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Abstract
In this paper, we initiate a study of shape description and classification via the application of persistent homol-
ogy to two tangential constructions on geometric objects. Our techniques combine the differentiating power of
geometry with the classifying power of topology. The homology of our first construction, the tangent complex,
can distinguish between topologically identical shapes with different “sharp” features, such as corners. To cap-
ture “soft” curvature-dependent features, we define a second complex, the filtered tangent complex, obtained by
parametrizing a family of increasing subcomplexes of the tangent complex. Applying persistent homology, we ob-
tain a shape descriptor, called a barcode, that is a finite union of intervals. We define a metric over the space of
such intervals, arriving at a continuous invariant that reflects the geometric properties of shapes. We illustrate the
power of our methods through a number of detailed studies of parametrized families of mathematical shapes.

1. Introduction

In this paper, we initiate a study of shape description using
a marriage of geometric and topological techniques. For us,
a shape is any closed subset of a Euclidean space. Questions
we wish to answer include:

• Which shapes are identical up to a rigid motion of the
ambient Euclidean space?

• Which shapes belong to certain classes of shapes? For in-
stance, we may wish to distinguish the class of rectangular
prisms form the class of tetrahedra, or the class of ellip-
soids from the class of spheres.

• Which shapes are identical up to a smooth diffeomor-
phism of the ambient Euclidean space? This is a coarse
classification.

• What are the features of the shape? For example, these
features could be singular points of various types.

We attempt to obtain information about shapes through dif-
ferent levels of classification, from fine to coarse. One can
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view geometry as the finest level of classification as it fo-
cuses on local properties of shapes. In this sense, geometry
has a quantitative nature and can answer low level questions
about a shape. But all our questions have a qualitative feel
and take a higher view of a shape. This prompts us to look
at topological techniques which classify shapes according
to the way they are connected globally – their connectiv-
ity. Unfortunately, this view is often too coarse to be useful.
For example, the topological invariant homology classifies
shapes according to the number of components, tunnels, and
enclosed spaces. This classification cannot distinguish be-
tween circles and ellipses, between circles and rectangles, or
even between Euclidean spaces of different dimensions. Fur-
ther, it cannot identify sharp features, such as corners, edges,
or cone points: their neighborhoods are all homeomorphic or
connected the same way. Whereas geometry is too sensitive
for shape description, topology seems to be too insensitive.
We seek to enrich topological techniques with the geomet-
ric content of a shape so that our methods manifest moderate
sensitivity. We need a method that combines local and global
information to characterize a shape.

1.1. Approach

In this paper, we propose a robust method that combines the
differentiating power of geometry with the classifying power
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of topology. We apply homology not to a space X itself, but
to derived spaces that have richer geometric content. In this
case, we construct spaces out of X using tangential infor-
mation about X as a subset of R

n. We define two tangential
constructions: the tangent complex and the filtered tangent
complex. The tangent complex is the closure of the space of
all tangents to all points of X . The homology of this complex
can detect many sharp features of X , such as edges and cor-
ners. However, if the two shapes differ only in soft features,
their tangent complexes are topologically indistinguishable.
For example, an ellipse differs from a circle in having a range
of curvatures, a feature not reflected in the ellipse’s tangents.

For even more differentiating power, we enrich our tan-
gent complex with information about the curvature of the
space at each point. The resulting filtered tangent complex
is actually an increasing family of spaces, parametrized by
curvature. Applying homology to this family, we obtain an
invariant called a persistence module that yields subtler in-
formation about a shape, such as the existence of regions of
low or high curvature. The filtered tangent complex can dis-
tinguish a circle from an ellipse, even though these spaces
are homeomorphic and have homeomorphic tangent com-
plexes. We provide a number of examples to illustrate the
power of our tangential constructions.

We also define a simple shape descriptor that arises from
persistent homology and carries information about a shape.
We call this combinatorial invariant a barcode as it is simply
a finite collection of intervals on the right half line. To com-
pare barcodes, we define a metric on the set of barcodes. We
may now use clustering techniques on the metric space of
barcodes for shape recognition and classification.

In this paper, we deal with explicit calculations for geo-
metric objects to demonstrate the sensitivity of our invari-
ants to properties of shapes, and their effectiveness in shape
recognition. Our main interest, however, is computational.
We wish to obtain information about a shape when we only
have a finite set of samples from that shape. Such a set
of points, commonly called point cloud data or PCD for
short, is a discrete topological space. We are faced, there-
fore, with the additional difficulty of recovering the underly-
ing shape topology, as well as approximating the tangential
spaces we define. These issues extend well beyond the scope
of this paper. Our goal here is to examine the viability of our
techniques in an ideal mathematical setting, where we have
full information about the spaces considered. We make no
claims, however, about the direct applicability of the results
of this paper to the PCD domain, which we have addressed
for PCDs of curves in [CZCG04].

1.2. Background and Prior Work

Distinguishing and recognizing shapes is a well-studied
problem in many areas of computer science, such as vi-
sion, pattern recognition, and graphics [Fan90, Fis89]. Me-

dial axis techniques have been extensively used for this pur-
pose [ZY96]. One particular aspect of this problem is under-
standing “shape spaces” in their entirety [Boo91, KBCL99].
For instance, one may study a shape space from a differen-
tial point of view [LPM01]. Broadly speaking, most methods
try to coordinatize the shape space in a way that gives useful
combinatorial information about the space.

