
April 8, 2005 14:41 WSPC/INSTRUCTION FILE ijsm

International Journal of Shape Modeling
c© World Scientific Publishing Company

PERSISTENCE BARCODES FOR SHAPES

GUNNAR CARLSSON

Department of Mathematics, Stanford University

Stanford, CA 94305, USA

gunnar@math.stanford.edu

AFRA ZOMORODIAN

Department of Computer Science, Stanford University

Stanford, CA 94305, USA

afra@cs.stanford.edu

ANNE COLLINS

Department of Mathematics, Centre College

Danville, KY 40422, USA

collins@centre.edu

LEONIDAS J. GUIBAS

Department of Computer Science, Stanford University

Stanford, CA 94305, USA

guibas@cs.stanford.edu

Received (Day Month Year)
Revised (Day Month Year)
Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

In this paper, we initiate a study of shape description and classification via the ap-
plication of persistent homology to tangential constructions on geometric objects. Our

techniques combine the differentiating power of geometry with the classifying power of

topology. The homology of our first construction, the tangent complex, can distinguish

between topologically identical shapes with different “sharp” features, such as corners.

To capture “soft” curvature-dependent features, we define a second complex, the fil-

tered tangent complex, obtained by parameterizing a family of increasing subcomplexes
of the tangent complex. Applying persistent homology, we obtain a shape descriptor,

called a barcode, that is a finite union of intervals. We define a metric over the space of
such intervals, arriving at a continuous invariant that reflects the geometric properties

of shapes. We illustrate the power of our methods through a number of detailed studies

of parameterized families of mathematical shapes.
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1. Introduction

In this paper, we initiate a study of shape description using a marriage of geometric

and topological techniques. For us, a shape is any reasonably nice closed subset of

a Euclidean space. Questions we wish to answer include:

• Which shapes are identical up to a rigid motion of the ambient Euclidean

space?

• Which shapes are identical up to a smooth diffeomorphism of the ambient

Euclidean space? This is a coarser classification than the previous one.

• Which shapes belong to certain classes of shapes? For instance, we may wish

to distinguish the class of rectangular prisms from the class of tetrahedra,

or the class of ellipsoids from the class of spheres.

• What are the features of the shape? For example, these features could be

singular points of various types.

We wish to obtain information about shapes through different levels of classifica-

tion, from fine to coarse. One can view geometry as the finest level of classification

as it focuses on local properties of shapes. In this sense, geometry has a quantitative

nature and can answer low level questions about a shape. But most of our questions

have a qualitative feel and take a higher view of a shape. This prompts us to look

at topological techniques that classify shapes according to the way they are con-

nected globally – their connectivity. Unfortunately, this view is often too coarse to

be useful. For example, the topological invariant homology classifies shapes accord-

ing to the number of components, tunnels, and enclosed spaces. This classification

cannot distinguish between circles and ellipses, between circles and rectangles, or

even between Euclidean spaces of different dimensions. Further, it cannot identify

sharp features, such as corners, edges, or cone points: their neighborhoods are all

homeomorphic or connected the same way. Whereas geometry is too sensitive for

shape description, topology seems to be too insensitive. We seek to enrich topolog-

ical techniques with the geometric content of a shape so that our methods manifest

moderate sensitivity. We need a method that combines local and global information

to characterize a shape.

1.1. Approach

In this paper, we propose a robust method that combines the differentiating power

of geometry with the classifying power of topology. We apply homology not to

a space X itself, but to derived spaces that have richer geometric content. In this

case, we construct spaces out of X using tangential information about X as a subset

of Rn. We define three tangential constructions: the tangent complex, the filtered

tangent complex, and the tame tangent complex. The tangent complex is the closure

of the space of all unit tangents to all points of X. The homology of this complex

can detect many sharp features of X, such as edges and corners. However, if the

two shapes differ only in soft features, their tangent complexes are topologically
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indistinguishable. For example, an ellipse differs from a circle in having a range of

curvatures, a feature not reflected in the homology of its tangent complex.

For even more differentiating power, we enrich our tangent complex with infor-

mation about the curvature of a space at each point. The resulting filtered tangent

complex is an increasing family of spaces, parameterized by curvature. Applying

homology to this family, we obtain an invariant called a persistence module that

yields subtler information about a shape, such as the existence of regions of low or

high curvature. The filtered tangent complex can distinguish a circle from an el-

lipse, even though these spaces are homeomorphic and have homeomorphic tangent

complexes. Finally, the tame tangent complex is the union of the increasing family

that constitutes the filtered tangent complex. It can detect certain singular features

overlooked by the tangent complex, such as cone points. We provide a number of

examples to illustrate the power of our tangential constructions.

We also define a simple shape descriptor that arises from persistent homology

and carries information about a shape. We call this combinatorial invariant a barcode

as it is simply a finite collection of intervals. To compare barcodes, we define a metric

on the set of barcodes. The metric enables the use of clustering techniques on the

metric space of barcodes for shape recognition and classification.

In this paper, we deal with explicit calculations for geometric objects to demon-

strate the sensitivity of our invariants to properties of shapes, and their effectiveness

in shape recognition. Our main interest, however, is computational. We wish to ob-

tain information about a shape when we only have a finite set of samples from that

shape. Such a set of points, commonly called point cloud data or PCD for short, is

a discrete topological space. We are faced, therefore, with the additional difficulty

of recovering the underlying shape topology, as well as approximating the tangen-

tial spaces we define. These issues extend well beyond the scope of this paper. Our

goal here is to examine the viability of our techniques in an ideal mathematical

setting, where we have full information about the spaces considered. We address

the application of this method to the PCD domain for curves in another paper.4

1.2. Background and Prior Work

Distinguishing and recognizing shapes is a well-studied problem in many areas of

computer science, such as vision, pattern recognition, and graphics.8,10 Medial axis

techniques have been extensively used for this purpose.21 One particular aspect of

this problem is understanding “shape spaces” in their entirety.2,15 For instance, one

may study a shape space from a differential point of view.18 Broadly speaking, most

methods try to coordinatize the shape space in a way that gives useful combinatorial

information about the space.

The idea of applying homology to derived spaces is a familiar one within topol-

ogy. Some applications include the classification of vector bundles20 and Donaldson

theory, which constructs invariants of smooth structures on homotopy equivalent

four-dimensional manifolds using moduli spaces of self-dual connections.6 The tan-
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gential complexes we study are familiar in geometric measure theory.9 Morse theory

analyzes the topology of a space by utilizing increasing families of spaces.19 Per-

sistent homology was first defined for topological simplification of alpha shapes.7 It

was then extended to arbitrary d-dimensional spaces and arbitrary fields of coeffi-

cients using a classification result.22 The latter paper also introduced the notion of

using intervals as homological invariants.

We wish to make this paper mathematically rigorous and complete, while keep-

ing it accessible to non-specialists. These goals often conflict. Therefore, we have

augmented the mathematics with intuitive explanations and a large number of il-

lustrated examples. The non-topologist should feel free to ignore the theoretical

sections, and focus on the intuition necessary to understand the main results. Sim-

ilarly, a specialist may skip the standard definitions without incurring any loss.

We emphasize, however, that the bulk of this paper is dedicated to the study of

examples that illustrate the strengths of our tangential constructions for shape

classification and recognition.

1.3. Overview

We organize the rest of the paper as follows. Section 2 is a brief tutorial on some

techniques from algebraic topology. We do not assume that the reader will become

conversant with these tools, but hope that this section will serve as a guide for

the rest of the paper. In Section 3, we define our first derived space, the tangent

complex, based on the notion of the tangent cone from geometric measure theory.

We also discuss a number of examples that point out the strengths and weaknesses

of the complex in shape recognition. This discussion motivates our derived spaces

in Section 4, the filtered and tame tangent complexes, that are more sensitive.

Once again, we study a number of examples in two and three dimensions. Section 5

introduces persistent homology and the classification it gives in terms of barcodes. It

also defines a metric on the space of barcodes and gives an algorithm for computing

this metric based on weighted bipartite matching. In Section 6, we revisit all of our

examples from Sections 3 and 4 and compute their homology or persistent homology,

drawing the barcodes in the latter cases. We devote Section 7 to two extended

studies of families of shapes. We illustrate the effect of varying parameters on the

barcodes and the distance between shapes by studying the parameterized families

of a glass and a bottle.

2. A Brief Tutorial on Algebraic Topology

In this section, we will give a brief introduction to the ideas and terminology of

algebraic topology. The discussion will be informal and is intended to give only an

overview. For a more complete account, see a standard text in the area, such as

Greenberg and Harper, or Hatcher.12,13
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2.1. Homotopy

The central notion in algebraic topology is that of a homotopy of maps between

topological spaces. Informally, two maps f, g : X → Y are said to be homotopic if

there is a continuous one parameter family of continuous maps {ht}t∈[0,1] : X → Y

such that h0 = f and h1 = g. More precisely, f and g are homotopic if there is

a continuous map h : X × [0, 1] → Y , called a homotopy between f and g, so that

h(x, 0) = f(x) and h(x, 1) = g(x). We write f ' g whenever f is homotopic to g.

We look at a few simple examples.

Example 2.1 (continuous maps). Any two continuous maps f, g : X → Rn

are homotopic, for any space X, since we can write down the explicit homotopy

h(x, t) = (1 − t) · f(x) + t · g(x).

Example 2.2 (circle rotation). Let X and Y both be the unit circle in the plane,

and let fθ : S1 → S1 denote the map that rotates any point in S1 by an angle θ.

Then for any angles θ and η, we have fθ ' fη, because one can continuously vary

the angle θ until one obtains η, and simultaneously vary the map fθ.

Example 2.3 (circle and annulus). Let X be the unit circle, and let Y denote

the annulus in the plane given by {(x, y) | 1 ≤ x2+y2 ≤ 4}. We have two continuous

maps f and g from S1 into Y , the inclusion on the inner boundary f(x, y) = (x, y),

and the inclusion on the outer boundary g(x, y) = (2x, 2y). The two maps are

homotopic via the map h : S1× [0, 1] → Y given by h((x, y), t) = ((1+ t)x, (1+ t)y).

