
How much Geometry it takes to Reconstruct a 2-Manifold in R
3

Daniel Dumitriu† Stefan Funke‡ Martin Kutz† Nikola Milosavljevic§

Abstract

Known algorithms for reconstructing a 2-manifold from
a point sample in R

3 are naturally based on deci-
sions/predicates that take the geometry of the point sample
into account. Facing the always present problem of round-off
errors that easily compromise the exactness of those predi-
cate decisions, an exact and robust implementation of these
algorithms is far from being trivial and typically requires
the employment of advanced datatypes for exact arithmetic
as provided by libraries like CORE, LEDA or GMP. In this
paper we present a new reconstruction algorithm, one of
whose main novelties is to throw away geometry informa-
tion early on in the reconstruction process and to mainly
operate combinatorially on a graph structure. As such it
is less susceptible to robustness problems due to round-off
errors and also benefits from not requiring expensive exact
arithmetic by faster running times. A more theoretical view
on our algorithm including correctness proofs under suitable
sampling conditions can be found in a companion paper [?].

1 Introduction

Robust Geometric Computation Geometric algo-
rithms use geometric predicates in their conditionals
(e.g. does a point r lie to the left or right of an oriented
line through p and q). A common strategy for the exact
implementation of geometric algorithms is to evaluate
all geometric predicates exactly. While floating-point
filters have proved to be quite efficient both in theory
and practice to speed-up the exact evaluation of predi-
cates, they tend to become less efficient for more com-
plicated (i.e. higher degree) predicates like the insphere
predicate1 which is the basis for all algorithms based on
the Delaunay tetrahedralization in R

3.
The evaluation of a geometric predicate amounts

to the computation of the sign of an arithmetic ex-
pression. Round-off errors during floating-point com-
putation might easily lead to reporting a wrong sign of
such an arithmetic expression, which most of the time
has disastrous consequences ([?]). A floating-point filter

†Max-Planck-Institut für Informatik, Saarbrücken, Germany,

dumitriu@mpi-inf.mpg.de
‡Ernst-Moritz-Arndt-Universität Greifswald, Germany,

stefan.funke@uni-greifswald.de
§Stanford University, Stanford, U.S.A, nikolam@stanford.edu
1The insphere predicate for points p, q, r, s, t decides whether

point t lies inside, on or outside the sphere defined by p, q, r, s.

Figure 1: Output of our algorithm for the Stanford
Bunny. Due to the conservative adjacency creation,
some faces (light) are non-triangular, which can
easily be triangulated later on, though.

evaluates the expression using floating-point arithmetic
and also computes an error bound to determine whether
the floating point computation is reliable. If the error
bound does not suffice to prove reliability, the expres-
sion is re-evaluated using exact arithmetic. The quality
of the error bounds typically deteriorates, though, with
the complexity of the predicate expression and hence,
more predicate decisions require the fallback of expen-
sive exact arithmetic computation.

A different approach to the robustness problem is
to design the algorithm to be able to cope with round-
off errors right from the beginning. The difficulty of
designing robust algorithms is illustrated in [?, ?, ?].
In [?] Sugihara et al. develop an algorithm for com-
puting the Voronoi diagram of a set of points whose
termination is guaranteed by certain purely combinato-
rial graph properties; geometric predicate evaluations
are only used to steer the execution of the algorithm in
a certain direction. In particular, their algorithm would
also terminate if the outcome of all geometric predicates
was completely randomized.

In this paper we present an algorithm for recon-

structing a 2-manifold in R
3 in the spirit of the work by

Sugihara et al. The main idea is that only at the begin-
ning of the algorithm we require the exact evaluation
of a few simple (i.e. low-degree) predicates and then es-
sentially work combinatorially without evaluating any
geometric predicates. Nevertheless we show (both ex-
perimentally as well as theoretically in a companion pa-
per [?]) that the output of our algorithm faithfully re-
sembles the original 2-manifold. Most importantly, our
algorithm produces this output without any evaluation
of a complicated geometric test like the insphere predi-
cate in R

3, which is the basis of all related Voronoi-based
reconstruction algorithms.