The idea of applying homology to derived spaces is a fa-
miliar one within topology. Some applications include the
classification of vector bundles [MS74], and Donaldson the-
ory, which constructs invariants of smooth structures on ho-
motopy equivalent four-dimensional manifolds, using mod-
uli spaces of self-dual connections [DK90]. The tangential
complexes we study are familiar in geometric measure the-
ory [Fed69]. Morse theory analyzes the topology of a space
by utilizing increasing families of spaces [Mil63]. Persistent
homology was first defined for topological simplification of
alpha shapes [ELZ02]. It was then extended to arbitrary d-
dimensional spaces and arbitrary fields of coefficients using
a classification result [ZC04]. The latter paper also intro-
duced the notion of using intervals as homological invari-
ants.

1.3. Overview

We organize the rest of the paper as follows. We describe
a topological construction that we employ in this paper in
Section 2. We also list some tools we utilized in our calcu-
lations. In Section 3, we define our first derived complex,
the tangent complex, based on the notion of the tangent cone
from geometric measure theory. We also discuss a number
of examples that point out the strengths and weaknesses of
the complex in shape recognition. This discussion motivates
our second derived complex in Section 4, the filtered tangent
complex, which is more sensitive and can detect curvature-
dependent features. Once again, we study a number of ex-
amples in two and three dimensions. Section 5 introduces
persistent homology and the classification it gives in terms
of barcodes. It also defines a metric on the space of barcodes
and gives an algorithm for computing this metric based on
weighted bipartite matching. In Section 6, we revisit our ex-
amples from Sections 3 and 4 and compute their homol-
ogy or persistent homology, drawing the barcodes in the
latter cases. We devote Section 7 to an extended example,
where we illustrate the effect of varying parameters on the
barcodes and the distance between shapes by studying the
parametrized families of a glass and a bottle. We conclude
the paper with some preliminary results from our software
to compute tangent complexes for PCDs.

2. Algebraic Topology

We assume that the reader is familiar with major con-
cepts from algebraic topology, such as homotopy, homotopy
equivalence, homology, and Meyer-Vietoris sequences. For
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these definition see any standard text in the area, such as
Greenberg and Harper [GH81] or Hatcher [Hat01].

We mention a space-level construction we will be using
later in this paper. Intuitively, when a space is broken into a
union of two pieces, we can express it via the construction
of gluing the two pieces together along a subspace.

Definition 1 (A ∪X B) Suppose we have a space X, together
with inclusions f : X ↪→ A and g : X ↪→ B. Then, we may
construct a new space as the quotient of the disjoint union of
A and B,

A ∪X B = A ∪̇X ∪̇B/∼,

where ∼ is the equivalence relation generated by the equiv-
alences x ∼ f (x) ∈ A, and x ∼ g(x) ∈ B, for all x ∈ X. Simi-
larly, if we have inclusions f : X ↪→A, g : X ↪→B, h : Y ↪→B,
and k : Y ↪→C, we define

A ∪X B ∪Y C = (A ∪X B) ∪Y C.

Although this construction depends on the inclusions f and
g, they are not indicated in the notation.

Example 1 (glass) Figure 1 shows the construction of a
glass shape from two pieces. The side is a cylinder A =
S1× [0,1] and the bottom is a disc B = D2. We use the dashed
circle X = S1 to glue the two spaces together, resulting in
D2 ∪S1 (S1 × [0,1]), which looks like a glass or the bottom
of a bottle.

Figure 1: The cylinder S1 × [0,1] and the disc D2 are
glued together along the dashed circles. The resulting space
D2 ∪S1 (S1× [0,1]) has the same geometry as a glass or bot-
tom of a bottle.

3. The Tangent Complex

In this section, we introduce the first of our tangential con-
structions, the tangent complex for a subset of R

n. Our con-
struction is closely related to the concept of the tangent cone,
defined in geometric measure theory [Fed69]. After defining
the complex, we give a number of examples for intuition.

Definition 2 (tangent complex) Let X be any subset of R
n.

We define T 0(X) ⊆ X ×Sn−1 to be

T 0(X) =

{

(x,ζ) | lim
t→0

d(x+ tζ,X)

t
= 0
}

.

The tangent complex of X is the closure of T 0, T (X) =

T 0(X) ⊆ X ×Sn−1. T (X) comes equipped with a projection
π : T (X) → X that projects a point (x,ζ) ∈ T (X) in the tan-
gent complex onto its basepoint x, and T (X)x = π−1(x) ⊆
T (X) is the fiber at x.

Informally, (x,ζ) represents a tangent vector at a point x∈ X ,
if the ray beginning at x and pointing in the direction pre-
scribed by ζ approaches X faster than linearly. There is also
a projection ω : T (X)→ Sn−1 that projects all the fibers onto
the (n−1)-sphere. We have the following useful proposition
concerning this construction.

Proposition 1 Suppose that x ∈ X is a smooth point of X,
so that there is a neighborhood U ⊆ R

n of x and a smooth
function f : U → R

m, such that

• U ∩X = f−1(0), and
• the Jacobian of f , D f (ξ), has rank m for every ξ in U.

Then T (X)x ∼= Sn−m−1

For intuition, we next give a number of examples. We will
revisit these examples in Section 6 to discuss the homology
of their tangent complexes. We begin with one-dimensional
objects, as they are easier to work with, given the definition.

Example 2 (hyperplane) Let L be a line in the xy-plane,
given by the equation (x−x0) ·ξ = 0, for point x0 and vector
ξ. Then we have ω(T (L)) = {±η}, where η is a unit vector
perpendicular to ξ, and

T (L) ∼= L×{±η}.