Example 2.4 (wrapping). Let X = Y = S1, let f : S1 → S1 denote the identity

map, and let g be the map given in polar coordinates by g(1, θ) = (1, 2θ). This map

wraps the circle around itself twice. When S1 is interpreted in terms of complex

numbers of length one, g is given by g(z) = z2. We can show that f 6' g.

Example 2.5 (punctured R3). Let X denote the two-sphere S2 ⊆ R3, and let

Y denote the subspace R3 − {(0, 0, 0)} ⊆ R3 that contains X. Let f denote the

inclusion map X ↪→ Y , and let g denote the constant map with value (1, 0, 0). We

can show that f 6' g.

It is frequently not difficult to show that two maps are homotopic, since all that is

required is to construct a homotopy. To show that two maps are not homotopic, on

the other hand, can not typically be done with elementary methods and requires

more advanced techniques of algebraic topology.

2.2. Homotopy Equivalence

We now define several related notions. A map f : X → Y is a homotopy equivalence

if there is a map g : Y → X so that fg is homotopic to the identity map on Y

and gf is homotopic to the identity map on X. This notion is a weakening of the
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notion of homeomorphism, that requires the existence of a continuous map g so

that fg and gf are equal to the corresponding identity maps. The less restrictive

notion of homotopy equivalence is useful in understanding relationships between

complicated spaces and spaces with simple descriptions. We say two spaces X and

Y are homotopy equivalent, or have the same homotopy type if there is a homotopy

equivalence from X to Y . This is denoted by X ' Y . If X ⊆ Y is the inclusion of a

subspace, then X is a deformation retract of Y if there is a map h : Y × [0, 1] → Y ,

so that h(y, 0) = y for all y ∈ Y , h(x, t) = x for all x ∈ X, t ∈ [0, 1], and h(y, 1) ∈ X

for all y ∈ Y . Note that if X is a deformation retract of Y , then X and Y are

homotopy equivalent: let i denote the inclusion of X into Y and h1(y) = h(y, 1),

then h1i is equal to the identity map on X, and ih1 is homotopic to the identity

on Y . Finally, we say a space is contractible if it is homotopy equivalent to a point.

Example 2.6 (annulus). Let A be the annulus. For variety, we parameterize the

annulus in polar coordinates this time. Let 1 ≤ r ≤ 2, and let f be the map from A

to the unit circle given by f(r, θ) = (1, θ). Then f is a homotopy equivalence, since

the inclusion of the circle into A provides the required map g.

Example 2.7 (Sn). The subspace S1 ⊆ R2 − {(0, 0)} is a deformation retract of

R2 −{(0, 0)}. Consider the map h : (R2 −{(0, 0)})× [0, 1] → R2 −{(0, 0)} given by

h(v, t) = v
‖v‖t . Similarly, Sn−1 is a deformation retract of Rn − {(0, . . . , 0)}. But

according to Example ??, it is not contractible.

Example 2.8 (Rn). The point {(0, . . . , 0)} is a deformation retract of Rn since

we have the map h : Rn × [0, 1] → Rn given by h(v, t) = (1 − t) · v. It follows that

Rn is homotopy equivalent to the single point (0, . . . , 0) and is contractible.

Example 2.9 (matrices). Let SL(n) be the Special Linear group, that is, the

space of all n×n matrices with determinant 1. Let SO(n) be the Special Orthogonal

group, that is the space of orthonormal matrices. Clearly, SO(n) is a subspace of

SL(n). Using the Gram-Schmidt orthonormalization procedure, moreover, we can

show that SO(n) is a deformation retract of SL(n).

2.3. Homology

Algebraic topology is a set of algebraic tools for recognizing when maps between

spaces are not homotopic, when spaces are not homotopy equivalent, and at times,

when spaces might indeed be equivalent. These tools are rather complicated to

construct, so we will be content with a brief descriptive account. For any topological

space X, we associate a family of Abelian groups Hn(X) for every integer n ≥ 0.

They have the following key properties:

Functoriality: Each Hn is a functor, that is, for any continuous map f : X → Y ,

there is an induced homomorphism Hn(f) : Hn(X) → Hn(Y ), such that

Hn(fg) = Hn(f)Hn(g) and Hn(iX) = iHn(X), where i is the identity.
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Homotopy Invariance: If f, g : X → Y are homotopic, then Hn(f) = Hn(g). If

f is a homotopy equivalence, then Hn(f) is an isomorphism.

The significance of these properties may not be clear to the reader. The original

developers of algebraic topology did not deal with groups but with numbers. One

collection of numbers, {βn(X)}, called the Betti numbers, consists of the ranks

of the Abelian groups {Hn(X)} we discussed above. That is, the Betti number

βn(X) is the minimum number of generators of the torsion-free part of the group

Hn(X). Another collection, the torsion coefficients, contains the sizes of the cyclic

summands in the torsion part of the group.17 While these numbers reflect the

properties of spaces, simply dealing with numerical invariants led to theoretical

and practical difficulties due to two important considerations:

(1) It is not obvious how to show the invariance of these numbers under homo-

topy equivalence. This is a severe limitation, as the major use for invariants is

determining whether two spaces are homotopy equivalent.

(2) It is not possible to compute these numerical invariants without using groups.

This will become clearer when we look at the Mayer-Vietoris sequence later.

It was Emmy Noether’s insight that one should deal not with numbers, but with

Abelian groups, that lead to the development of algebraic topology as a powerful

method for studying topological spaces.

There are some variants of homology groups that are useful computationally. For

any ring R, we can define homology groups with coefficients in R, denotedHn(X,R),

with the original definition being equivalent to Hn(X,Z). When the ring is a field

F , such as the finite fields Z/pZ for a prime p, the rational numbers Q, or the real

numbers R, the homology groups become vector spaces over the field F . As such,

they are determined up to isomorphism by their dimension. We write βn(X,F ) for

the dimension of Hn(X,F ).

2.4. Intuitive Homology

By itself, the definition of homology provides no intuition as to what it measures.

It is rather difficult to formulate a precise answer to this question. Generally, we

can say that homology measures the connectivity of a space. For torsion-free spaces

in three-dimensions, the Betti numbers have intuitive meaning as a consequence of

the Alexander Duality. β0 measures the number of components of the complex. β1

is the rank of a basis for the tunnels, loops that cannot be deformed to a point. β2

counts the number of voids, enclosed spaces that look like a room. Before going any

further, we look at a few examples for intuition.

Example 2.10 (circle). Let X be the unit circle in the plane. Its non-zero Betti

numbers are β0 = β1 = 1. So, this space is connected and has a non-trivial loop

that cannot be deformed to a point while staying in the space.
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Fig. 1. Two independent non-trivial loops on the torus.

Example 2.11 (figure eight). LetX be a figure eight. Its non-zero Betti numbers

are β0 = 1 and β1 = 2. So, this space is connected and has two independent loops,

non-deformable to a point or to each other.

Example 2.12 (tunnel). Let X be the result of removing a line from R3. Its

non-zero Betti numbers are β0 = β1 = 1. This reflects the connectedness of the

space, as well as the presence of a loop that goes around the line, and cannot be

deformed to a point because the line has been removed.

Example 2.13 (void). Let X be the result of removing an open unit ball from

R3. Its non-zero Betti numbers are β0 = β2 = 1. The space is connected and the

value of β2 indicates the presence of a “two-dimensional” non-trivial loop. If we had

removed k disjoint open balls from R3, β2 would have been k.

Example 2.14 (torus). Let X be a torus (the surface of a donut). Its Betti

numbers are β0 = β2 = 1 and β1 = 2. The space is connected and has two inde-

pendent loops, as shown in Figure 1. The value of β2 indicates the presence of a

two-dimensional enclosed space that the torus encloses.

2.5. Mayer-Vietoris Sequence

The main tool for computing the homological invariants of topological spaces is

the Mayer-Vietoris sequence. To define it, we first need to discuss the notion of an

exact sequence.

Definition 2.1 (long exact sequence). A sequence

A
f−→ B

g−→ C (1)

of homomorphisms of Abelian groups (or linear transformations of vector spaces

over a field F ) is said to be exact if the kernel of g is equal to the image of f , as

subgroups (or subspaces) of B. A sequence of homomorphisms (or linear transfor-

mations)

· · · → Ai+1
fi+1−−−→ Ai

fi−→ Ai−1
fi−1−−−→ Ai−2

fi−2−−−→ · · · (2)

is exact if each subsequence Ak+1 → Ak → Ak−1 is exact. Such a sequence is called

a long exact sequence.
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Roughly, if one has information about two of every three consecutive groups in such

a sequence, one can obtain information about the third. In the case of vector spaces

over a field, we may obtain a very explicit statement.

Proposition 2.1. Suppose we have a long exact sequence of vector spaces over a

field F of the form

· · · −→ Bi+1 −→ Ci+1
fi+1−−−→ Ai −→ Bi −→ Ci

fi−→ Ai−1 −→ Bi−1 −→ · · · , (3)

then we have the relationships

dim(Bi) = dim(Ci) + dim(Ai) − rank(fi) − rank(fi+1). (4)

In other words, the vector spaces Bi are recoverable from the vector spaces Ai and

Ci, together with rank information about the transformations between them. Al-

though the results cannot be stated as simply and explicitly, a similar proposition is

true for Abelian groups. That is, information, such as rank of the Bi’s, is recoverable

from the Ai’s and Ci’s, together with the information about the homomorphisms

between them. We may now state the main tool for homological computation.

Theorem 2.1 (Mayer-Vietoris). Suppose we have a topological space X with

two subspaces Y,Z ⊆ X, such that X = Y̊ ∪ Z̊. That is, the interiors of Y and Z

cover X. Then, there exists a long exact sequence

· · · → Hi(Y ∩ Z) → Hi(Y ) ⊕Hi(Z) → Hi(X) →
→ Hi−1(Y ∩ Z) → Hi−1(Y ) ⊕Hi−1(Z) → · · · . (5)

Analogous sequences exist for homology with coefficients. The homomorphism

Hi(Y ∩ Z) → Hi(Y ) ⊕ Hi(Z) is given by x 7→ (Hi(iY )(x),−Hi(iZ)(x)), where

iY : Y ∩ Z ↪→ Y and iZ : Y ∩ Z ↪→ Z are the inclusions of subspaces.