Related Work The problem of reconstructing a sur-
face Γ in R

3 from a finite point sample V has attracted
a lot of attention both in the computer graphics com-
munity as well as in the computational geometry com-
munity. While in the former the emphasis is mostly
on algorithms that work ‘well in practice’, the latter
has focused on algorithms that come with a theoretical
guarantee: if the point sample V satisfies a certain sam-
pling condition, the output of the respective algorithm
is guaranteed to be ‘close’ to the original surface.

In [?], Amenta and Bern proposed a framework for
rigorously analyzing algorithms reconstructing smooth
closed surfaces. They define for every point p ∈ Γ on
the surface the local feature size lfs(p) as the distance
of p to the medial axis2 of Γ. A set of points V ⊂
Γ is called a ε-sample of Γ if ∀p ∈ Γ ∃s ∈ V :
|sp| ≤ ε · lfs(p). Many algorithms have been proposed
that determine a collection of Delaunay triangles which
form a piecewise linear surface that is topologically
equivalent to the original surface and converges to
the latter both point-wise as well as in terms of the
surface normals as the sampling density goes to infinity
(ε → 0). Common to almost all those algorithms is
the fact that they require the computation of a Voronoi
diagram/Delaunay triangulation of a point set in R

3

which incurs both an inherent Ω(n2) running time as
well as the need for the exact evaluation of the insphere
predicate.

In [?] Funke and Milosavljevic present an algorithm
for computing virtual coordinates for the nodes of a
wireless sensor network which are themselves unaware
of their location. Their approach crucially depends on a
subroutine to identify a provably planar subgraph of a
communication graph that is a quasi-Unit-Disk graph.
A similar subroutine will also be used in our surface
reconstruction algorithm presented in this paper.

2The medial axis of Γ is defined as the set of points which have

at least two closest points on Γ.

Our Contribution We propose a new graph-based al-
gorithm for reconstructing a 2-manifold in R

3. Our al-
gorithm fundamentally differs from previous approaches
in two respects: first, it mainly operates combinatorially
on a graph structure, which is derived from the origi-
nal geometry; secondly, the created adjacencies/edges
are “conservative” in a sense that two samples are only
connected if in all reasonable reconstructions those two
samples are adjacent. Interestingly we can show in the
theoretical companion paper [?], though, that conserva-
tive edge creation only leads to small, constant-size faces
in the respective reconstruction, hence the topology of
the original surface is faithfully captured. While the
theoretical analysis requires an absurdly high sampling
density – like most of the above mentioned algorithms
do – this paper shows that our algorithm is actually
very practical for real-world datasets. Due to the lo-
cal nature of computation in our algorithm there is also
potential for use e.g. in parallel computing or external
memory scenarios.

2 Our Algorithm

The main idea of our algorithm is first to derive a graph
G(V) which captures mutual proximity information of
the samples in V and then decide on adjacencies be-
tween (some of the) samples of V only based on the
connectivity structure of G(V). To keep the presenta-
tion simple, we assume that V is a uniform3 ε-sample
from a closed smooth 2-manifold Γ in R

3. In practice,
sample sets are indeed often close to uniform and even
small non-uniformities in the sample set never prevented
our algorithm to work in practice. In theory, a prepro-
cessing stage can enforce local uniformity which is suf-
ficient to prove correctness of our algorithm. See [?] for
more details. The high-level view of our algorithm is as
follows:

1. Construct a local neighborhood graph G(V) by
creating an edge from every point v to all other
points v′ with |vv′| ≤ O(ε).