We show the line and its tangent complex in Figure 2. The
arrows on the tangent complex components give the direc-
tions of the tangents. The fiber at any point consists of two
distinct points, or a zero-dimensional sphere S0. More gen-
erally, let X ⊆R

n be the hyperplane determined by the equa-
tion (x − x0) · ξ = 0, where x0 and ξ are n-vectors. Then
T (X) ∼= X ×S(ξ), where S(ξ) denotes the unit sphere in the
plane of vectors perpendicular to ξ. This result holds with X
replaced by any halfplane or quadrant in X .

x L

−η

+η

x0

ξ

Figure 2: The solid line L is defined by point x0 and nor-
mal ξ. It has a tangent complex that is composed of the two
dashed components in the directions ±η. The fiber at point
x consists of two points.
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Example 3 (vee) Consider a space X ⊆ R
2 that looks like

a ‘V’, as shown in Figure 3. Formally, X = (R+ × 0) ∪
(0×R+). We evaluate the fibers T (X)x directly. The fiber
at any smooth point is S0 as in the previous example. For
points along the x-axis, the two points will be (x,(1,0)) and
(x,(−1,0)), and along the y-axis, they will be (x,(0,1)) and
(x,(0,−1)). At the origin O, however, the fiber T (X)O con-
sists of four points, namely (O,(±1,0)) and (O,(0,±1)).
We can easily verify that the tangent complex is actually the
union of two pieces, the tangent complexes of the two factors
of the space:

T (R+ ×0) = (R+ ×0)×{(±1,0)},

T (0×R+) = (0×R+)×{(0,±1)}.

So that the entire complex is:

T (X) = (R+ ×0)×{(±1,0)} ∪ (0×R+)×{(0,±1)}.

It is easy to see that this space is a disjoint union of four
distinct half lines, as shown in Figure 3.

O

y x

Figure 3: Solid ‘V’ space X has a tangent complex T (X)
that is composed of the four dashed components.

The features detected by homology of the tangent com-
plex are sharp features: they are unaffected by smooth dif-
feomorphisms of the ambient space R

n. However, we are
often interested in soft features that are characterized by
changes in curvature. We give two examples of the kinds
of features we would like to capture.

Example 4 (circle vs. ellipse) Consider the difference be-
tween a circle and an ellipse. They are topologically the
same and have no sharp features. There is, however, a dif-
ference in the lengths of the axes in the case of the ellipse
that distinguishes it from the circle.

Example 5 (bottle vs. glass) Consider the difference be-
tween a bottle and a glass. Again, they are topologically the
same and even have a common sharp feature: the circular
rim at the bottom. But a bottle has a narrow neck that a glass
does not have. Of course, bottles have many different shapes,
but they all share this basic difference with a glass.

The distinctions above cannot be detected via homology
directly, as the spaces are homeomorphic. They cannot be

detected by the tangent complex, either, as the objects are
obtainable from each other by smooth deformations of the
ambient space. Rather, they require more a sophisticated
construction which we introduce in the next section.

4. The Filtered Tangent Complex

In this section, we define a second construction based on tan-
gential information: the filtered tangent complex. We devote
the bulk of this section to detailed examples, building the
complex for interesting families of subspaces of the two- and
three-dimensional Euclidean spaces. We will revisit these
examples in Section 6, when we apply persistent homology
to arrive at compact shape descriptors.

4.1. Definition

We begin by examining points in the tangent complex of a
curve. Recall that a point (x,ζ) in T 0(X) is composed of a
basepoint x ∈ X in the space and a tangent direction ζ, as
shown for an example in Figure 4. For each direction, we
compute the absolute value of the curvature, the inverse of
the radius of the osculating circle shown in the figure. We
formalize this concept next.

Definition 3 (second order contact) Let X ⊆ R
n and (x,ζ)

∈ T 0(X) (the tangent complex before the closure operation.)
We say (x,ζ) has a circle of second order contact if there is
a point x0 ∈ R

n, such that (x− x0) · v = 0 for all v for which
(x,v) ∈ T 0(X) and

lim
θ→0

d(x0 + cosθ · (x− x0)+ sinθ · |x− x0| ·ζ,X)

θ2 = 0.

We define ρ(x,ζ) = |x− x0| to be the radius of this circle.

Note that there exists at most one circle of second order con-
tact at any point of T (X), so the definition is well-defined.
Here, we allow ρ to take the value ∞ for flat regions of a
curve.

x−x0

0x ζx−x|        |0

x
ζ

X

θ

Figure 4: (x,ζ) is in T 0(X), i.e. point x on curve X has unit
tangent ζ. The osculating circle at x is centered at x0. The
perpendicular vectors x− x0 and |x− x0|ζ and parameter θ
provide coordinates for points on the circle.
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Definition 4 (filtered) Let T 0
δ (X) to be the set of points

(x,ζ) ∈ T 0(X) for which the circle of second order con-
tact exists with δ ≥ 1/ρ(x,ζ). Let Tδ(X) be the closure of
T 0

δ (X) in R
n × Sn−1. We call the δ-parametrized family of

spaces {Tδ(X)}δ≥0 the filtered tangent complex, denoted by
T filt(X).

In other words, we allow tangent complex points to enter
the complex according to the curvature at their associated
basepoints. If δ ≤ δ′, we have an inclusion Tδ(X) ⊆ Tδ′(X),
so the complexes are properly nested. As before, we denote
Tδ(X)x = π−1

δ (x), where πδ : Tδ(X) → X is the natural pro-
jection. It is the topological structure of T filt(X) that carries
information about the soft features of the underlying space.

4.2. Examples: Curves

We elucidate these concepts through examples in the rest of
this section. We begin with one-dimensional subsets of R

2,
or curves.

Example 6 (circle) Let X be the circle of radius R centered
at the origin in the plane. The full tangent complex T (X) is
homeomorphic to S1×S0, as there are two tangent directions
at each point. Every point (x,ζ) ∈ T 0(X) admits a circle of
second order contact, namely X itself, so ρ(x,ζ) = R for all
(x,ζ). Therefore,

Tδ(X) =

{

∅, for δ < 1/R,
T (X), for δ ≥ 1/R.

