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Abstract. Algorithms for reconstructing a 2-manifold from a point sam-
ple in IR? based on Voronoi-filtering like CRUST [1] or CoCone [2] still
require — after identifying a set of candidate triangles — a so-called man-
ifold extraction step which identifies a subset of the candidate triangles
to form the final reconstruction surface. Non-locality of the latter step is
caused by so-called slivers — configurations of 4 almost cocircular points
having an empty circumsphere with center close to the manifold surface.
We prove that under a certain mild condition — local uniformity — which
typically holds in practice but can also be enforced theoretically, one can
compute a reconstruction using an algorithm whose decisions about the
adjacencies of a point only depend on nearby points.

While the theoretical proof requires an extremely high sampling density,
our prototype implementation, described in a companion paper [3], pre-
forms well on typical sample sets. Due to its local mode of computation,
it might be particularly suited for parallel computing or external memory
scenarios.

1 Introduction

Reconstructing a surface I" in IR? from a finite point sample V has attracted a lot
of attention both in the computer graphics community and in the computational
geometry community. While in the former the emphasis is mostly on algorithms
that work “well in practice”, the latter has focused on algorithms that come
with a theoretical guarantee: if the point sample V satisfies a certain sampling
condition, the output of the respective algorithm is guaranteed to be “close” to
the original surface.

In [1], Amenta and Bern proposed a framework for rigorously analyzing algo-
rithms reconstructing smooth closed surfaces. They define for every point p € I’
on the surface the local feature size 1fs(p) as the distance of p to the medial axis*

4 The medial axis of I' is defined as the set of points which have at least 2 closest
points on I



of I'. A set of points V' C I' is called a e-sample of I'if Vp e I" Is € V : |sp| <
¢ - Ifs(p). For sufficiently small e, Amenta and Bern define a canonical correct
reconstruction of V with respect to I" as the set of Delaunay triangles whose dual
Voronoi edges in the Voronoi diagram of V' intersected the surface I'. Unfortu-
nately, due to certain point configurations called slivers — 4 (almost) cocircular
points that are nearby on the surface and have an empty, (almost) diametral
circumsphere — it is not possible to algorithmically determine the canonical cor-
rect reconstruction of V' wrt to I' without knowing I", no matter how dense the
sampling V is. However, there are algorithms that can determine a collection
of Delaunay triangles which form a piecewise linear surface that is topologically
equivalent to the canonical correct reconstruction, and converges to the latter,
both point-wise and in terms of the surface normals, as the sampling density goes
to infinity (¢ — 0). The CoCone algorithm [2] is one example; it proceeds in 4
stages: 1) The Voronoi diagram of V' is computed. 2) For every point p € V the
surface normal n_p) at p is estimated as a vector pointing from p to the furthest
point in p’s Voronoi cell. 3) A set of candidate triangles T is determined by se-
lecting all Delaunay triangles whose dual Voronoi edge intersects the CoCones®
of all three respective sample points. 4) From the set of candidate triangles that
form a “thickened” layer near the real surface, the final piecewise-linear surface
approximating I is extracted.

The last step of the CoCone algorithm first removes triangles with “free”
edges, and then determines the final reconstruction as the outside surface of the
largest connected component of the remaining triangles. Observe that this is a
highly non-local operation. There have been attempts to locally decide for each
sample p which of the candidate triangles to keep for the final reconstruction;
such local decisions might disagree, though, and hence the selected triangles
do not patch up to a closed manifold. Again, the reason why local decisions
might disagree is the presence of slivers which induce a Voronoi vertex inside
the CoCone region of the involved sample points. Each involved sample point has
to decide whether in “its opinion” the true surface I intersects above or below
the Voronoi vertex and create the respective dual Delaunay triangles. If these
decisions are not coordinated contradictions arise. Not only in theory, but even
in practice, the manifold extraction step is still quite challenging and requires
nontrivial engineering to actually work as desired.

One potential way of obtaining a local manifold extraction step is to de-
cide on triangles/adjacencies in a conservative manner by only creating those
triangles/adjacencies which are “safe”, i.e. where the respective dual Voronoi
edge/face essentially completely pierces the CoCone region and hence are cer-
tainly part of the canonical reconstruction as well as any good approximation to
it. It is unclear, though, how much connectivity is lost — whether the resulting
graph is connected at all and how big potential holes/faces are. The main contri-
bution of this paper is to show that it is actually possible to make local decisions
but still guarantee that the resulting graph exhibits topological equivalence to

® The CoCone region of a point p with estimated surface normal 72, is the part of p’s
Voronoi cell that makes an angle close to 7/2 with 7, at p.



the original surface. That is, it is connected, locally planar, and contains no large
holes.