2. Compute a subsample S of V as a maximal k-hop
stable set in G(V)

3. Construct the graph Voronoi diagram for V with
respect to the subsample S

4. Identify adjacencies between elements in S by
inspection of the graph Voronoi diagram

5. Output faces of the reconstruction as minimal
cycles in the graph induced by the adjacencies
between elements in S

In step one we create a unit-disk graph of the point
set connecting two samples iff their distance is less

3V is a uniform ε-sample if for any p ∈ Γ ∃s ∈ V with |ps| ≤ ε.

than some constant times ε. In step two we compute
a maximal subsample S ⊂ V with the property that
there are no two s1, s2 ∈ S closer than k hops in the
graph G(V). Such a maximal (not maximum!) k-hop
stable set can easily computed in a greedy fashion. In
step three, we essentially compute a discrete analogue
of the geometric Voronoi diagram but using G(V) as
a discrete approximation of the space between the
subsample vertices in S. That is, we assign each node
v ∈ V its closest (in terms of hop-distance) node in S

(breaking ties according to node IDs). This partitions
V into tiles consisting of nodes which have the same
closest s ∈ S which we also call landmark or site.
Two elements s1, s2 ∈ S are then declared adjacent
in step four, iff the respective tiles are touching each
other by a sufficient amount, i.e. the number of nodes
in one of the tiles with direct neighbors in the other
tile is above some threshold. Finally, in step five, we
collect the adjacencies to actually create faces of the
reconstruction of our algorithm. Observe that only
Step 1. involves the geometry of the sample set V , all
other steps can be implemented fully combinatorially.
Also, the only geometric predicate required in step one
is the comparison of coordinates and distances between
input points – very low degree predicates that can be
evaluated exactly very efficiently using known floating-
point filter techniques. We want to emphasize two
things:

1. Our algorithm does not compute a reconstruction
of V with respect to the original surface Γ (involv-
ing all v ∈ V) but only of a subsample S ⊂ V . For
sufficiently dense sample sets, this reconstruction of
S with respect to Γ still captures the topology of Γ.
There is also a generic (and rather simple) way of
incorporating the remaining points of V into the re-
construction (requiring some higher-degree geomet-
ric predicates, though), see [?]. In practice, with
the presence of scanning devices producing millions
or even billions of point samples, the fact that we
only compute a reconstruction of a subsample is
not a real concern.

2. The reconstruction computed by our algorithm
does not only contain triangular faces, but also
larger faces (though of size less than 5 in practice
and of constant size in theory). If required, these
non-triangular faces can be triangulated easily (re-
quiring only low-degree geometric predicates).

In [?] we provide a theoretical justification for the cor-
rectness of our algorithm under the ε-sampling condi-
tion proposed in [?]. The core components of the cor-
rectness proof are:

Figure 2: The Dragon, head close-up: point cloud,
graph Voronoi diagram, identified adjacencies between
subsamples and discovered faces (left to right, top to
bottom)

• We show that the local neighborhood graph corre-
sponds locally to a quasi-unit-disk graph for a set
of points in the plane.

• The identified adjacencies locally form a planar
graph.

• The faces of this graph have bounded size.

What does this mean? The graph that we constructed
on the subsample of points S is a mesh that is locally
planar and covers the whole 2-manifold. The mesh
has the nice property that all its cells (aka faces) have
constant size (number of bounding vertices). Therefore
its connectivity structure faithfully reflects the topology
of the underlying 2-manifold.

Theorem 2.1. ([?]) The adjacencies created between
samples in S form a graph which faithfully reflects the
topology of the underlying 2-manifold.

As can be read from Table 1, the running times
are heavily dominated by the construction of the local
neighborhood graph. We expect considerable improve-
ments by an order of magnitude by performing batched
nearest neighbor queries (and not asking for the κ near-
est neighbors separately for each sample).

3 Implementation

We have implemented our algorithm in C++, using
Qt4 and OpenGL for rendering and the graphical user

Model Points Open Read Octr Ngb Mis Vor Cdm Cyc Total CoCone

Bunny 35947 0.83 0.39 0.14 3.42 0.45 0.29 0.22 0.05 5.79 29
Bone 177907 0.83 1.62 0.97 20.45 2.77 1.70 1.29 0.62 30.25 137
Hand 327323 0.83 3.08 2.13 36.87 4.77 2.81 2.31 0.86 53.66 1216
Dragon 435545 0.83 4.79 2.97 49.03 6.44 4.01 3.59 1.33 72.99 761
Buddha 543524 0.83 6.10 4.10 63.18 8.30 5.11 4.20 1.89 93.71 876
Blade 882954 0.83 6.95 6.23 104.32 14.31 8.45 7.09 4.74 152.92 >1800