Example 7 (ellipse) Let X be the ellipse given by the equa-
tion x2

a2 + y2

b2 = 1. Since X is a smooth manifold, every
(x,ζ) admits a circle with second order contact. We recall
that the formula for the radius of the osculating circle to a
parametrized curve ϕ(t) = (x(t),y(t)) is given by

|ϕ′(t)|3

|x′(t)y′′(t)− x′′(t)y′(t)|
.

A parametrization for the ellipse X is given by ϕ(t) =
(acos(t),bsin(t)). Direct computation shows that at the
point ϕ(t), ρ is given by

(a2 +(b2 −a2)cos2(t))
3
2

ab
,

for both tangent directions. Without loss of generality, we
assume b > a > 0. Then, ρ attains its maximum value of
b2/a at t ∈ {0,π}, and its minimum value of a2/b at t ∈
{π/2,3π/2}.

Moreover, ρ is decreasing as t increases in intervals
(

0, π
2
)

and
(

π, 3π
2

)

, and increasing in intervals
( π

2 ,π
)

and
(

3π
2 ,2π

)

. Therefore, the filtered tangent complex behaves
as follows. For each case, there is a corresponding illustra-
tion in Figure 5.

Figure 5: Ellipse x2 +y2/4 = 1. Points x whose fiber Tδ(X)x
has two components are indicated with thick lines. From left
to right, we have 0 ≤ δ < a

b2 , δ = a
b2 , a

b2 < δ < b
a2 , and

δ ≥ b
a2 .

1. For 0 ≤ δ < a
b2 , Tδ(X) = ∅.

2. For δ = a
b2 , Tδ(X) consists of four points, namely

(±a,0)× (0,±1).
3. For a

b2 < δ < b
a2 , Tδ(X) consists of four connected con-

tractible components. These components have basepoints
along two disjoint arcs on X , centered at the points
(±a,0), and bounded away from the points (0,±b).

4. For δ ≥ b
a2 , Tδ(X) = T (X), the full tangent complex,

which is two copies of the ellipse, in clockwise and coun-
terclockwise directions.

4.3. Examples: Surfaces

Before going on to examples involving surfaces, we review
some aspects of the geometry of surfaces. Recall that on
a curve, there was at most a single osculating circle. On a
smooth surface, however, the tangent space at each point is a
plane, giving us a whole circle of tangent directions. To con-
struct the tangent complex, we need to determine the radius
of the osculating circle in each direction.

Let x ∈ X be a point in a smoothly embedded space X
in Euclidean space. The best linear approximation to X at
the point x, the tangent plane, determines a normal direction
to the surface. Choosing one of the two unit vectors in the
normal direction as axis z, we obtain a coordinate system for
R

3 centered at x with the surface tangent to the “xy-plane”,
as shown in Figure 6.

With respect to this coordinate system, the best approxi-
mating quadratic surface to X is given by an equation of the
form z = Q(x,y) = Ax2 + Bxy +Cy2. When restricted to the
unit circle on the tangent plane, Q attains its minimum and
maximum values at pairs of antipodal points which deter-
mine a pair of perpendicular directions. These critical values
are called the principal curvatures and their corresponding
directions the principal directions. For an arbitrary direction
ζ in the tangent plane, 2 |Q(ζ)|= 1/ρ(x,ζ), the reciprocal of
the radius ρ(x,ζ) of the osculating circle to the surface X in
the direction ζ. Therefore, for a point x ∈ X , Tδ(X)x consists
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of points (x,ζ) ∈ T (X)x where 2|Q(ζ)| ≤ δ. Let κ1,κ2 de-
note the minimum and maximum values of 2|Q| on T (X)x.
The following cases describe Tδ(X)x.

1. If δ < κ1, then Tδ(X)x = ∅.
2. If δ = κ1 < κ2, then Tδ(X)x consists of two antipodal

points.
3. If κ1 < δ < κ2, Tδ(X)x consists of two disjoint closed

antipodal arcs.
4. If δ ≥ κ2, then Tδ(X)x is the entire circle T (X)x.

The fibers described here are similar to the basepoint projec-
tions of Example 7, illustrated in Figure 5, if we replace the
ellipse with a unit circle. Given our analysis, we may now
examine some surfaces in R

3.

Example 8 (surface of revolution) Consider the graph of
any function y = f (x), with f (x) > 0, and the surface of
revolution X obtained by revolving the graph around the x-
axis. Assuming that f is smooth, standard differential ge-
ometry tells us that at any point, the directions parallel and
perpendicular to the circle of revolution are the principal di-
rections [BG92]. Let v = (x,y,z) be a point in X . We define
ρrev(v),ρgraph(v) to be the radii of the circles of second order
contact in the parallel and perpendicular directions, respec-
tively, and κrev(v) = 1/ρrev(v) and κgraph(v) = 1/ρgraph(v) be
the corresponding curvatures. It is easy to see that ρrev(v) is
the distance along the direction normal to the graph from the
point (x, f (x)) to the axis of revolution, and ρgraph(v) is the
radius of the osculating circle to the graph at (x, f (x)).

It is immediate that T (X) ∼= X × S1. The projection of
Tδ(X) is itself a surface of revolution, of the set of points
that have directions with low enough curvature: {(x, f (x)) |
κrev ≤ δ or κgraph ≤ δ}. A non-empty fiber at v consists
of two antipodal points or two disjoint antipodal arcs if
(

κrev ≤ δ < κgraph) or
(

κgraph ≤ δ < κrev) , and consists of a
full circle, otherwise.