There is also a formula for describing the homology of a product of two spaces.

Theorem 2.2 (Künneth Formula). For any spaces X and Y , and any field F ,

there is a canonical isomorphism

Hn(X × Y, F ) ∼=
n
⊕

i=0

Hn−i(X,F ) ⊗Hi(Y, F ), (6)

where ⊗ denotes tensor product.17 It follows that

βn(X × Y, F ) =

n
∑

i=o

βn−i(X,F ) · βi(Y, F ). (7)

These results, together with the homotopy invariance property mentioned above,

provide an extremely effective method for computing the Betti numbers of topo-

logical spaces. We do not give examples here, but refer the reader to the standard

textbooks.12,13
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Fig. 2. The cylinder S1 × [0, 1] and the disc D2 are glued together along the dashed circles. The

resulting space D2 ∪S1 (S1 × [0, 1]) has the same geometry as a glass or bottom of a bottle.

We conclude this section by mentioning a space-level construction we will be

using in this paper. Intuitively, when a space is broken into a union of two pieces,

we can express it via the construction of gluing the two pieces together along a

subspace.

Definition 2.2 (A ∪X B). Suppose we have a space X, together with inclusions

f : X ↪→ A and g : X ↪→ B. Then, we may construct a new space as the quotient of

the disjoint union of A and B,

A ∪X B = A ∪̇X ∪̇B/∼, (8)

where ∼ is the equivalence relation generated by the equivalences x ∼ f(x) ∈ A,

and x ∼ g(x) ∈ B, for all x ∈ X. Similarly, if we have inclusions f : X ↪→ A,

g : X ↪→ B, h : Y ↪→ B, and k : Y ↪→ C, we define

A ∪X B ∪Y C = (A ∪X B) ∪Y C. (9)

Although this construction depends on the inclusions f and g, they are not indicated

in the notation.

Example 2.15 (glass). Figure 2 shows the construction of a glass shape from two

pieces. The side is a cylinder A = S1 × [0, 1] and the bottom is a disc B = D2. We

use the circle X = S1, whose inclusion into A and B is indicated by dashed circles,

to glue the two spaces together. The gluing gives D2 ∪S1 (S1 × [0, 1]), which looks

like a glass or the bottom of a bottle.

3. The Tangent Complex

In this section, we define the tangent complex for a subset of Rn. Our construction

is closely related to the concept of the tangent cone, defined in geometric measure

theory.9 After defining the complex, we give a number of examples for intuition.

Definition 3.1 (tangent complex). Let X be any subset of Rn. We define

T 0(X) ⊆ X × Sn−1 to be

T 0(X) =

{

(x, ζ)

∣

∣

∣

∣

lim
t→0

d(x+ tζ,X)

t
= 0

}

. (10)
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The tangent complex of X is the closure of T 0, T (X) = T 0(X) ⊆ X × Sn−1. T (X)

comes equipped with a projection π : T (X) → X that projects a point (x, ζ) ∈ T (X)

in the tangent complex onto its basepoint x ∈ X, and T (X)x = π−1(x) ⊆ T (X) is

the fiber at x.

Informally, (x, ζ) represents a tangent vector at a point x, if the ray beginning at

x and pointing in the direction prescribed by ζ approaches X faster than linearly.

There is also a projection ω : T (X) → Sn−1 that projects all the fibers onto the

(n− 1)-sphere. We have the following useful proposition concerning this construc-

tion.

Proposition 3.1. Suppose that x ∈ X is a smooth point of X, so that there is a

neighborhood U ⊆ Rn of x and a smooth function f : U → Rm, such that

• U ∩X = f−1(0), and

• the Jacobian of f , Df (ξ), has rank m for every ξ in U .

Then T (X)x ' Sn−m−1

For intuition, we next give a number of examples. We will revisit these examples

in Section 6 to discuss the homology of their tangent complexes. We begin with

one-dimensional objects as they are easier to work with.

Example 3.1 (hyperplane). Let L be a line in the xy-plane, given by the equa-

tion (x − x0) · ξ = 0, for point x0 and vector ξ, normal to the line. Then we have

ω(T (L)) = {±η}, where η is a unit vector perpendicular to ξ, and

T (L) ≈ L× {±η}. (11)

We show the line and its tangent complex in Figure 3. The arrows on the tangent

complex components give the directions of the tangents. The fiber at any point

consists of two distinct points or a zero-dimensional sphere S0, as shown for the

point x in the figure. More generally, let X ⊆ Rn be the hyperplane determined by

the equation (x−x0) ·ξ = 0, where x0 and ξ are n-vectors. Then T (X) ≈ X×S(ξ),

where S(ξ) denotes the unit sphere in the plane of vectors perpendicular to ξ. This

result holds with X replaced by any halfplane or quadrant in X.

x L

−η

+η

x0

ξ

x,−η

x,+η(       )

(       )

Fig. 3. The solid line L is defined by point x0 and normal ξ. It has a tangent complex that is

composed of the two dashed components in the directions ±η. The fiber at point x consists of two

points (x,±η).
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O

y x

Fig. 4. Solid ‘V’ space X has a tangent complex T (X) that is composed of the four dashed

components.

Example 3.2 (vee). Consider a space X ⊆ R2 that looks like a ‘V’, as shown

in Figure 4. Formally, X = (R+ × 0) ∪ (0 × R+). We evaluate the fibers T (X)x

directly. The fiber at any smooth point is S0 as in the previous example. For points

along the x-axis, the two points will be (x, (1, 0)) and (x, (−1, 0)), and along the

y-axis, they will be (x, (0, 1)) and (x, (0,−1)). At the origin O, however, the fiber

T (X)O consists of four points, namely (O, (±1, 0)) and (O, (0,±1)). We can easily

verify that the tangent complex is actually the union of two pieces, the tangent

complexes of the two factors of the space:

T (R+ × 0) = (R+ × 0) × {(±1, 0)}, (12)

T (0 × R+) = (0 × R+) × {(0,±1)}. (13)

So that the entire complex is:

T (X) = (R+ × 0) × {(±1, 0)} ∪ (0 × R+) × {(0,±1)}. (14)

This space is a disjoint union of four distinct half lines, as shown in Figure 4.

Example 3.3 (boundary of positive octant). Let X ⊆ R3 be the boundary of

the positive octant,

X = {(x, y, z) | x, y, z ≥ 0, and at least one of x, y, z is equal to zero}. (15)

In this case, X can be decomposed into three pieces, its intersections with the three

coordinate planes. We denote the intersection of X with the xy-plane by Xxy and

the other two intersections by Xyz and Xxz, accordingly. Each of these intersections

is a quadrant in the corresponding coordinate plane. From Example 3.1, we know

that T (Xxy) ≈ Xxy ×S1
xy, where S1

xy denotes the unit circle in the xy-plane. There

are similar descriptions for the other coordinate planes. We now examine the fibers

of T (X) → X:

(1) Smooth point: for any point v not lying on a coordinate axis, the fiber T (X)v

is a circle, as shown in Figure 5(a).

(2) Edge point: for any point v that lies on a coordinate axis, but is not at the

corner point (0, 0, 0), T (X)v is the union of two circles. The circles, shown in

Figure 5(b), intersect at a pair of antipodal points.
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(a) Smooth point: one circle (b) Edge point: two circles (c) Corner point: three circles

Fig. 5. X ⊂ R
3 is the boundary of the positive octant. We show the fibers at three types of points.

(3) Corner point: T (X)(0,0,0) is the union of three circles. The circles, shown in Fig-

ure 5(c), intersect pairwise at pairs of antipodal points. T (X) contains the fiber

at the corner point as a deformation retract, so they have the same homotopy

type.

Example 3.4 (cone). Let X denote the cone given by z2 = x2 + y2, and z ≤ 0.

We would like to distinguish the cone point at the origin from the other regular

points using the tangent complex. Every regular point p is smooth, so the fiber

T (X)p is a full circle. In fact, two regular points that lie on the same line through

the origin have the same fiber, as shown in Figure 6. The fiber at the origin consists

of the union of all circles occurring at the regular points, or equivalently, the set of

points (x, y, z) in S2 with |z| ≤
√

2
2 . This set is homeomorphic to an annulus, which

is homotopy equivalent to a circle, as shown in Example 2.3. Therefore, we cannot

distinguish the cone point from the regular points using the tangent complex T (X).

The features detected by homology of the tangent complex are sharp features:

they are unaffected by smooth diffeomorphisms of the ambient space Rn. How-

Fig. 6. Bottom half of cone x2 + y2 = z2. The fiber Tδ(X)p at each smooth point p is a full circle

(left). These fibers sweep out an annulus (right), which is the fiber at the origin.
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ever, we are often interested in soft features that are characterized by changes in

curvature. We give two examples of the kinds of features we would like to capture.

Example 3.5 (circle vs. ellipse). Consider the difference between a circle and

an ellipse. They are topologically the same and have no sharp features. There is,

however, a difference in the lengths of the axes in the case of the ellipse that

distinguishes it from the circle.

Example 3.6 (bottle vs. glass). Consider the difference between a bottle and

a glass. Again, they are topologically the same and even have a common sharp

feature: the circular rim at the bottom. But a bottle has a narrow neck that a glass

does not have. Of course, bottles have many different shapes, but they all share

this basic difference from a glass.

The distinctions above cannot be detected via homology directly, as the spaces

are homeomorphic. They cannot be detected by the tangent complex, either, as

the objects are obtainable from each other by smooth deformations of the ambient

space. Rather, they require more sophisticated constructions, which we introduce

in the next section.