Table 1: Time spent in different stages (seconds)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 100 200 300 400 500 600 700 800 900

T
im

e
(s

)

Number of points in model (thousands)

open application
read input file
build octree
find neighbors
compute MIS
find Voronoi
compute CDM
enumerate cycles

Figure 3: Plot of the time spent in different stages of
the algorithm for different input sizes

interface.
For our implementation we make the simplifying

assumption that the set of input data points V is a
locally uniform sampling, which is typically true for
sample data acquired by laser scanning (this means
in particular that apart from a lower bound on the
density of the sample there is also an upper bound,
see the companion paper for a more precise definition).
In that way we can determine the local neighborhood
graph G(V) (first step of our algorithm) by connecting
a sample to its κ nearest neighbors (κ = 15 worked well
in our experiments).

Also making use of the assumption that V is a
locally uniform sample, we can declare two samples
s1, s2 ∈ S adjacent as follows: s1 and s2 are adjacent if
the number of edges linking a sample v1 (belonging to
the graph Voronoi cell of s1) to a sample v2 (belonging
to s2’s cell) is above a certain threshold a (a = 7 worked
well in our experiments). Figure 2 illustrates the main
steps of our algorithm using a close-up of the Dragon
model.

3.1 Implementation Details We provide here sup-
plementary information about our design choices.

Input. The input represents the points in a point
cloud P and comes in a simplified PLY format, a simple

object description designed as a convenient format for
working with polygonal models. In our case there is
no special header, since we are only interested in the
points themselves. That is why each line in the file
corresponds to a sample point and is a simple list of its
three coordinates. We simply report but skip any line
not conforming to this format.

Spatial representation. In order to allow for
efficient positional queries, the points in V are stored
in an octree. An octree is a structure suited for storing
spatial data, which takes into consideration the relative
distribution of points, backed up by an 8-ary tree. Each
node in the tree represents a cube. The tree root
corresponds to the bounding box of the point cloud and
stores all the points. This cube is split in two along each
axis, yielding eight smaller cubes.

A threshold o (called octree granularity) is im-
posed on the number of points that can lie within any
node/cube. When the threshold is exceeded, the cube is
split into eight smaller cubes of equal volume. They pro-
vide a refinement of the larger cube and this is recorded
by making them the children of the tree node corre-
sponding to the big cube. The process of splitting con-
tinues recursively and stops when all the tree leaves con-
tain less than o points.

κ-nearest neighbors. The octree structure is par-
ticularly useful when looking for the k-nearest neighbors
of a given point.

First, we perform a traversal of the tree starting
at the root and aiming at ending in the leaf that
contains the query point. The decisions about which
direction to follow at each step in this traversal are made
based on the geometric coordinates of the query point;
three simple comparisons with the middle coordinates
of the current node’s bounding box along each axis are
enough to decide which child to move to. As we go
down in the traversal, we insert all siblings of nodes on
this path into a priority queue based on the Euclidean
distance from the query point to the circumsphere of the
current node’s corresponding cube. The priority queue’s
first element will contain the node with the smallest
distance.

After finishing the traversal, a top-κ-like algorithm

Figure 4: Main window of our application

is used. The first node in the priority queue is extracted
and if it is a leaf, a test is performed for the points stored
in the node to check whether they are eligible for the set
of κ-nearest neighbors. For internal nodes, their eight
children are inserted back into the queue. The algorithm
ends when the distance dmax to the furthest nearest-
neighbor cannot be improved, i.e. when the distance to
the circumsphere of the node currently popped out of
the queue is larger than dmax.

Neighborhood graph. We compute an (undi-
rected) neighborhood graph GN = (VN , EN) by taking
as vertices all the initial sample points V . For each
of them we compute its κ-nearest neighbors as shown
above, and we create an edge between points and each
of its nearest neighbors discovered in this way.