5. Persistent Homology and the Barcode Invariant

Our notion of a filtered tangent complex gives us a fam-
ily of nested complexes, each with its own homology. The
global topological properties of this family of spaces carries

X

ζ
T(X)x

x

Figure 6: Surface X with the tangent plane at x and the unit
tangent circle T (X)x. We also show a dotted portion of the
osculating circle in the direction ζ.

information about the shape of the object. As we showed
in the last section, this family can often distinguish between
topologically identical objects with different geometries. We
will need invariants of this topological structure which can
be readily computed. Evaluating homology on each of the
spaces Tδ(X), we obtain homology groups Hn(Tδ(X)) for
each δ ≥ 0. While it is possible to glean information about
the space from these groups, it would be computationally
infeasible to do so. Furthermore, we would lose important
information about the family, namely the homomorphisms
Hn(Tδ(X)) → Hn(Tδ′(X)) whenever δ ≤ δ′, induced by the
inclusion Tδ(X) ↪→ Tδ′(X).

We summarize the topological information about the fil-
tered tangent complex in the notion of a persistence module,
a directed system of Abelian groups parametrized on the or-
dered set [0,∞) [ZC04]. Persistence modules capture the in-
formation contained in the homomorphisms, are computable
in the time required for computing a single homology group,
and are classifiable in terms of a compact combinatorial ob-
ject called a barcode. In this section, we introduce these al-
gebraic and combinatorial notions for application to our ge-
ometric situation. We begin by defining the persistence mod-
ules and their classification as barcodes. We then introduce a
metric on the space of barcodes. We end the section by giv-
ing an algorithm for computing this metric using maximum
weighted bipartite matching.

5.1. Persistent Homology

In this section, we define the persistence module and show
how filtered tangent complexes give rise to such modules
naturally.

Definition 5 (persistence module) Let T denote any to-
tally ordered set, and let R be a ring. A R-persistence module
parametrized by T is a family of R-modules {Mt}t∈T to-
gether with homomorphisms of R-modules ϕt,t′ : Mt → Mt′

for all t ≤ t′, such that the homomorphisms are compatible,

ϕt,t′ ·ϕt′,t′′ = ϕt,t′′ , (1)

whenever t ≤ t′ ≤ t′′

Example 9 (N) Let T = N = {0,1,2, . . .}. Then an R-
persistence module parametrized by T is simply a family
of modules {Mn}n≥0, with homomorphisms

M0 → M1 → ·· · → Mn−1 → Mn → Mn+1 → ·· · .

Such an object is often called an inductive system of R-
modules. A straightforward variant is one where T = Z, the
set of all integers, giving rise to a double-ended system of
the type described above.

Example 10 (filtered tangent complex) Suppose that we
have a family of spaces Xδ, parametrized by the real val-
ued parameter δ, so that Xδ ⊆ Xδ′ whenever δ ≤ δ′. Then the
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family of Abelian groups Hn(Xδ,G), where G is any Abelian
group, is a G-persistence module parametrized by R. Note
that if G is any field, then we obtain a G-persistence vector
space parametrized by R over the field G.

We also speak of a persistence chain complex
parametrized by T over a ring R, a family of chain
complexes {C t

∗}t∈T of G-modules together with chain
maps C t

∗ → C t′
∗ whenever t ≤ t′, satisfying the analogues

of the compatibility relations (1) above. The homology of
a persistence complex parametrized by T over G is always
a G-persistence module, parametrized by T . There are
analogous notions of homomorphism and isomorphism for
persistence modules. We are mainly concerned with the
classification, up to isomorphism, of persistence modules
over fields.

5.2. Classification over Fields

We first consider persistence modules {Vt}t∈N parametrized
by N over a field F . We are able to classify these mod-
ules, provided they are finite. Precisely, a persistence module
{Vt}t parametrized by N over F is of finite type if

1. each vector space Vt is finite dimensional, and
2. there is an integer N so that for all t ≥ N, ϕN,t are isomor-

phisms.

Given any pairs of integers (m,n) with m ≤ n, we define the
persistence module Q(m,n) over N by

Q(m,n)t =

{

0, if t < m or t ≥ n,
F, otherwise,

The homomorphisms ϕi j are the identity homomorphisms
for m ≤ i ≤ j ≤ n. We can trivially extend this definition to
the case n = +∞. The main result of [ZC04] is the follow-
ing.

Proposition 2 (classification) A persistence module
parametrized by N over F of finite type is isomorphic to one
of the form

n
⊕

s=1
Q(is, js),

where js can be +∞, and the decomposition is unique up to
the order of the pairs.

This result is a consequence of the fundamental theorem for
finitely generated modules over the graded principal ideal
domains (PID) F[t], with t having degree 1. Using the Artin-
Rees construction, we can show that persistence modules
parametrized by N over any ring R are characterized by an
associated graded module (non-negatively graded) over R[t],
and the result follows by taking R = F . We note this sim-
ple classification does not extend to non-fields, as the graded
R[t] will not be a PID.

We can achieve similar results for other parameter spaces
using suitable finiteness conditions. For example, if T = R,
we say a persistence module {Vs}s over F is of finite type if
there are a finite number of unique finite-dimensional vector
spaces in the persistence module. Let I be an interval. We
define a persistence vector space Q(I) over F

Q(I)s =

{

0, if s 6∈ I,
F, otherwise,

where the homomorphism is the identity within each inter-
val. We can now state an analog of Proposition 2.

Proposition 3 A persistence module parametrized by R

over F of finite type is isomorphic to one of the form
n
⊕

s=1
Q(Is),

where each interval Is is bounded from below, and the de-
scription is unique up to the order of the intervals.

5.3. Metric Space of Barcodes

In the last section, we saw that we can classify persistence
modules parametrized by N with using a number of pairs of
integers {(is, js)}s. If we view these pairs as half-open in-
tervals {[is, js)}s, the description matches that of modules
parametrized by R. This family of intervals is our shape de-
scriptor.

Definition 6 (barcode) A barcode is a finite set of intervals
that are bounded below.

