered by curvature, (b) a mask matrix,

where distance is 0 if the letters have the same b1; and 1;
otherwise, (c) the combination of (a) and (b), (d) b0 of original

space filtered top-down distinguishes ‘U’ from ‘C’, (e) b0 of

original space filtered right-left distinguishes pairs f‘A’; ‘R’g and

f‘C’; ‘T’g; (f) the combination of all four distance functions

distinguishes all letters.
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distances between respective barcodes of two shapes. We

then combine the information from the different

barcodes for shape comparison.

In the rest of this section, we demonstrate our

framework through the letter classification example.

We must emphasize, however, that the key aspect of our

framework is its generality: it does not rely on detailed

ad-hoc analysis of a particular classification problem,

but rather on a family of signatures that are potentially

useful for solving other problems. Our methods also

have a conceptual nature that extend naturally to higher

dimensional settings.

We begin by extracting information from the topol-

ogy of the letters. As already discussed, the letters are

partially classifiable using the number of loops or b1: We
compute b1 for each letter via a simple method that does

not require a filtration, although we may employ more

robust methods for its calculation. We include all points

of the PCD and use balls of radius 0.08 to construct

a complex. We then create a mask matrix, shown in

Fig. 13(b), where the distance between two shapes is 0 if

they have identical b1 and infinite otherwise. Observe

that the mask allows us to distinguish ‘D’ from ‘V’, and

‘O’ from ‘U’, ‘C’, and ‘I’. We now apply this mask to the

matrix of tangent information in Fig. 13(a) that we

obtained in the last section to get Fig. 13(c). Our new

matrix classifies ‘D’, ‘V’, and ‘I’ correctly, but still has

two blocks that group ‘A’ and ‘R’, and ‘U’, ‘C’, and ‘I’,

respectively.

We next examine separating ‘U’ and ‘C’. An

important characteristic of our metric is that it is

invariant under both small elastic and large rigid

motions. Since a ‘C’ is basically a ‘U’ turned on its

side, we should not expect any topological method to

separate them. However, as the alphabet illustrates,

there are situations where it is necessary to distinguish

between an object and a rotated version of itself. One

way to do so is to employ a directional Morse function

and examine the evolution of the excursion sets X f ¼

fðx; yÞ 2 X j y4f g: As with all our techniques, this

method for directional distinction extends in an obvious

way to higher dimensional point clouds. In this case, we

consider a vertical top-down filtration. Note that

b0ðUf Þ ¼ 2 while b0ðCf Þ ¼ 1 for most values of f.

Therefore, the corresponding b0-barcodes allow us

to distinguish between ‘U’ and ‘C’, as seen in Fig. 14.

This filtration gives us the distance matrix shown in

Fig. 13(d).

Our final filtration employs a horizontal right-left

Morse function. This filtration sharpens the distinction

between the pairs f‘A’; ‘R’g and f‘C’; ‘I’g: We show the

resulting b0-barcodes for representatives of each pair in

Fig. 15, and the resulting distance matrix is shown in

Fig. 13(e).

Having described our filtrations, we combine the

multiple signatures into a single measure, depicted by

the distance matrix in Fig. 13(f). This measure is based

on the four invariant signatures:
(1)
 b0-barcodes of the tangent complex, filtered by

curvature, in Fig. 13(a),
(2)
 b1 of the letters in Fig. 13(b),
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Fig. 15. Filtering the original point clouds from right to left

distinguishes between the pairs f‘C’, ‘T’g and f‘A’, ‘R’g:
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(3)
 b0-barcodes of the letters, filtered top-down, in Fig.

13(d),
(4)
 b0-barcodes of the letters, filtered right-left, in Fig.

13(e).
Let fM1;M2;M3;M4g denote the corresponding dis-

tance matrices, respectively. Since the distance range

varies for each matrix, we re-scale the matrices prior to

combining them. Specifically, if max(M) is the maximum

value of the finite entries in the matrix M, we set l1;3 ¼

maxðM1Þ=maxðM3Þ and l1;4 ¼ maxðM1Þ=maxðM4Þ:
Then our combined distance matrix is

M ¼ M1 þ M2 þ l1;3 � M3 þ l1;4 � M4:

By combining all four signatures, we can readily

distinguish between the eight letters discussed above.

Fig. 13(f) depicts the final result.
7. Conclusion

In this paper we apply ideas of our earlier paper to

provide novel methods for studying the qualitative

properties of one-dimensional spaces in the plane [18].

Our method is based on studying the connected

components of a complex constructed from a curve

using its tangential information. Our method generates a

compact shape descriptor called a barcode for a given

PCD. We illustrate the feasibility of our methods by

applying them for classification and parametrization of

several families of shape PCDs with noise. We also

provide an effective metric for comparing shape

barcodes for classification and parametrization. Finally,

we discuss the limitations of our methods and possible

extensions. An important property of our methods is

that they are applicable to any curve PCD without any

need for specialized knowledge about the curve. The

salient feature of our work is its reliance on theory,

allowing us to extend our methods to shapes in higher

dimensions, such as families of surfaces embedded in R3;
where we utilize higher-dimensional barcodes.
Our work suggests a number of enticing research

directions:
�
 Implementing density estimation techniques to re-

move spurious components arising from noise,
�
 A systematic study of the thickness problem of

scanned curves,
�
 Implementing the strategy for identifying boundary

points, further strengthening our method,
�
 Applying our methods to surface point cloud

data.

It is also potentially very useful to study higher

dimensional persistence, that is, situations where a

complex is filtered by two or more variables. In this

situation, the classification of multiply filtered vector

spaces is much more difficult than the single variable

persistence. Indeed, we do not expect to find a complete

classification in terms of simple combinatorial data like

a barcode. However, we still hope to find interesting

computable invariants that would be quite useful in

studying shape recognition.

We should note that an eventual goal of this work is

automatic shape classification via learning algorithms.

Our approach replaces the raw shape data with

information-rich barcodes that contain geometric and

topological invariants. Learning algorithms could then

discover significant intervals within a barcode, recover

parameterizations, and provide proper weights for

combining barcodes derived from different filtrations.

We believe the combination of our techniques with

learning theory represents an exciting new avenue of

research.
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