Independent set. In the next step, a maximal
independent set S in GN is computed, such that any
two vertices in S are at least k hops away.

To this end, we use a straightforward greedy algo-
rithm: in the beginning, all vertices of GN are marked
as eligible. We choose an eligible vertex v and perform
a breadth-first search to discover all vertices reachable
in less than k hops from v, which are then marked as in-
eligible. This process continues until there are no more
eligible vertices left.

Graph Voronoi diagram. The vertices in S are
used as landmark nodes (sites) for a graph Voronoi
diagram in the neighborhood graph GN . Since the

distance function for this diagram is simply the number
of hops in the graph (i.e. all edges have unit weight), we
use a parallel breadth-first search.

The processing queue is initialized with all the
landmarks, then when a new vertex v is first seen, it is
assigned to the vertex u from which it was reached. If u

had already been assigned to a landmark ℓ (i.e. it is not a
landmark itself), we assign v also to ℓ. In this way in the
end we know for each vertex its “dominating” landmark,
and we can easily determine the graph Voronoi cells.

Combinatorial Delaunay map. We create cell
adjacencies in a conservative manner, leading to a
so called combinatorial Delaunay map CDM(S) =
(VCDM(S), ECDM(S)). Let S1 and S2 be two graph
Voronoi cells; the number bS1S2

of points in S1 with
at least one (1-hop) neighbor in S2 is calculated. If
bS1S2

+ bS2S1
is greater than some threshold a, the

points s1 and s2, corresponding to Voronoi cells S1 and
S2 respectively, are added to VCDM(S), and the edge
(s1, s2) is added to ECDM(S).

Face enumeration. The adjacencies on S are
further used for face detection. Faces correspond to
elementary cycles in this graph, with the supplementary
constraint that any edge is allowed to appear in at most
two cycles. Since we are interested in finding faces aka
small cycles, we need an algorithm that enumerates the
graph cycles in increasing order of cycle length. To this
end, we implemented a simple enumeration algorithm

Figure 5: Skeleton hand: full view (left), metacarpi (right)

which first outputs cycles of length 3, then 4, and so
forth, always only considering those edges which have
not already been used in two cycles before.

4 Experimental Evaluation

4.1 Benchmarking on standard Data Sets Our
reconstruction application was compiled with g++

3.3.5, optimization -O3, and evaluation was made on a
machine with a Pentium 4 processor at 3 GHz, 1 GB of
RAM, running Debian Linux kernel version 2.6.13. A
screenshot of the main window of our implementation
is given in Figure 4.

We benchmarked our implementation4 on publicly
available data sets obtained from laser scans of physical
models, most of them from the Large Geometric Models
Archive at Georgia Institute of Technology and the 3D
Scanning Repository at Stanford University.

In Table 1 you can see a detailed account of the
running times spent in different parts of our implemen-
tation (Octr refers to the octree construction, Ngb to the
construction of the local neighborhood graph; Mis, Vor,
Cdm denote respectively the three phases to construct
S (the subsample), the tile partitioning and CDM(S)
(the adjacencies between the elements of the subsam-
ple), Cyc the routine to identify face cycles). We also
ran5 the CoCone algorithm [?] on the same datasets
to give a rough comparison with other algorithms. We
want to emphasize, though, that the Cocone algorithm
does more than ours as it incorporates all sample points
into the reconstruction (which would be done in a post-
processing step of our algorithm which we expect to

4The source code and some models are available online at

http://www.mpi-inf.mpg.de/∼dumitriu/work/genus
5We thank Tamal K. Dey for providing us with an executable

of the CoCone code.

take only a fraction of the overall time). Figure 3 shows
a plot of the same data. We never ran into any ro-
bustness problems with our algorithm, even when only
employing floating-point arithmetic (the only real pred-
icate that we require is the comparison of distances be-
tween points). The CoCone algorithm – as far as the
authors reported to us – though, requires exact arith-
metic for reliable operation due to its far more complex
geometric tests like the insphere predicate.