We want to point out that the CoCone algorithm (like many other algo-
rithms in that area) has an inherent (theoretical) quadratic worst-case running
time since it computes a Voronoi diagram/Delaunay triangulation of a point set
in R® — the algorithm by Funke and Ramos [4] is an exception since it runs in
near-linear time by enforcing the relevant Voronoi computations to take place
locally (nevertheless, this algorithm also requires a non-local manifold extrac-
tion step). We borrow two ingredients of [4]. In a first step, the algorithm by
Funke and Ramos computes a function ¢(p) Vp € V such that ¢ is Lipschitz®
and ¢(p) < elfs(p). They use this function to “prune” the original point set V'
to obtain a set S which has certain nice properties. For our theoretical analysis
we assume that this function ¢ has been computed in the same manner and use
it to construct a local neighborhood graph on which our algorithm operates. For
S the algorithm in [4] then locally computes candidate triangles (which due to
the nice properties of S can be done locally in near-linear time), and uses the
standard (non-local!) manifold extraction step to obtain a reconstruction of S
with respect to I'. Finally, all samples in V' — S are reinserted to produce the
final reconstruction; this can be done very elegantly using the reconstruction
of S as a “reference surface” with respect to which the restricted Voronoi Dia-
gram/Delaunay triangulation of V' — S is considered. The restricted VD/DT can
easily be computed locally and efficiently via a 2-d weighted Delaunay triangu-
lation on planes supporting the faces of the reconstruction of S. We borrow this
last step for our algorithm as we also compute an intermediate reconstruction
for a subset of sample points.

In [5] Funke and Milosavljevi¢ present an algorithm for computing wvirtual
coordinates for the nodes of a wireless sensor network which are themselves un-
aware of their location. Their approach crucially depends on a subroutine to
identify a provably planar subgraph of a communication graph that is a quasi-
unit-disk graph. The same subroutine will also be used in our surface reconstruc-
tion algorithm presented in this paper.

While we deal with the problem of slivers in some sense by avoiding or ignor-
ing them, another approach called sliver pumping has been proposed by Cheng
et al. in [6]. Their approach works for smooth k-manifolds in arbitrary dimen-
sion, though its practicality seems uncertain. There are, of course, other non-
Voronoi-filtering-based algorithms for manifold reconstruction which do not have
a manifold extraction step; they are not in the focus of this paper, though.

Our Contribution

We propose a novel method for extracting a 2-manifold from a point sample
in IR®. Our approach fundamentally differs from previous approaches in two
respects: first it mainly operates combinatorially, on a graph structure derived

5 More precisely their algorithm computes a §-approximate w-Lipschitz function ¢,
that is for z,y we have ¢(z) < (1 + 9)(é(y) + wlzy|).



from the original geometry; secondly, the created adjacencies/edges are “conser-
vative” in a sense that two samples are only connected if there is a safe, sliver-free
region around the two samples. Interestingly, we can show that conservative edge
creation only leads to small, constant-size faces in the corresponding reconstruc-
tion. Hence completion to a triangulated piecewise linear surface can easily be
accomplished using known techniques. The most notable advantage compared to
previous Voronoi-filtering based approaches is that the manifold extraction step
can be performed locally, i.e. at any point relying only on adjacency information
of points that are geometrically close to the part of the manifold being extracted.

While the theoretical analysis requires an absurdly high sampling density —
like most of the above mentioned algorithms do — our prototype implementation
of the novel local manifold extraction step (see companion paper [3]) suggests
that the approach is viable even for practical use. The results are quite promising,
and there is potential for considerable speedup e.g. in parallel computing or
external memory scenarios due to the local nature of computation in our new
method.

From a technical point of view, two insights are novel in this paper (and
not a result of the mere combination of the two previous results): first, we show
that the neighborhood graph that our algorithms constructs is locally a quasi-
unit-disk graph; it is this property that allows us to actually make use of the
machinery developed in [5]. Second, we provide a more elegant and much stronger
result about the density of the extracted planar graph based on a connection
between the (-skeleton and a power-spanner property; this insight also improves
the overall result in [5].

2 Graph-Based, Conservative Adjacencies

In this section we present an algorithm that, given a e-sample V' from a closed
smooth 2-manifold I” in IR?, computes a faithful reconstruction of V with respect
to I', as a subcomplex of the Delaunay tetrahedralization of V. The outline of
our method is as follows:

1. Determine a Lipschitz function ¢(v) for every v € V which lower-bounds
elfs(v) (as in [4])

2. Construct a local neighborhood graph G(V') by creating an edge from every
point v to all other points v' with |vv’| < O(4(v)).