4. The Filtered and Tame Tangent Complexes

In this section, we define two constructions based on tangential information: the

filtered and tame tangent complexes. We devote the bulk of this section to detailed

examples, building the complexes for interesting families of subspaces of the two-

and three-dimensional Euclidean spaces. We will revisit these examples in Section 6,

when we apply persistent homology to arrive at compact shape descriptors.

4.1. Definition

Recall that a point (x, ζ) in T 0(X) is composed of a basepoint x ∈ X in the space

and a tangent direction ζ, as shown for a curve example in Figure 7. For each

direction, we compute the absolute value of the curvature, the inverse of the radius

of the osculating circle shown in the figure. We formalize this concept next.

Definition 4.1 (second order contact). Let X ⊆ Rn and (x, ζ) ∈ T 0(X) (the

tangent complex before the closure operation). We say (x, ζ) has a circle of second

order contact if there is a point x0 ∈ Rn, such that (x − x0) · v = 0 for all v for

which (x, v) ∈ T 0(X) and

lim
θ→0

d(x0 + cos θ · (x− x0) + sin θ · |x− x0| · ζ,X)

θ2
= 0. (16)

We define ρ(x, ζ) = |x− x0| to be the radius of this circle.

Definition 4.2 (filtered, tame). Let T 0
δ (X) be the set of points (x, ζ) ∈ T 0(X)

for which the circle of second order contact exists with δ ≥ 1/ρ(x, ζ). Let Tδ(X) be
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the closure of T 0
δ (X) in Rn × Sn−1. We call the δ-parameterized family of spaces

{Tδ(X)}δ≥0 the filtered tangent complex, denoted by T filt(X). We call the union
⋃

δ Tδ(X) the tame tangent complex, denoted by T tame(X).

If δ ≤ δ′, we have an inclusion Tδ(X) ⊆ Tδ′(X), so the complexes are properly

nested. As before, we denote Tδ(X)x = π−1
δ (x), where πδ : Tδ(X) → X is the natural

projection. There is also a natural inclusion T tame(X) ↪→ T (X) that is not surjective

in general. When X is a smooth submanifold of Rn, then T tame(X) = T (X).

For non-smooth spaces, however, T tame(X) has additional power that allows us to

detect cone points. The topological structure of T filt(X) carries information about

the soft features of the underlying space.

4.2. Examples: Curves

We elucidate these concepts through examples in the rest of this section. We begin

with one-dimensional subsets of R2, or curves. Each point x of a smooth curve X

has a circle of second order contact with radius ρ(x). So, Tδ(X) has a projection

onto the excursion set Xδ = {x ∈ X | δ ≥ 1/ρ(x)} and the fiber over a point of Xδ

consists of a pair of points.

Example 4.1 (circle). Let X be the circle of radius R centered at the origin in

the plane. The full tangent complex T (X) is homeomorphic to S1×S0, as there are

two tangent directions at each point. Every point (x, ζ) ∈ T 0(X) admits a circle of

second order contact, namely X itself, so ρ(x, ζ) = R for all (x, ζ). Therefore,

Tδ(X) =

{ ∅, for δ < 1/R,

T (X), for δ ≥ 1/R.
(17)

Example 4.2 (ellipse). Let X be the ellipse given by the equation x2

a2 + y2

b2
= 1.

SinceX is a smooth manifold, every (x, ζ) admits a circle with second order contact.

We recall that the formula for the radius of the osculating circle to a parameterized

x−x0

0x ζx−x|        |0

x
ζ

X

θ

Fig. 7. (x, ζ) is in T 0(X), i.e. point x on curve X has unit tangent ζ. The osculating circle at

x is centered at x0. The perpendicular vectors x − x0 and |x − x0|ζ and parameter θ provide

coordinates for points on the circle.
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(a) 0 ≤ δ < a
b2

(b) δ = a
b2

(c) a
b2

< δ < b
a2 (d) δ ≥ b

a2

Fig. 8. Ellipse x2/a2 + y2/b2 = 1. The points whose fibers have two components are indicated
with thick lines. We show the case with a = 1 and b = 2.

curve ϕ(t) = (x(t), y(t)) is given by

|ϕ′(t)|3
|x′(t)y′′(t) − x′′(t)y′(t)| . (18)

A parameterization for the ellipse X is given by ϕ(t) = (a cos(t), b sin(t)). Direct

computation shows that at the point ϕ(t), ρ is given by

(a2 + (b2 − a2) cos2(t))
3
2

ab
, (19)

for both tangent directions. Without loss of generality, we assume b > a > 0. Then,

ρ attains its maximum value of b2/a at t ∈ {0, π}, and its minimum value of a2/b

at t ∈ {π/2, 3π/2}.
Moreover, ρ is decreasing as t increases in intervals

(

0, π
2

)

and
(

π, 3π
2

)

, and

increasing in intervals
(

π
2 , π

)

and
(

3π
2 , 2π

)

. Therefore, the filtered tangent complex

behaves as follows. For each case, there is a corresponding illustration in Figure 8.

(a) For 0 ≤ δ < a
b2

, Tδ(X) = ∅.
(b) For δ = a

b2
, Tδ(X) consists of four points, namely (±a, 0) × (0,±1).

(c) For a
b2
< δ < b

a2 , Tδ(X) consists of four connected contractible components.

These components have basepoints along two disjoint arcs on X, centered at

the points (±a, 0), and bounded away from the points (0,±b).
(d) For δ ≥ b

a2 , Tδ(X) = T (X), the full tangent complex, which is two copies of

the ellipse, in clockwise and counterclockwise directions.

Example 4.3 (cubic). Consider the case where X is the graph of a cubic polyno-

mial. Standard translation and scaling show that it suffices to consider the family of

polynomials f(x) = x3 +ax, where a is a constant. Recall that we have the formula

for the radius of the osculating circle to the graph of a function f , given by

ρ =
(1 + (f ′(x))2)

3
2

|f ′′(x)| . (20)
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To compute the filtered tangent complex, we need to analyze the behavior of this

function for f . Observe that it suffices to consider only the values x ≥ 0 as negative

values of x may be obtained by reflection through the origin. We are interested

in the critical points of ρ (maxima and minima) that divide the parameter space

into intervals where ρ is monotonic. It is sufficient to consider to square of ρ, the

rational function

ρ2 =
(1 + (f ′(x))2)3

f ′′(x)2
. (21)

We have f ′(x) = 3x2 + a and f ′′(x) = 6x, so

ρ2 =
(1 + (3x2 + a)2)3

36x2
(22)

=
1

36

(

(1 + a2)x−
2
3 + 6ax

4
3 + 9x

10
3

)3

(23)

=
g3

36
. (24)

Clearly, it is adequate to analyze the behavior of the term g. Its derivative is given

by

g′ = −2

3
(1 + a2)x−

5
3 + 8ax

1
3 + 30x

7
3 (25)

= x−
5
3

(

30x4 + 8ax2 − 2

3

(

1 + a2
)

)

. (26)

For positive x, this function has a single real root at

xa =

√

−2a+
√

5 + 9a2

15
. (27)

The function g′ is negative to the left of xa and positive to its right. Therefore,

g and ρ attain a global minimum at x = xa. Setting κa = 1/ρ(xa), we have the

following cases for Tδ(X). As in the previous example, the cases are illustrated in

Figure 9.

(a) T0(X) consists of two points, namely (0, 0) ×
(

± 1√
1+a2

,± a√
1+a2

)

.

(b) For 0 < δ < κa, Tδ(X) consists of 6 connected components, whose projections

onto the curve X give three disjoint arcs in the plane, two unbounded and one

bounded.

(c) For δ ≥ κa, Tδ(X) = T (X), the full tangent complex, which consists of two

copies of the curve, one for each direction.

4.3. Examples: Surfaces

Before going on to examples involving surfaces, we review some aspects of the

geometry of surfaces. Recall that on a curve, there is at most a single osculating
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circle. On a smooth surface, however, the tangent space at each point is a plane,

giving us a whole circle of tangent directions. To construct the filtered tangent

complex, we need to determine the radius of the osculating circle in each direction.

Let x ∈ X be a point in a smoothly embedded space X in Euclidean space.

The best linear approximation to X at the point x, the tangent plane, determines a

normal direction to the surface. Choosing one of the two unit vectors in the normal

direction as axis z, we obtain a coordinate system for R3 centered at x with the

surface tangent to the “xy-plane”, as shown in Figure 10.

With respect to this coordinate system, the best approximating quadratic sur-

face to X is given by an equation of the form

z = Q(x, y) = Ax2 +Bxy + Cy2. (28)

When restricted to the unit circle on the tangent plane, Q attains its minimum and

maximum values at pairs of antipodal points that determine a pair of perpenicular

directions called the principal directions. For an arbitrary direction ζ in the tangent

plane, 2 |Q(ζ)| = 1/ρ(x, ζ), the reciprocal of the radius ρ(x, ζ) of the osculating

circle to the surface X in the direction ζ. Therefore, for a point x ∈ X, Tδ(X)x

consists of points (x, ζ) ∈ T (X)x where 2|Q(ζ)| ≤ δ. Let κ1, κ2 denote the principal

(a) δ = 0 (b) 0 < δ < κa (c) δ ≥ κa

Fig. 9. Function f(x) = x3 − x. The points whose fibers have two components are indicated with

thick lines.

X

ζ
T(X)x

x

Fig. 10. Surface X with the tangent plane at x and the unit tangent circle T (X)x. We also show

a dotted portion of the osculating circle in the direction ζ.
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curvatures, the minimum and maximum values of 2|Q| on T (X)x. The following

cases describe Tδ(X)x.

(a) If δ < κ1, then Tδ(X)x = ∅.
(b) If δ = κ1 < κ2, then Tδ(X)x consists of two antipodal points.

(c) If κ1 < δ < κ2, Tδ(X)x consists of two disjoint closed antipodal arcs.

(d) If δ ≥ κ2, then Tδ(X)x is the entire circle T (X)x.

The fibers described here are similar to the basepoint projections of Example 4.2,

illustrated in Figure 8, if we replace the ellipse with a unit circle. Given our analysis,

we may now examine some surfaces in R3.