Intuitively, the intervals denote the life-times of a non-trivial
loop in a growing complex. The left endpoint signifies the
birth of a new topological attribute, and the right endpoint
signals its death. The longer the interval, the more important
the topological attribute, as it insists on being a feature of the
complex.

We next wish to form a metric space over the collection of
all barcodes. We do so using a quasi-metric, a metric that has
∞ as a possible value, where x+∞ = ∞ and ∞+∞ = ∞.
Let I denote the collection of all possible barcodes. We wish
to define a quasi-metric D(S1,S2) on all pairs of barcodes
(S1,S2), with S1,S2 ∈ I, so that if we move the endpoint of
any single interval in either set by a dissimilarity ε, D(S1,S2)
changes by no more than ε. Let I,J be any two intervals in
a barcode. We define their dissimilarity δ(I,J) to be their
symmetric difference: δ(I,J) = µ(I ∪ J− I ∩ J), where µ de-
notes one-dimensional measure. Note that δ(I,J) may be in-
finite. Given a pair of barcodes S1 and S2, a matching is a
set M(S1,S2) ⊆ S1 × S2 = {(I,J) | I ∈ S1 and J ∈ S2}, so
that any interval in S1 or S2 occurs in at most one pair (I,J).
Let M1,M2 be the intervals from S1,S2, respectively, that
are matched in M, and let N be the non-matched intervals
N = (S1 −M1)∪ (S2 −M2). Given a matching M for S1 and
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S2, we define the distance of S1 and S2 relative to M to be
the sum

DM(S1,S2) = ∑
(I,J)∈M

δ(I,J)+ ∑
L∈N

µ(L).

We now look for the best possible matching to define the
quasi-metric.

Definition 7 (metric) D(S1,S2) = minM DM(S1,S2).

For a pair (I,J), we know that δ(I,J) = µ(I) + µ(J)−
2µ(I∩J). Now, for any matching M, we define the similarity
of S1 and S2 with respect to M to be

SM(S1,S2) = ∑
(I,J)∈M

µ(I ∩ J)

=
1
2

(

∑
S1

µ(I)+∑
S2

µ(J)−DM(I,J)

)

.

Minimizing DM is equivalent to maximizing SM . We may
do the latter by recasting the problem as a graph problem.
Given sets S1 and S2, we define G(V,E) to be a weighted bi-
partite graph [CLRS01]. We place a vertex in V for each in-
terval in S1 ∪S2. We place an edge in E for each pair (I,J)∈
S1 × S2 with weight µ(I ∩ J). Maximizing SM is equivalent
to the well-known maximum weight bipartite matching prob-
lem. We may utilize one of several algorithms for computing
the matching, such as the Hungarian algorithm with time
complexity O(|V ||E|) [Kuh55], or the Gabow-Tarjan algo-
rithm with complexity O(

√

|V ||E| log |E|) [GT89].

6. Examples, Revisited

Having described persistent homology, in this section we re-
visit all of our examples from sections 3 and 4. We give pre-
cise descriptions of the homology groups, and in the case of
the filtered complexes, we provide pictures of the barcodes
that describe the persistence modules.

Example 11 (hyperplane) For the hyperplane X in Exam-
ple 2, we found that the tangent complex has the form
X × Sn−1. Since X is contractible, we may use the Kün-
neth formula to conclude that H∗(T (X)) ∼= H∗(Sn−1). We
list Hi(T (X)) in the following table, where the dimension is
listed horizontally, and i maps to dimensions not accounted
for.

0 i n−1
Z 0 Z

The Betti numbers are the dimensions of these vector spaces,
so β0(T (X)) = βn−1(T (X)) = 1 and βi(T (X)) = 0, for i 6=
0,n− 1. In the remaining examples, we do not list the Betti
numbers explicitly, as they can be easily read off.

Example 12 (vee) In Example 3, we found that T (X) for
the vee-shaped space is a disjoint union of four rays, shown

in Figure 3. As each ray is contractible, H∗(T (X)) is isomor-
phic to the homology of four points. Explicitly,

0 i
Z

4 0

We next analyze some cases of the filtered tangent com-
plex. Since our description of persistent homology in terms
of barcodes only works for homology with field coefficients,
we will work only with homology with F = Z/2Z coeffi-
cients.

Example 13 (circle) In Example 6, we computed T filt(X)
for a circle of radius R in the plane. We found that the entire
tangent complex appeared when δ = 1/R. Below, we list the
homology groups, where we now use rows to delineate the
range for δ. To reduce clutter, we omit the lower bound of δ
in each row, as it is implicitly defined by a higher row or is
zero. We draw the corresponding barcodes in Figure 7.

δ 0 1
< 1/R 0 0
≥ 1/R F

2
F

2

-

-

0 1
R ∞

(a) β0

-

-

0 1
R ∞

(b) β1

Figure 7: Barcodes for the circle.

Example 14 (ellipse) In Example 7, we computed T filt(X)

for the ellipse x2

a2 + y2

b2 = 1. While the full tangent complex
T (X) matches that of the circle in the previous example, we
saw that Tδ(X) for the ellipse evolved through three stages,
as shown in Figure 5. We draw the corresponding barcodes
in Figure 8.

δ 0 1
< a/b2 0 0
< b/a2

F
4 0

≥ b/a2
F

2
F

2

0 a
b2

b
a2

-

-

∞

(a) β0

0 a
b2

b
a2

-

-

∞

(b) β1

Figure 8: Barcodes for the ellipse.
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7. Shape Recognition with Homology

In this section, we show how the homology of our tangential
constructions is an effective tool for shape recognition and
classification. In particular, we see how the method can clas-
sify objects in a continuous family of objects that have been
modified by smooth deformations in the ambient space.