3. Compute a subsample S of (V)

4. Tdentify adjacencies between elements in S based on the connectivity of G(V)
(as in [5])

5. Use geometric positions of the points in S to identify faces of the graph

induced by certified adjacencies when embedded on the manifold

Triangulate all non-triangular faces

7. Reinsert points in V' — S by computing the weighted Delaunay triangulations
on the respective faces (as in [4])

e

The core components of the correctness proof of this approach are:



— We show that the local neighborhood graph corresponds locally to a quasi-
unit-disk graph for a set of points in the plane.

— The identified adjacencies locally form a planar graph.

— This locally planar graph has faces of bounded size.

Essentially this means that we cover I" by a mesh with vertex set S consisting
of small enough cells that the topology of I" is faithfully captured. Note that the
first and last item from above are original and novel to this paper and do not
follow from our previous results in [4] and [5] (the last item makes the theoretical
result in [5] much stronger).

We first discuss the 2-dimensional case, where we are given a uniform e-
sampling (i.e. the local feature size is 1 everywhere) of a disk and show that
steps 2. to 5. yield a planar graph with “small” faces. Then we show how the
same reasoning can be applied to the 3-dimensional case. The main rationale
of our approach is the “conservative” creation of adjacencies; that is, we only
create an edge between two samples if in any good reconstruction the two points
are adjacent, which can be interpreted as creating edges only in the absence of
slivers in the vicinity.

2.1 Conservative Adjacencies in IR?

Let V be a set of n points that form a e-sampling of the disk of radius R around
the origin o, that is, Vp € IR? with [po| < R, v € V : |vp| < e.

Definition 1. A graph G(V,E) on V is called a a-quasi-unit-disk-graph (a-
qUDG) for o € [0,1] if for p,g eV

— if |pq| < « then (p,q) € E
— if |pg| > 1 then (p,q) ¢ E

That is, in G all nodes at distance at most « have to be adjacent, while all nodes
at distance more than 1 cannot be adjacent. For nodes with distances in between,
either is possible.

Within G we consider the distance function dg defined by the (unweighted)
graph distances in G(V, E). Let k > 1, we call a set S CV a tight k-subsample
of V if

— Vsl,SQ e s: dG(Sl,SQ) >k
— YveV:3s e S with dg(v,s) <k

A tight k-subsample of V' can easily obtained by a greedy algorithm which
iteratively selects a so far unremoved node v into S and removes all nodes at
distance at most k from consideration.

The following algorithm determines adjacencies between nodes in S based on
a Graph Voronoi diagram such that the induced graph on S remains planar.



Graph-Based Conservative Adjacencies The idea for construction and the
planarity property of our construction are largely derived from the geometric
intuition. To be specific, the planarity follows from the fact that our constructed
graph — we call it combinatorial Delaunay map of S, short CDM(S) — is the
dual graph of a suitably defined partition of the plane into simply connected
disjoint regions. In the following we use the method for identifying adjacencies
between nodes in S purely based on the graph connectivity as described in [5].
The reasoning relies on the fact that our graph instance is not an arbitrary graph
but reflects the geometry of the underlying domain by being a quasi-unit-disk
graph.

First we introduce a labeling of G(V, E) for a given set S C V assuming that
all elements in V' (and hence in S) have unique IDs that are totally ordered.

Definition 2. Consider a vertex a € S and a vertex v € V — 5. We say that
v is an a-vertex (or: labeled with a) if a is one of the elements in S which is
closest to v (in graph distance), and a has the smallest ID among such.

Clearly, this rule assigns unique labels to each vertex due to the uniqueness of
nodes’ IDs. Also note that any a € S is an a-vertex. Next we present a criterion
for creating adjacencies between vertices in S.

Definition 3. a,b € S are adjacent in CDM(S) iff there exists a path from a
to b whose 1-hop neighborhood (including the path itself) consists only of a and
b vertices, and such that in the ordering of the nodes on the path (starting with
a and ending with b) all a-nodes precede all b-nodes.

We have the following result of [5].

Theorem 1. If G is an a-qUDG with o > % and S is a tight k-subsample of
G, then CDM(S) is a planar graph.