Example 4.4 (ellipsoid). Suppose that X is the ellipsoid given by the equation

x2

a2
+
y2

b2
+
z2

c2
= 1 (29)

with 0 < a < b < c. In order to analyze Tδ(X), we must understand when this

space undergoes a change in homology. We use a parameterization of the ellipsoid

using elliptic coordinates from Berger and Gostiaux, as shown in Figure 11.1

(u, v) 7→
(
√

a2(a2 − u)(a2 − v)

(a2 − b2)(a2 − c2)
,

√

b2(b2 − u)(b2 − v)

(b2 − a2)(b2 − c2)
,

√

c2(c2 − u)(c2 − v)

(c2 − a2)(c2 − b2)

)

.(30)

Here, the vector (u, v) ranges over all values with a2 ≤ v ≤ b2 ≤ u ≤ c2. This is a

bijective parameterization of the surface in the positive octant. By making different

choices of square root sign for each of the coordinates, we may coordinatize the

surface in all octants. The boundary of the positive portion intersects the three

positive quadrants. The resulting boundary curves are parameterized as follows, as

shown in Figure 11.

• xy-plane: (c2, a2) to (c2, b2)

• yz-plane: (b2, a2) to (c2, a2)

• xz-plane: (b2, a2) to (b2, b2) to (c2, b2) (note the resulting cusp in the grid in

Figure 11(b).

The squares of the minimum κ1 and maximum κ2 principal curvatures on the

ellipsoid at the point parameterized by (u, v) are given by

κ2
1(u, v) =

a2b2c2

u3v
, (31)

κ2
2(u, v) =

a2b2c2

uv3
. (32)

The globally minimum values of both κ1 and κ2 occur when (u, v) = (c2, b2),

while their globally maximum values occur when (u, v) = (b2, a2). These are the

points (±a, 0, 0) and (0, 0,±c) on the ellipsoid, respectively. It turns out that the

homology of Tδ(X) changes as δ passes through these four critical curvature values,

as well as the two principal curvatures at the points (0,±b, 0), corresponding to the
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parameters (u, v) = (c2, a2).19 Therefore, we define λ1 < µ1 < ν1 to be κ1 at the

extreme points of the ellipsoid, (±a, 0, 0), (0,±b, 0) and (0, 0,±c), respectively. We

easily compute these to be a
c2 <

b
c2 <

c
b2

. Similarly, we define λ2 < µ2 < ν2 to be

κ2 at the extreme points, respectively. They are a
b2
< b

a2 <
c
a2 .

The evolution of Tδ(X) as δ increases depends upon the ordering of these six

critical values, which are in terms of a, b, and c. There are 5 cases: (1) a2c < b3 < ac2,

(2) b3 < a2c, (3) b3 > ac2, (4) b3 = a2c, and (5) b3 = ac2. Here, we will treat the

case (1) explicitly. The other cases may be dealt with in a similar fashion. For this

case, the critical curvature values are ordered as follows.

λ1 < µ1 < λ2 < ν1 < µ2 < ν2. (33)

We now detail the shape of Tδ(X) for the critical values and the ranges they bound.

Figure 12 shows the basepoints of Tδ for various ranges of δ and Table 1 summarizes

the results.

• δ < λ1: Tδ(X) = ∅ (Figure 12(a)).

• δ = λ1: Tδ(X) consists of four points, whose basepoints are the points (±a, 0, 0).
At each such point, we have two vectors tangent to the curve obtained by

intersecting X with the xz-plane.

• λ1 < δ < µ1: Tδ(X) consists of a set of points whose projection onto X consists

of two disjoint contractible sets surrounding the points (±a, 0, 0). The fiber

at each of these points consists of either two tangent vectors or two disjoint

antipodal arcs. The homotopy type of Tδ(X) is still that of four discrete points

(Figure 12(b)).

• δ = µ1: Tδ(X) is a set of points whose projection onto X consists of the union of

two closed contractible discs that contain the points (±a, 0, 0), respectively, and

intersect in the two points (0,±b, 0). This projected subset has the homotopy

type of a circle. The fiber of every point is either two antipodal points (such

as at (0,±b, 0)), or a union of two disjoint antipodal intervals. The homotopy

b b2 2(     ,       )

c a2 2(     ,       )

c b2 2(     ,       )

b a2 2(     ,       )
u

v

(a) (u,v) grid

a

c

b

u

v

u

v

(b) Parameterized patch

Fig. 11. Elliptic coordinates for the portion of ellipsoid in the positive octant. The parameterization

is not orientation preserving, and maps the point (b2, b2) to the corner of the cusp in (b).
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(a) δ < λ1 (b) λ1 < δ < µ1 (c) µ1 < δ < λ2 (d) λ2 < δ < ν1

(e) ν1 < δ < µ2 (f) µ2 < δ < ν2 (g) δ > ν2

Fig. 12. Positive octant of ellipsoid x2

a2 + y2

b2
+ z2

c2
= 1, colored by number of components in fiber

Tδ(X)x, for various ranges of δ. Light gray is the empty fiber, medium gray the full circle, and

dark gray two arcs. In the case where a < b < c and a2c < b3 < ac2, the homology of Tδ(X)
changes only at the critical values λ1 < µ1 < λ2 < ν1 < µ2 < ν2.

type of Tµ1
(X) is that of S1 × S0.

• µ1 < δ < λ2: Tδ(X) is a set whose projection ontoX consists of the union of two

contractible sets that contain the points (±a, 0, 0), respectively, and intersect in

a disjoint union of two contractible sets containing the points (0,±b, 0), respec-

tively. The homotopy type of the projection is that of S1, and the homotopy

type of Tδ(X) remains S1 × S0 (Figure 12(c)).

• δ = λ2: The projection of Tδ(X) is as in the previous case. The fiber of all except

two basepoints consists of two antipodal points or two antipodal disjoint arcs.

At the two points (±a, 0, 0), the fiber is now a full circle. The homotopy type

of this space is that of the space
(

S1 × S0
)

∪
(

S0 × S1
)

⊆ S1 × S1. (34)

Note that Tδ has now become connected.

• λ2 < δ < ν1: Again, the projection remains the same. The set of points whose

fibers consist of full circles, however, is now a disjoint union of two contractible

sets containing (±a, 0, 0). The homotopy type remains unchanged from the

previous case (Figure 12(d)).

• δ = ν1: Tδ(X) is now a set whose projection is the entire ellipsoid X. The

fibers are as usual: pairs of antipodal points, pairs of disjoint antipodal arcs,
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or full circles. The only points where the fiber is two antipodal points are

(0, 0,±c). The set of points with full circles as fibers also remains as before.

The homotopy type of Tδ(X), however, is more complicated. We define two

maps ϕ,ψ : S1 × S0 → S1 × S1 by

ϕ(θ, (±1, 0)) = (θ,±θ), (35)

ψ(θ, (±1, 0)) = (θ,∓θ). (36)

We also let i : S1 × S1 → C(S1) × S1 denote the inclusion of S1 into the base

of the cone C(S1). Then the homotopy type of Tδ(X) is that of the space
(

C(S1) × S1
)

∪S1×S0

(

C(S1) × S1
)

, (37)

based on the inclusions iϕ and iψ and Definition 2.2

• ν1 < δ < µ2: All fibers are now pairs of disjoint antipodal intervals or full

circles. The homotopy type remains unchanged (Figure 12(e)).

• δ = µ2: The projection and fibers stay as before, but the set of points with full

fiber is now connected. The homotopy type of Tδ(X) changes to be that of
(

C(S1) × S0
)

∪S1×S0

(

S1 × S1
)

∪S1×S0

(

C(S1) × S0
)

, (38)

where S1 × S0 is included in C(S1) × S0 via the inclusion as the base of the

cone, and S1 × S0 is included into S1 × S1 via the inclusion S0 ↪→ S1.

• µ2 < δ < ν2: The homotopy type of Tδ(X) remains the same as in the previous

case (Figure 12(f)).

• δ ≥ ν2: All fibers are now full circles and Tδ(X) = T (X) (Figure 12(g)).

Table 1 summarizes our results.

Example 4.5 (cone). In Example 3.4 we failed to detect a cone point using

the tangent complex. We now utilize our new constructions, the filtered tangent

complex T filt(X) and the tame tangent complex T tame(X). Each regular point p

has a tangent direction ξ that points to the origin. The cone has zero curvature in

this direction, so (p, ξ) ∈ T0(X)p. It follows that the fiber at the origin consists of

vectors that are the directions of lines through the origin that lie on the cone. This

is the set (x, y, z) ∈ S2 with |z| =
√

2
2 , homeomorphic to a disjoint union of two

circles. Therefore, the full space T0(X) looks like two disjoint cylinders:

S1 × S0 × [0, 1], (39)

and has the same homotopy type as the fiber at the origin. The map from T0(X) →
T0(X)(0,0,0) is projection on the factor S1 × S0.

For each p ∈ X, the radius ρ(p, ζ) of the osculating circle in the direction ζ

attains its minimum in the direction perpendicular to the line through p and the

origin. Moreover, this minimum,

c(p) = min
ζ∈T (X)p

ρ(p, ζ), (40)
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Table 1. Summary of the evolution of Tfilt (X) for the ellipsoid. A vertical bar indicates no change.

To reduce clutter, we omit lower bound of δ in each row, as it is implicitly defined by a higher

row.