In Figure 1 you can see the output of our algorithm
for the dataset Bunny ; the light color denotes non-
triangular faces. Figure 6 shows the largest model tested
(Blade), with almost 900,000 sample points. On the
left, a full view of the model; at its right edge, we can
observe the ragged structure, and on the lower part
the reconstructed curved areas. Top right, the long
sharp edge has been correctly discovered; we can also
clearly recognize the concavity of the blade. Bottom
right: close-up on the lower side of the model, where a
screw hole pierces through the blade from one side to
the other. In Figure 5 we see the model Hand. In the
full view we observe that the phalanges are correctly
individualized, as well as the wrist. On the right: close-
up on the metacarpi: the holes in-between are visible;
the algorithm detects the narrow spaces between the
bones. Figure 7 shows one of the most difficult models
(Happy Buddha) because of its curved features: the face,
the hand-supported object, the necklace, and especially
the folded outfit embellished with religious symbols.
This causes sharp transitions, holes and concave regions.
On top right, close-up on discovered openings in the
cape. On bottom right, details of the bottom of the
small round three-legged seat on which Buddha stands;
its rims were correctly emphasized, as well as the
decorative embossed rings just above the seat legs.

Figure 6: Turbine blade: full view (left), cutting edge and screw hole (right)

4.2 Parameter Variation We examine more closely
the effect of varying parameters k and a on the exper-
imental results obtained. In the following we use the
model Stanford Bunny, fixing the other parameters at
o = 50 (the octree is built with at most fifty original
points stored in any leaf), and κ = 15 (for each input
point, we find its fifteen nearest neighbors).

As a supplementary measure of the reconstruction
quality, we also computed a value corresponding to the
genus of the reconstruction if it forms a 2-manifold.
The genus is a topologically invariant property, defined
as the largest number of non-intersecting simple closed
curves that can be drawn on the surface without sepa-
rating it. Roughly speaking, it is the number of handles
of an orientable 2-manifold.

The genus of a surface, also called the geometric
genus, is related to the Euler’s formula. In fact, Euler’s
formula is a particular version (for simply connected
polyhedra, i.e. of genus 0) of the general relation

(4.1) n − e + f = 2 − 2g

where n = number of vertices, e = number of edges,
f = number of faces, and g = geometric genus value.

Solving out Equation 4.1 for g, we get

(4.2) g =
2 − n + e − f

2

We computed the genus value of our Bunny recon-
struction according to the formula in Equation 4.2. A
genus different than zero shows that something went
wrong in the reconstruction (either the reconstruction
does not form a 2-manifold or it does but exhibits han-
dles). The results are shown in Table 2 and Figure 8.

Dependence on k To determine the dependence on
k, we fixed the threshold a at 7 and varied k. For very
small values of k, there is not enough “room” to identify
reasonable adjacencies, hence the reconstruction does
not patch up to a 2-manifold, leading to bad genus
values. As we increase the parameter, things improve
quickly (with a strange anomaly at k = 7 which we
cannot explain at this time), of course at the cost of a
much coarser subsampling.

Dependence on a This time we fixed k at 5 and
varied a. A small value yields a denser combinatorial
Delaunay map, with a higher percentage of triangles,
but the genus number is extremely large (since there
are too many adjacencies and the reconstruction does

Figure 7: Happy Buddha: full view (left), side holes and bottom ridge (right)

k faces genus value a faces triangles genus value
2 6415 62.5 2 1024 99.4% 43
3 3199 5 3 1023 99.5% 24
4 1620 1 6 998 97.3% 1.5
5 976 0 7 976 95.3% 0
7 457 1.5 11 898 87.0% 0

14 94 0 15 778 73.3% 3.5
15 80 0 20 543 48.4% 18.5

Table 2: Dependence on k (left, for a = 7) and a (right, for k = 5)

not form a 2-manifold). Increasing the value causes
a drastic drop in adjacencies and finally leads to a 2-
manifold with correct genus. With larger values of a, of
course, there are more and more non-triangular faces.
Too large values for a lead to too few adjacencies and
hence the reconstruction does not form a 2-manifold.