Example 15 (bottle vs. glass) In Example 5, we asked for
a technique for distinguishing a bottle from a glass. The sur-
faces are homeomorphic and share sharp features. Therefore,
we must look at the filtered tangent complex for distinguish-
ing features. In this example, we compute the barcode invari-
ant for both objects and show how we may compare them
using our metric

Both a bottle and a glass may be described as surfaces of
revolution, as shown in Figure 9. In both cases, we add a ver-
tical line to the graph of a function. In order to study the fil-
tered tangent complex, we need to make some assumptions
about the shape of these objects. We begin with the bottle.
Let f : [0,H]→R be a twice-differentiable positive function
whose graph is used to sweep out a bottle of height H. We
make the following assumptions about f and the principle
curvatures κrev and κgraph (cf. Example 8):

1. f is constant on the closed intervals [0,ξ0] and [ξH ,H],
with f (0) > f (H), and is monotonically decreasing from
ξ0 to ξH , with a single inflection point at ξ.

2. κrev is monotonically increasing.
3. κgraph is 0 at the inflection point and the intervals where

f is constant, and has exactly two local maxima at ξ− ∈
(ξ0,ξ) and ξ+ ∈ (ξ,ξH).

Let κ0 = κrev(0) = 1/ f (0) and κH = κrev(H) = 1/ f (H) de-
note the inverse of the cross-sectional radii at 0,H, respec-
tively. Clearly, κ0 < κH . Let κ− = κgraph(ξ−) and κ+ =
κgraph(ξ+) denote the inverse of the radius of the osculat-
ing circle to the curve at ξ−,ξ+, respectively. There are a
number of different cases for analyzing Tδ(X). We will deal
with the case 0 < κ+ < κ− < κ0 < κH , corresponding to
a rather long, slowly tapering bottle, much like a Riesling
wine bottle. Other cases may be treated similarly. We obtain
the following results about Tδ(X).

• δ = 0: Any point where the curvature κgraph vanishes has
non-empty fiber in T0(X). The projection of T0(X) decom-

(a) bottle (b) glass

Figure 9: Surfaces of revolution around the x-axis.

poses into three components: W1,W2 and W3, correspond-
ing to bottle’s body, a circle at f ’s inflection point, and the
bottle’s neck, as shown in Figure 10(a). More precisely,
W1 is the surface of revolution generated by rotating the
vertical line segment 0× [0, f (0)] together with the hori-
zontal line segment [0,ξ0]× f (0) around the x-axis. W2 is
generated by rotating the point (ξ, f (ξ)). W3 is generated
by rotating the segment [ξH ,H]× f (H). W2 is a circle,
and W3 is a cylinder (or annulus, when viewed from the
top), which is homotopy equivalent to a circle. The fiber
in T0(X) at each point of W2 or W3 is a pair of points, the
zero-dimensional sphere S0, and we have

π−1(W2) ∼= π−1(W3) ∼= S1 ×S0.

W1 is precisely the glass we constructed in Example 1.
So, π−1(W1) is the union of two pieces U and V , where U
is the 0-tangent complex of the base disc, and V is the
0-tangent complex of the side. Since the base disc D2

is flat, each fiber in U is a full circle, and we know that
U ∼= D2 × S1 by Example 2. The side is a cylinder once
again, so its 0-tangent complex is V ∼= S1 × S0 as for W2
and W3 above. Although the base disc and side intersect
in a circle, the tangent directions from each piece do not
intersect, so π−1(W1) is the disjoint union of U and V :

π−1(W1) ∼= (D2 ×S1) ∪̇(S1 ×S0).

Putting it all together, T0(X) has the homotopy type

(D2 ×S1) ∪̇(S1 ×S0) ∪̇(S1 ×S0) ∪̇(S1 ×S0).

• 0 < δ < κ+: Tδ(X) does not change its homotopy type,
while the inflection circle grows into an annulus, as shown
in Figure 10(b).

• δ = κ+: The two components π−1(W2) and π−1(W3)
become connected. So, the image of Tκ+ under π be-
comes the union of two pieces that correspond to the

(a) (b) (c) (d) (e)

Figure 10: Bottles shaded by number of components in fiber.
Light gray denotes an empty fiber, medium gray is the full
circle, and dark gray is two arcs. In this example, κ− = κ+ <
κ0. We have the following δ values: (a) δ = 0, (b) 0 < δ < κ+,
(c) κ− ≤ δ < κ0, (d) κ0 < δ < κH , and (e) δ ≥ κH .
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body and the neck. The fiber of any point away from
the base disc is a pair of points or disjoint antipodal in-
tervals. Along the crease of the base, the fiber is a dis-
joint union of a circle and a pair of disjoint antipodal in-
tervals. The complex description loses a term to become
Tκ+(X) ∼= (D2 ×S1) ∪̇(S1 ×S0) ∪̇(S1 ×S0).

• κ+ < δ < κ−: The homotopy type does not change.
• δ = κ−: The neck and the body in the projection of Tδ(X)

merge, as shown in Figure 10(c). Every fiber is now non-
empty, and consists of two antipodal arcs or points. The
homotopy type of Tδ(X) loses another term to become
(D2 ×S1) ∪̇(S1 ×S0).

• κ− < δ < κ0: The homotopy type does not change.
• δ = κ0: Points along the lower sides of the bottle now

have full fiber. The individual fibers along the crease be-
come a union of two circles, which now intersect in a pair
of antipodal points. We now have

Tκ0(X) ∼= (D2 ×S1) ∪S1×S0 (S1 ×S1).

where ∪S1×S0 is the construction in Definition 1.
• δ≥ κ0: The homotopy type remains unchanged, as shown

in Figures 10(d) and 10(e).

Our analysis gives the following description of homology for
Tδ(X).