δ Tδ(X) ' · · · Figure

< λ1 ∅ 12(a)

= λ1 S0 ∪ S0

< µ1 | 12(b)

= µ1 S1 × S0

< λ2 | 12(c)

= λ2

(

S1 × S0
)

∪
(

S0 × S1
)

< ν1 | 12(d)

= ν1
(

C(S1) × S1
)

∪S1×S0

(

C(S1) × S1
)

< µ2 12(e)

= µ2

(

C(S1) × S0
)

∪S1×S0

(

S1 × S1
)

∪S1×S0

(

C(S1) × S0
)

< ν2 | 12(f)

≥ ν2 T (X) 12(g)

depends only on the distance from p to the origin, and increases strictly with the

distance. Therefore, the further away we are from the origin, the lower the maximum

curvature, and the lower the δ at which the fibers enter Tδ. For a given δ, if c(p) ≥
1/δ, the entire fiber T (X)p (a circle) is included in Tδ(X). Otherwise, the fiber

contracts into Tδ and has no interesting topology. So, we use a ball of radius λ = |p|
to cut out the portion of T (X) that does not have full fibers. Let Bλ be an open

ball of radius λ. Then,

Tδ(X) ≈ T0(X) ∪ π−1(R3 −Bλ) (41)

where π is the projection. As δ increases, the infinite annulus we cut out widens,

as shown in Figure 13. The space π−1(R3 −Bλ) has the homotopy type of S1 ×S1,

Fig. 13. Bottom half of cone x2 +y2 = z2. The fiber Tδ(X)p consists of two arcs when c(p) < 1/δ,

for points p near the cone point (light), or a full circle when c(p) ≥ 1/δ, for points away from cone

point (dark). We show the fibers at various heights with thicker lines.
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as each point in the annulus has a full circle as fiber. So, Tδ(X) has this homotopy

type for all positive δ. Similarly, T tame(X) also has the same homotopy type and

is not equivalent to the space T (X), whose homotopy type was that of S1. We can

identify the natural map T tame(X) → T (X) up to homotopy equivalence of the two

spaces with the projection of S1 × S1 on the second factor.

Example 4.6 (surface of revolution). Consider the graph of any function y =

f(x), with f(x) > 0, and the surface of revolution X obtained by revolving the

graph around the x-axis. Assuming that f is smooth, standard differential geometry

tells us that at any point, the directions parallel and perpendicular to the circle

of revolution are the principal directions.1 Let v = (x, y, z) be a point in X. We

define ρrev (v), ρgraph(v) to be the radii of the circles of second order contact in

the parallel and perpendicular directions, respectively, and κrev (v) = 1/ρrev (v)

and κgraph(v) = 1/ρgraph(v) to be the corresponding curvatures. It is easy to see

that ρrev (v) is the distance along the direction normal to the graph from the point

(x, f(x)) to the axis of revolution, and ρgraph(v) is the radius of the osculating circle

to the graph at (x, f(x)).

It is immediate that T (X) ≈ X ×S1. The projection of Tδ(X) is itself a surface

of revolution, of the set of points that have directions with low enough curvature:
{

(x, f(x)) | κrev ≤ δ or κgraph ≤ δ
}

(42)

A non-empty fiber at v consists of two antipodal points or two disjoint antipodal

arcs if
(

κrev ≤ δ < κgraph
)

or
(

κgraph ≤ δ < κrev
)

, (43)

and consists of a full circle, otherwise.

We end this section with an example of surfaces in higher dimensions.

Example 4.7 (linear subspaces of Rn). Suppose that X is a union of linear

subspaces in Rn. Then it is clear from the definition that Tδ(X) = T (X) for all δ.

5. Persistent Homology and the Barcode Invariant

Our notion of a filtered tangent complex gives us a family of nested complexes, each

with its own homology. The global topological properties of this family of spaces

carries information about the shape of the object. As we showed in the last sec-

tion, this family can often distinguish between topologically identical objects with

different geometries. We will need invariants of this topological structure that can

be readily computed. Evaluating homology on each of the spaces Tδ(X), we obtain

homology groups Hn(Tδ(X)) for each δ ≥ 0. While it is possible to glean informa-

tion about the space from these groups, it would be computationally infeasible to

do so. Furthermore, we would lose important information about the family, namely

the homomorphisms Hn(Tδ(X)) → Hn(Tδ′(X)) whenever δ ≤ δ′, induced by the

inclusion Tδ(X) ↪→ Tδ′(X).
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We summarize the topological information about the filtered tangent complex

in the notion of a persistence module, a directed system of Abelian groups param-

eterized on the ordered set [0,∞).22 Persistence modules capture the information

contained in the homomorphisms, are computable in the time required for comput-

ing a single homology group, and are classifiable in terms of a compact combinatorial

object called a barcode. In this section, we introduce these algebraic and combina-

torial notions for application to our geometric situation. We begin by defining the

persistence modules and their classification as barcodes. We then introduce a metric

on the space of barcodes. We end the section by giving an algorithm for computing

this metric using maximum weighted bipartite matching.

5.1. Persistent Homology

In this section, we define the persistence module and show how filtered tangent

complexes give rise to such modules naturally.

Definition 5.1 (persistence module). Let T denote any totally ordered set,

and let R be a ring. A R-persistence module parameterized by T is a family of

R-modules {Mt}t∈T together with homomorphisms of R-modules ϕt,t′ : Mt →Mt′

for all t ≤ t′, such that the homomorphisms are compatible,

ϕt,t′ · ϕt′,t′′ = ϕt,t′′ , (44)

whenever t ≤ t′ ≤ t′′

Example 5.1 (N). Let T = N = {0, 1, 2, . . .}. Then an R-persistence module pa-

rameterized by T is simply a family of R-modules {Mn}n≥0, with homomorphisms

M0 →M1 → · · · →Mn−1 →Mn →Mn+1 → · · · . (45)

Such an object is often called an inductive system of R-modules. A straightforward

variant is one where T = Z, the set of all integers, giving rise to a double-ended

system of the type described above.

Example 5.2 (filtered tangent complex). Suppose that we have a family of

spaces Xδ, parameterized by the real valued parameter δ, so that Xδ ⊆ Xδ′ when-

ever δ ≤ δ′. Then the family of Abelian groups Hn(Xδ, R), where R is a ring, is

a R-persistence module parameterized by R. Note that if R is any field, then we

obtain a R-persistence vector space parameterized by R over the field R.

We also speak of a persistence chain complex parameterized by T over a ring

R, a family of chain complexes {C t
∗ }t∈T of R-modules together with chain maps

C t
∗ → C t′

∗ whenever t ≤ t′, satisfying the analogues of the compatibility relations

(44) above. The homology of a persistence complex parameterized by T over R is

always a R-persistence module, parameterized by T . There are analogous notions of

homomorphism and isomorphism for persistence modules. We are mainly concerned

with the classification, up to isomorphism, of persistence modules over fields.
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5.2. Classification over Fields

We first consider persistence modules {Vt}t∈N parameterized by N over a field F . We

are able to classify these modules, provided they are finite. Precisely, a persistence

module {Vt}t parameterized by N over F is of finite type if

(1) each vector space Vt is finite dimensional, and

(2) there is an integer N so that for all t ≥ N , ϕN,t are isomorphisms.

Given any pairs of integers (m,n) with m ≤ n, we define the persistence module

Q(m,n) over N by

Q(m,n)t =

{

0, if t < m or t ≥ n,

F, otherwise,
(46)

The homomorphisms ϕij are the identity homomorphisms for m ≤ i ≤ j ≤ n. We

can trivially extend this definition to the case n = +∞. The main result of 22 is

the following.

Proposition 5.1 (classification). A persistence module parameterized by N over

F of finite type is isomorphic to one of the form
n
⊕

s=1

Q(is, js), (47)

where js can be +∞, and the decomposition is unique up to the order of the pairs.

This result is a consequence of the fundamental theorem for finitely generated mod-

ules over the graded principal ideal domains (PID) F [t], with t having degree 1.

Using the Artin-Rees construction, we can show that persistence modules param-

eterized by N over any ring R are characterized by an associated graded module

(non-negatively graded) over the polynomial ring R[t], and the result follows by

taking R = F . We note this simple classification does not extend to non-fields, as

the graded R[t] will not be a PID.

We can achieve similar results for other parameter spaces using suitable finite-

ness conditions. For example, if T = R, we say a persistence module {Vs}s over F is

of finite type if there are a finite number of unique finite-dimensional vector spaces

in the persistence module. Let I be an interval. We define a persistence vector space

Q(I) over F

Q(Is) =

{

0, if s 6∈ I,

F, otherwise,
(48)

where the homomorphism is the identity within each interval. We can now state an

analog of Proposition 5.1.

Proposition 5.2. A persistence module parameterized by R over F of finite type

is isomorphic to one of the form
n
⊕

s=1

Q(Is), (49)
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where each interval Is is bounded from below, and the description is unique up to

the order of the intervals.

5.3. Metric Space of Barcodes

In the last section, we saw that we can classify persistence modules parameterized

by N using a number of pairs of integers {(is, js)}s. If we view these pairs as half-

open intervals {[is, js)}s, the description matches that of modules parameterized

by R. This family of intervals is our shape descriptor.

Definition 5.2 (barcode). A barcode is a finite multiset of intervals that are

bounded below.

Intuitively, the intervals denote the life-times of non-trivial cycles in a growing

complex. The left endpoint of an interval signifies the birth of a new topological

attribute, and the right endpoint signals its death. The longer the interval, the more

important the topological attribute, as it persists in being a feature of the complex.

We next wish to form a metric space over the collection of all barcodes. We do so

using a pseudo-metric (also called quasi-metric in the literature).

Definition 5.3 (pseudo-metric). Let X be a set. A pseudo-metric d: X ×X →
[0,+∞] satisfies the following properties.

(i) d(x, y) ≥ 0, for all x, y ∈ X (positivity),

(ii) d(x, x) = 0, for all x ∈ X (non-degeneracy),

(iii) d(x, y) = d(y, x) for all x, y ∈ X (symmetry),

(iv) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X (triangle inequality).

We stipulate x + ∞ = ∞ and ∞ + ∞ = ∞, so that ∞ is a possible value of the

pseudo-metric.