Overall, we consider k the most crucial parameter
for our algorithm, which essentially determines the
‘coarseness’ of the subsample S. According to the
theory in [?], k must be chosen very large to guarantee
sufficient density of CDM(S); of course, this comes at
the cost of a very coarse subsample S (see Figure 8,
top right). A too large k might ‘smooth out’ important
details of the model. A too small choice of k, on the
other hand, even in practice allows only for very few

certified adjacencies (see Figure 8, top left). This results
in larger faces. In our experiments, a value of k = 5 has
proven to perform very well in practice, see Figure 8,
top center.

4.3 Further Examples In Figure 9 we can see the
Dragon model. The spurs on front and back legs are
visible, as well as the front claw clenched on a ball. On
bottom, a close-up of the scale ridge on the back; we can
notice that the individual scales are clearly delimited.

The output of our algorithm on the Stanford Bunny
can be seen in Figure 10. The main features are
correctly detected, including paws, snout, and ears. On
bottom, a close-up on the carved ears, whose concavity
can be easily noticed (dots represent the original sample

Figure 8: Effect of varying parameters k (top, for values 2, 5, 14) and a (bottom, for values 2, 7, 15); the thick red
edges are not part of any face

points).

5 Outlook

Theoretically, our approach has the potential to work for
reconstructing 2-manifolds even in higher dimensions;
it does not extend to non-2-manifolds, though, as the
“planarity property” of a graph that our algorithm
crucially depends on (see [?] for more details) does not
have an equivalent for non-2-manifolds.

On the practical side, we intend to complete our im-
plementation and incorporate the pruned sample points
into the reconstruction via weighted Delaunay triangu-
lations. In the future, it might also be interesting to
apply our algorithm to massive datasets; the inherently
local computation and decision making exhibits nice lo-
cality properties which might be of use both in a paral-
lel computing as well as an external memory scenario.
Maybe the most interesting aspect of this paper is the
fact that we were able to produce reasonable reconstruc-
tions of scanned 3D objects in a robust manner using
only very simple geometric predicates (comparison of
distances between points).

References

[1] N. Amenta and M. Bern. Surface reconstruction by
Voronoi filtering. In Proc. 14th ACM SoCG, 1998.

[2] N. Amenta, S. Choi, T. K. Dey, and N. Leekha. A
simple algorithm for homeomorphic surface reconstruc-
tion. In Proc. 16th SoCG, 2000.

[3] D. Dumitriu, S. Funke, M. Kutz, and N. Milosavl-
jevic. On the locality of reconstructing a 2-

manifold in R
3. manuscript. http://www.mpi-

inf.mpg.de/∼funke/Papers/LocalRecon.pdf.
[4] S. Fortune and V. Milenkovic. Numerical stability of

algorithms for line arrangements. In Symposium on

Computational Geometry, pages 334–341, 1991.
[5] S. Funke and N. Milosavljevic. Network Sketching or:

”How Much Geometry Hides in Connectivity? – Part
II”. In Proc. ACM-SIAM SODA, pages 958–967, 2007.

[6] S. Funke and E. Ramos. Smooth-surface reconstruc-
tion in near-linear time. In Proc. ACM-SIAM SODA,
2002.

[7] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and
C. Yap. Classroom examples of robustness problems
in geometric computations. In 12th Annual European

Symposium on Algorithms, volume 3221 of LNCS,
pages 702–713, Bergen, Norway, 2004. Springer.

[8] V.J. Milenkovic. Verifiable implementation of geomet-
ric algorithms using finite precision arithmetic. Artif.

Intell., 37(1-3):377–401, 1988.
[9] K. Sugihara, Y. Ooishi, and T. Imai. Topology-

oriented approach to robustness and its applications
to several Voronoi-diagram algorithms. In Proc. 2nd

Canad. Conf. Comput. Geom., pages 36–39, 1990.

Figure 9: Dragon: full view (left), back scales (right)

Figure 10: Stanford bunny: full view (left), carved ears (right)