δ 0 1 2
< κ+ F

7
F

7 0
< κ− F

5
F

5 0
< κ0 F

3
F

3 0
≥ κ0 F F

3
F

2

We next perform the same calculation for a glass shown
in Figure 9(b). We assume it is the surface of revolution
(0× [0,R])∪ ([0,H]×R) of radius R and height H. Observe
that the glass is geometrically similar to the body of the bot-
tle, the section called W1 when δ = 0 (or the surface in Ex-
ample 1.) Let κ = 1/R. The analysis follows quickly from
our observation:

• δ = 0: We have T0(X) ∼= (D2 × S1) ∪̇(S1 × S0) as in the
analysis of π−1(W1) for the bottle.

• 0 < δ < κ: The homotopy does not change.
• δ = κ: We have Tκ(X) ∼= (D2 × S1) ∪S1×S0 (S1 × S1) as

in the analysis for the bottle when δ = κ0.
• δ > κ: The homotopy does not change.

Our analysis gives the following description of homology for
Tδ(X).

δ 0 1 2
< κ F

3
F

3 0
≥ κ F F

3
F

2

Note that the table for the glass is simply the bottom two
rows of the table for the bottle. The bottle’s neck is reflected
in the first two rows, as well as shorter intervals, as shown in
Figures 11 on the left. In the figure, we set κ0 = κ to compare
a glass and bottle of the same curvature at the bottom.

Finally, we compute distances, in turn, between different
bottles, different glasses, as well as bottles and glasses.

• Suppose we are given two bottles of the type analyzed
here (i.e. 0 < κ+ < κ− < κ0 < κH ) with parameters
(κ+,κ−,κ0) and (κ′

+,κ′
−,κ′

0). The distance between the
β0-barcodes associated to these two bottles is

2
(
∣

∣κ+ −κ′
+

∣

∣+
∣

∣κ−−κ′
−

∣

∣+
∣

∣κ0 −κ′
0
∣

∣

)

.

As expected, small changes in the parameters produce
barcodes that are near each other in barcode space.

• Suppose we are given two glasses with curvatures κ,κ′,
respectively. If we assume |κ−κ′| is small, then the dis-
tance between the associated β0-barcodes, 2|κ − κ′|, is
also small.

• Suppose we have a bottle of the type analyzed with pa-
rameter vector (κ+,κ−,κ0) and a glass with curvature κ.
There are three cases:

1. 0 < 2κ ≤ κ+ +κ−

2. κ+ +κ− ≤ 2κ ≤ κ− +κ0
3. 2κ ≥ κ− +κ0.

The corresponding distances are:

1. 2 |κ+ −κ|+2κ− +2κ0
2. 2κ+ +2 |κ−−κ|+2κ0
3. 2κ+ +2κ− +2 |κ0 −κ|.

0 κ+ κ− κ0 ∞

-

(a) β0

0 κ ∞

-

(b) β0

0 κ+ κ− κ0 ∞

-

-

-

(c) β1

0 κ ∞

-

-

-

(d) β1

0 κ+ κ− κ0 ∞
-

-

(e) β2

0 κ ∞
-

-

(f) β2

Figure 11: Barcodes for the bottle (left) and the glass
(right.)
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In the case of the bottle and the glass, the distances have di-
mensions and are not relative, so we can reasonably expect a
good performance from our distance function in distinguish-
ing between the two. We can also visualize how changes in
the parameter values for the bottle will make it similar to a
glass. As κ+,κ− tend to 0, we get longer and flatter bottles,
arriving at a glass in the limit. We may observe the same ef-
fect on the barcode, where the four shorter intervals become
shorter as these parameters shrink, decreasing the bottle’s
distance to a glass.

8. Conclusion

In this paper, we propose a method for combining geometry
and topology for shape recognition and classification. Our
method applies persistent homology to tangential construc-
tions to arrive at a simple and compact shape descriptor, the
barcode, that captures both sharp and curvature-dependent
features of a shape. We also define a metric over the space
of barcodes, and provide an algorithm for computing this
metric. Through detailed examples, we illustrate the viabil-
ity of our method for shape recognition. In particular, we
show that we may think of our homologically invariant bar-
codes as coordinates for shape spaces, as they lie in a metric
space. These coordinates correspond to geometric attributes
of shapes, such as the eccentricity of an ellipse or the cur-
vature of the neck of a bottle. They enable us to distinguish
between interesting categories of shapes, such as between
the categories of bottles and glasses.

Our work suggestions major avenues for future research:

• Application of our techniques to point cloud data (PCD).
There are a number of interesting computational questions
to be resolved, such as algorithms for constructing our de-
rived complexes for the computation of barcodes. We have
done so for PCDs of curves [CZCG04]. We plan to apply
our technqiues to PCDs of surfaces in the near future.

• Application of our techniques to noisy data. Our current
experiments show that our techniques work well on ide-
alized data, as well as data with superimposed Gaussian
noise.

• Development of statistical methods for analyzing data in
the metric space of barcodes. Such methods should per-
mit the use of discriminant analysis and Bayesian deci-
sion procedures to develop automatic methods for shape
classification.

• Utilization of barcodes for coordinatizing spaces, for ex-
ample, gray-scale images of families of three-dimensional
objects.

• Utilization of linear algebraic algorithms recently devel-
oped to locate features within data sets [CdS03].

We believe that the primary contribution of this paper is an
approach of blending geometric and topological techniques
that is grounded in theory. As high throughput scanning be-
comes commonplace, and more and more shapes are digi-
tized, automatic qualitative shape analysis and classification

will be of critical value. Such analysis provides useful pri-
ors for shapes that may be exploited for operations on them,
such as reconstruction. We believe that the type of research
initiated here will be important in the geometry processing
field in the years to come.
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