Let I denote the collection of all possible barcodes. We wish to define a pseudo-

metric D(S1, S2) on all pairs of barcodes (S1, S2), with S1, S2 ∈ I, so that if we

move the endpoint of any single interval in either set by a dissimilarity ε, D(S1, S2)

changes by no more than ε. Let I, J be any two intervals in a barcode. We define

their dissimilarity δ(I, J) to be their symmetric difference: δ(I, J) = µ(I∪J−I∩J),

where µ denotes one-dimensional measure. Note that δ(I, J) may be infinite. Given

a pair of barcodes S1 and S2, a matching is a set M(S1, S2) ⊆ S1 × S2 = {(I, J) |
I ∈ S1 and J ∈ S2}, so that any interval in S1 or S2 occurs in at most one pair

(I, J). Let M1,M2 be the intervals from S1, S2, respectively, that are matched in

M , and let N be the non-matched intervals N = (S1 −M1) ∪ (S2 −M2). Given a

matching M for S1 and S2, we define the distance between S1 and S2 relative to M

to be the sum

DM (S1, S2) =
∑

(I,J)∈M

δ(I, J) +
∑

L∈N

µ(L). (50)
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We now look for the best possible matching to define the pseudo-metric.

Definition 5.4 (barcode metric). D(S1, S2) = minM DM (S1, S2).

For a pair (I, J), we know that δ(I, J) = µ(I) + µ(J)− 2µ(I ∩ J). Now, for any

matching M , we define the similarity of S1 and S2 with respect to M to be

SM (S1, S2) =
∑

(I,J)∈M

µ(I ∩ J) (51)

=
1

2

(

∑

S1

µ(I) +
∑

S2

µ(J) −DM (S1, S2)

)

. (52)

Minimizing DM is equivalent to maximizing SM . We may do the latter by recasting

the problem as a graph problem. Given sets S1 and S2, we define G(V,E) to be a

weighted bipartite graph.5 We place a vertex in V for each interval in S1 ∪ S2. We

place an edge in E for each pair (I, J) ∈ S1 ×S2 with weight µ(I ∩ J). Maximizing

SM is equivalent to the well-known maximum weight bipartite matching problem.

We may utilize one of several algorithms for computing the matching, such as

the Hungarian algorithm with time complexity O(|V ||E|),16 or the Gabow-Tarjan

algorithm with complexity O(
√

|V ||E| log |E|).11

6. Examples, Revisited

Having described persistent homology, in this section we revisit all of our examples

from sections 3 and 4. We give precise descriptions of the homology groups, and in

the case of the filtered complexes, we provide pictures of the barcodes that describe

the persistence modules.

Example 6.1 (hyperplane). For the hyperplane X in Example 3.1, we found

that the tangent complex has the form X × Sn−1. Since X is contractible, we

may use the Künneth formula to conclude that H∗(T (X)) ∼= H∗(Sn−1). We list

Hi(T (X)) in the following table, where the dimension is listed horizontally, and i

maps to dimensions not accounted for.

0 i n− 1

Z 0 Z

The Betti numbers are the dimensions of these vector spaces, so β0(T (X)) =

βn−1(T (X)) = 1 and βi(T (X)) = 0, for i 6= 0, n− 1. In the remaining examples, we

do not list the Betti numbers explicitly, as they can be easily read off.

Example 6.2 (vee). In Example 3.2, we found that T (X) for the vee-shaped

space is a disjoint union of four rays, shown in Figure 4. As each ray is contractible,

H∗(T (X)) is isomorphic to the homology of four points. Explicitly,

0 i

Z4 0
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Example 6.3 (boundary of positive octant). We analyzed T (X) of the bound-

ary of the positive octant in Example 3.3. The topology of the space is that of the

fiber at the corner point: three circles that intersect pairwise in pairs of antipodal

points, as shown in Figure 5(c). We use the Mayer-Vietoris technique to compute

the homology.

0 1 i

Z Z7 0

We next analyze some cases of the filtered tangent complex. Since our descrip-

tion of persistent homology in terms of barcodes requires homology with field coef-

ficients, we use F = Z/2Z as our coefficients set.

Example 6.4 (circle). In Example 4.1, we computed T filt(X) for a circle of radius

R in the plane. We found that the entire tangent complex appeared when δ = 1/R.

Below, we list the homology groups, where we now use rows to delineate the range

for δ. To reduce clutter, we omit the lower bound of δ in each row, as it is implicitly

defined by a higher row or is zero. We draw the corresponding barcodes in Figure 14.

δ 0 1

< 1/R 0 0

≥ 1/R F2 F2

Example 6.5 (ellipse). In Example 4.2, we computed T filt(X) for the ellipse
x2

a2 + y2

b2
= 1. While the full tangent complex T (X) matches that of the circle in the

previous example, we saw that Tδ(X) for the ellipse evolved through three stages,

as shown in Figure 8. As for Table 1, the lower bound for δ is implied by the value

on the preceding row. We draw the corresponding barcodes in Figure 15.

δ 0 1

< a/b2 0 0

< b/a2 F4 |
≥ b/a2 F2 F2

-

-

0 1
R

∞

(a) β0

-

-

0 1
R

∞

(b) β1

Fig. 14. Barcodes for the circle.
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0 a
b2

b
a2

-

-

∞

(a) β0

0 a
b2

b
a2

-

-

∞

(b) β1

Fig. 15. Barcodes for the ellipse.

Example 6.6 (cubic). In Example 4.3, we computed T filt(X) for the graph of

the cubic f(x) = x3 + ax. As X is smooth, the full tangent complex is X × S0. We

saw that Tδ(X) undergoes three phases, however, as shown in Figure 9. Below, κa

is the curvature defined in the example. We draw the corresponding barcodes in

Figure 16.

δ 0 1

= 0 F2 0

< κa F6

≥ κa F2

Example 6.7 (ellipsoid). In Example 4.4, we computed T filt (X) for the ellipsoid

defined by

x2

a2
+
y2

b2
+
z2

c2
= 1, (53)

when a < b < c and a2c < b3 < ac2, summarizing the results in Table 1. In this

case, the full tangent complex is homeomorphic to the unit tangent bundle to the

sphere. This bundle can be expressed as a fiber bundle with base space S2 and

0 κa

-

-

∞

Fig. 16. β0-barcode for the cubic. There is no β1-barcode.
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0 λ1 µ1 λ2 ν1 µ2 ν2

-

∞

(a) β0

0 λ1 µ1 λ2 ν1 µ2 ν2

-

∞

(b) β1

0 λ1 µ1 λ2 ν1 µ2 ν2

-

∞

(c) β2

0 λ1 µ1 λ2 ν1 µ2 ν2 ∞
-

(d) β3

Fig. 17. Barcodes for the ellipsoid.

fiber S1, but is not the trivial bundle S2 × S1.14 This fact is reflected in its integer

homology that we do not show here. Using Serre spectral sequences, we have

Hi(T (X)) ∼=
{

F, 0 ≤ i ≤ 3,

0, otherwise.
(54)

Our computations, summarized in Table 1, give us the following description of the

homology of Tδ(X). We draw the non-empty barcodes in Figure 17.

δ 0 1 2 3 i

< λ1 0 0 0 0 0

< µ1 F4

< λ2 F2 F2

< ν1 F F5

< µ2 F F3 F2

< ν2 F F F4

≥ ν2 F F F F
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Example 6.8 (cone). In Example 4.5, we computed T filt(X) for the cone. We

saw that T0(X) has the homotopy type of S1 × S0, and that for every positive δ,

Tδ(X) has the homotopy type of S1 × S1. We obtained the following description

for the homology of Tδ. As the intervals are not particularly interesting, we do not

draw them.

δ 0 1 2 i

= 0 F F 0 0

> 0 F F2 F

7. Shape Recognition with Homology

In this section, we show how the homology of our tangential constructions is an

effective tool for shape recognition and classification. In particular, we see how the

method can classify objects in a continuous family of objects that have been modi-

fied by smooth deformations in the ambient space, or placed in alternate coordinate

systems. We devote the rest of this section to two examples that focus on sharp

and soft features, respectively.

Example 7.1 (geometric surfaces).

Suppose that our task is to devise a system that is able to recognize geomet-

ric surfaces from the list {sphere, cone, rectangular prism, tetrahedron, pyramid,

cylinder}. We would like our system to recognize them even if they are given in

spherical, cylindrical, hyperbolic, or other coordinate systems, without any knowl-

edge of the system, and without making any transformations. Also, we would like

our system to recognize deformed versions of the objects on the list, and classify

them correctly. To do this, we first construct the tame tangent complex T tame(X)

for a given object X. Our invariant will be the vector of Betti numbers for this

complex. We show this vector for our list objects in Table 2. We compute these

values using the Mayer-Vietoris techniques described in Section 2. It is clear that

we can distinguish between these objects through the vectors of Betti numbers.

This vector is unaffected by smooth deformations of the ambient Euclidean space,

and does not depend on the coordinate system used. Note that this vector captures

sharp features of the surfaces, and this is enough for differentiating between the

objects.

Example 7.2 (bottle vs. glass). In Example 3.6, we asked for a technique for

distinguishing a bottle from a glass. The surfaces are homeomorphic and share sharp

features. Therefore, we must look at the filtered tangent complex for distinguishing

features. In this example, we compute the barcode invariant for both objects and

show how we may compare them using our metric. Both a bottle and a glass may

be described as surfaces of revolution, as shown in Figure 18. In both cases, we

add a vertical line to the graph of a function. In order to study the filtered tangent

complex, we need to make some assumptions about the shape of these objects. We

begin with the bottle. Let f : [0, H] → R be a twice-differentiable positive function



April 8, 2005 14:41 WSPC/INSTRUCTION FILE ijsm

Persistence Barcodes for Shapes 33

Table 2. The Betti numbers for T tame (X) for various geometric surfaces.

surface β1 β2 β3

sphere 1 1 1

cone 2 2 0

cube 24 0 0

tetrahedron 13 0 0

pyramid 21 0 0

cylinder 4 3 0

whose graph is used to sweep out a bottle of height H. We make the following

assumptions about f and the principle curvatures κrev and κgraph (cf. Example 4.6).

(i) f is constant on the closed intervals [0, ξ0] and [ξH , H], with f(0) > f(H), and

is monotonically decreasing from ξ0 to ξH , with a single inflection point at ξ.

(ii) κrev is monotonically increasing.

(iii) κgraph is 0 at the inflection point and on the intervals where f is constant, and

has exactly two local maxima at ξ− ∈ (ξ0, ξ) and ξ+ ∈ (ξ, ξH).

Let κ0 = κrev (0) = 1/f(0) and κH = κrev (H) = 1/f(H) denote the inverse of the

cross-sectional radii at 0, H, respectively. Clearly, κ0 < κH . Let κ− = κgraph(ξ−)

and κ+ = κgraph(ξ+) denote the inverse of the radius of the osculating circle to the

curve at ξ−, ξ+, respectively. There are a number of different cases for analyzing

Tδ(X). We will deal with the case 0 < κ+ < κ− < κ0 < κH , corresponding to a

rather long, slowly tapering bottle, much like a Riesling wine bottle. Other cases

may be treated similarly. We obtain the following results about Tδ(X).

• δ = 0: Any point where the curvature κgraph vanishes has non-empty fiber in

T0(X). The projection of T0(X) decomposes into three components: W1,W2

and W3, corresponding to bottle’s body, a circle at f ’s inflection point, and the

bottle’s neck, as shown in Figure 19(a). More precisely, W1 is the surface of

revolution generated by rotating the vertical line segment 0× [0, f(0)] together

(a) bottle (b) glass

Fig. 18. Surfaces of revolution around the x-axis.
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with the horizontal line segment [0, ξ0] × f(0) around the x-axis. W2 is gener-

ated by rotating the point (ξ, f(ξ)). W3 is generated by rotating the segment

[ξH , H] × f(H). W2 is a circle, and W3 is a cylinder (or annulus, when viewed

from the top), which is homotopy equivalent to a circle by Example 2.3. The

fiber in T0(X) at each point ofW2 orW3 is a pair of points, the zero-dimensional

sphere S0, and we have

π−1(W2) ' π−1(W3) ' S1 × S0. (55)

W1 is precisely the glass we constructed in Example 2.15. So, π−1(W1) is the

union of two pieces U and V , where U is the 0-tangent complex of the base

disc, and V is the 0-tangent complex of the side. Since the base disc D2 is flat,

each fiber in U is a full circle, and we know that U ' D2 ×S1 by Example 3.1.

The side is a cylinder once again, so its 0-tangent complex is V ' S1 × S0 as

for W2 and W3 above. Although the base disc and side intersect in a circle, the

tangent directions from each piece do not intersect, so π−1(W1) is the disjoint

union of U and V :

π−1(W1) ' (D2 × S1) ∪̇ (S1 × S0). (56)

Putting it all together, T0(X) has the homotopy type

(D2 × S1) ∪̇ (S1 × S0) ∪̇ (S1 × S0) ∪̇ (S1 × S0). (57)

• 0 < δ < κ+: Tδ(X) does not change its homotopy type, while the inflection

circle grows into an annulus, as shown in Figure 19(b).

• δ = κ+: The two components π−1(W2) and π−1(W3) become connected. So, the

image of Tκ+
under π becomes the union of two pieces that correspond to the

body and the neck. The fiber of any point away from the base disc is a pair of

points or disjoint antipodal intervals. Along the crease of the base, the fiber is a

(a) δ = 0 (b) 0<δ<κ+ (c) κ
−
≤δ<κ0 (d) κ0 <δ<κH (e) δ ≥ κH

Fig. 19. Bottles shaded by number of components in fiber. Light gray denotes an empty fiber,

medium gray is the full circle, and dark gray is two arcs. In this example, κ
−

= κ+ < κ0.
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disjoint union of a circle and a pair of disjoint antipodal intervals. The complex

description loses a term to become Tκ+
(X) ' (D2×S1) ∪̇ (S1×S0) ∪̇ (S1×S0).

• κ+ < δ < κ−: The homotopy type does not change.

• δ = κ−: The neck and the body in the projection of Tδ(X) merge, as shown

in Figure 19(c). Every fiber is now non-empty, and consists of two antipodal

arcs or points. The homotopy type of Tδ(X) loses another term to become

(D2 × S1) ∪̇ (S1 × S0).

• κ− < δ < κ0: The homotopy type does not change.

• δ = κ0: Points along the lower sides of the bottle now have full fiber. The indi-

vidual fibers along the crease become a union of two circles, that now intersect

in a pair of antipodal points. We now have

Tκ0
(X) ' (D2 × S1) ∪S1×S0 (S1 × S1), (58)

where ∪S1×S0 is the construction in Definition 2.2.

• δ ≥ κ0: The homotopy type remains unchanged, as shown in Figures 19(d) and

19(e).

Our analysis gives the following description of homology for Tδ(X).

δ 0 1 2

< κ+ F7 F7 0

< κ− F5 F5

< κ0 F3 F3

≥ κ0 F F3 F2

We next perform the same calculation for a glass shown in Figure 18(b). We

assume it is the surface of revolution obtained by revolving (0, [0, R]) ∪ ([0, H ′], R)

around the x-axis, giving us a glass of radius R and height H ′. Observe that the

glass is geometrically similar to the body of the bottle, the section called W1 when

δ = 0 (or the surface in Example 2.15). Let κ = 1/R. The analysis follows quickly

from our observation:

• δ = 0: We have T0(X) ' (D2 × S1) ∪̇ (S1 × S0) as in the analysis of π−1(W1)

for the bottle.

• 0 < δ < κ: The homotopy does not change.

• δ = κ: We have Tκ(X) ' (D2 ×S1) ∪S1×S0 (S1 ×S1) as in the analysis for the

bottle when δ = κ0.

• δ > κ: The homotopy does not change.

Our analysis gives the following description of homology for Tδ(X).

δ 0 1 2

< κ F3 F3 0

≥ κ F F3 F2

Note that the table for the glass is simply the bottom two rows of the table for

the bottle. The bottle’s neck is reflected in the first two rows, which correspond to
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0 κ+ κ− κ0

-

(a) β0

0 κ

-

(b) β0

0 κ+ κ− κ0

-

-

-

(c) β1

0 κ

-

-

-

(d) β1

0 κ+ κ− κ0

-

-

(e) β2

0 κ
-

-

(f) β2

Fig. 20. Barcodes for the bottle (left) and the glass (right).

the shorter intervals shown in Figure 20 on the left. In the figure, we set κ0 = κ to

compare a glass and bottle of the same bottom radius.

Finally, we compute distances, in turn, between different bottles, different

glasses, as well as bottles and glasses.

• Suppose we are given two bottles of the type analyzed here (i.e. 0 < κ+ < κ− <

κ0 < κH) with parameters (κ+, κ−, κ0) and (κ′+, κ
′
−, κ

′
0). The distance between

the β0-barcodes associated to these two bottles is

2
(
∣

∣κ+ − κ′+
∣

∣+
∣

∣κ− − κ′−
∣

∣+ |κ0 − κ′0|
)

. (59)

As expected, small changes in the parameters produce barcodes that are near

each other in barcode space.

• Suppose we are given two glasses with curvatures κ, κ′, respectively. If we as-

sume |κ − κ′| is small, then the distance between the associated β0-barcodes,

2|κ− κ′|, is also small.

• Suppose we have a bottle of the type analyzed with parameter vector

(κ+, κ−, κ0) and a glass with curvature κ. There are three cases:

(1) 0 < 2κ ≤ κ+ + κ−
(2) κ+ + κ− ≤ 2κ ≤ κ− + κ0
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(3) 2κ ≥ κ− + κ0.

The corresponding distances are:

(1) 2 |κ+ − κ| + 2κ− + 2κ0

(2) 2κ+ + 2 |κ− − κ| + 2κ0

(3) 2κ+ + 2κ− + 2 |κ0 − κ|.

Note that the distances are not relative, so we can reasonably expect a good per-

formance from our distance function in distinguishing between a bottle and a glass.

We can also visualize how changes in the parameter values for the bottle will make

it similar to a glass. As κ+, κ− tend to 0, we get longer and flatter bottles, arriving

at a glass in the limit. We may observe the same effect on the barcode, where the

four shorter intervals become shorter as these parameters shrink, decreasing the

bottle’s distance to a glass.

8. Conclusion

In this paper, we propose a method for combining geometry and topology for shape

recognition and classification. Our method applies persistent homology to tangen-

tial constructions to arrive at a simple and compact shape descriptor, the barcode,

that captures both sharp and curvature-dependent features of a shape. We also

define a metric over the space of barcodes, and provide an algorithm for computing

this metric. Through detailed examples, we illustrate the viability of our method

for shape recognition. In particular, we show that we may think of our homolog-

ically invariant barcodes as coordinates for shape spaces, as they lie in a metric

space. These coordinates correspond to geometric attributes of shapes, such as the

eccentricity of an ellipse or the curvature of the neck of a bottle. They enable us to

distinguish between interesting categories of shapes, such as between the categories

of bottles and glasses.

Our work suggestions major avenues for future research:

• Application of our techniques to point cloud data (PCD). There are a number

of interesting computational questions to be resolved, such as algorithms for

constructing our derived complexes for the computation of barcodes. Already,

we have addressed these issues for PCDs of curves.4 We plan to apply our

techniques to PCDs of surfaces in the near future.

• Application of our techniques to noisy data. Our current experiments show that

our techniques work well on idealized data, as well as data with superimposed

Gaussian noise.

• Development of statistical methods for analyzing data in the metric space of

barcodes. Such methods should permit the use of discriminant analysis and

Bayesian decision procedures to develop automatic methods for shape classifi-

cation.

• Utilization of barcodes for coordinatizing spaces, for example, gray-scale images

of families of three-dimensional objects.
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• Utilization of linear algebraic algorithms recently developed to locate features

within data sets.3

We believe that the primary contribution of this paper is an approach of blending

geometric and topological techniques that is grounded in theory. As high throughput

scanning becomes commonplace, and more and more shapes are digitized, automatic

qualitative shape analysis and classification will be of critical value. Such analysis

provides useful priors for shapes that may be exploited for operations on them,

such as reconstruction. We believe that the type of research initiated here will be

important in the geometry processing field in the years to come.
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