Of course, just planarity as such is not too hard to guarantee — one could
simply return a graph with no edges. But we will show in the following that this
is not the case; in particular we show that the respective graph is connected and
all its faces are bounded by a constant number of edges. The following lemmas
and proofs are not taken from [5], but also apply there, improving the (weaker)
statements about the density of CDM(S) in [5].

CDM(S) is Dense(!) Let us consider the (-skeleton [7] of the points corre-
sponding to the node set S. The (-skeleton of a point set has an edge between
two points p, ¢ iff any ball of radius B|pg|/2 touching p and ¢ is empty of other
points. For § = 1 we obtain the well-known Gabriel graph (there is exactly one
ball touching p and ¢ with radius |pq|/2). For 5 > 1 we get a subgraph thereof
(there are always two balls of radius > |pq|/2 touching p and q).

First we will show that the graph obtained via the S-skeleton is connected”
and all internal faces of this graph (when using the obvious straight-line embed-

" In general the 3-skeleton need not be connected; in our case it is due to our choice
of # and the local uniformity of S.



ding in the plane) have constant complexity. Then we argue that for suitable
parameters k and e, every (-skeleton edge is also present in C DM (S).

(B-skeleton is dense. We establish both connectivity as well as bounded face com-
plexity by showing that the (-skeleton for the point set S is a o-power-spanner,
more precisely we show that all power distance optimal paths only use edges of
the (§-skeleton. For the point set S, the o-power distance d°(p,q) between two
points p,q € S is determined by a sequence of points p = pgp1...p; = ¢ such
that d?(p,q) = Ei;é |pipi+1]? is minimal, where p; € S. Intuitively, the power
distance between two points is the minimum amount of energy required to trans-
mit a message between the two points (potentially using intermediate points as
relays) assuming that direct communication between two points at distance d
has cost d°.

Observation 2. For o > 2 every p;p;+1 s a Gabriel edge.

What we want to show is that for a suitable choice of o dependent on 3, all
links p;p;+1 in a power minimal path are even edges of the -skeleton. We start
with a simple observation about the distribution of S.

Lemma 1. For any pair s1,s2 € S we have |s152| > (o — €)k.

Proof. Follows from the fact that V is an e-sampling and S being a tight k-
sample in a a-qUDG.

The fact that V is an e-sampling of a disk also implies that all Gabriel (and
hence (-skeleton) edges cannot be too long.

Lemma 2. For any s1,82 € S such that |s182| > 2(k + €), s182 cannot be a
Gabriel edge.

Proof. Assume otherwise. Consider the Gabriel ball of s;s9, with center ¢ and
radius r > k + ¢; due to convexity of a disk and V being a e-sampling thereof,
there must be a point p € V at distance at most € from c. But for this p there
must exist a s € S at distance at most k, violating the Gabriel ball property.

Let us now consider one potential edge between nodes p and ¢ which is not
part of the (-skeleton and show that this edge cannot be part of any power
minimal path.

Lemma 3. Let p,qg € S but pg not an edge in the (-skeleton. Then if o >

(a—e)k 2
4ln2(kte) o 3 < (1+5%)

a—e)k (a—e)k\2
(=€) 2/ (1+5g) -1

, pq cannot be part of any power minimal

path.

Proof. Due to space restrictions we can only provide a very rough sketch. See the
authors’ homepages for a long version. Due to Observation 2 and Lemma 2, pg
cannot be too long. On the other hand, because pq is not part of the g-skeleton,
there must be other landmarks inside the two balls of radius 3|pq|/2 touching p
and ¢. Then ¢ can be chosen such that any power minimal path would rather
go via those other landmarks than taking the direct hop pq.



It follows that for the respective choice of ¢ and 3, all power-efficient paths
use only edges of the (-skeleton and that the [-skeleton-graph is connected.
It remains to show that the graph is somewhat dense, more precisely we want
to show that the induced faces (when embedding using the original geometric
coordinates) are of constant size.

2(o+1)
Lemma 4. Any bounded face of the 3-skeleton is of size O ((i&t%) > )

Proof. Again, we only give a sketch, due to limited space. Fix any bounded
face f. Observe that some Delaunay edge e = (u,v) cuts f in a balanced way.
Lemmas 1, 2 (a version for Delaunay edges), and 3 upper-bound the hop-distance
between u and v in the B-skeleton. A shortest uv-path p need not go along the
face boundary, but p and e “enclose” a path p’ that does. A packing argument
(involving Lemma 1 again) shows that p’ cannot be too long either.

At this point we have shown that the (-skeleton of S induces a connected
planar graph which has constant-size faces only. It remains to show that all edges
of the (-skeleton of S are also identified as adjacencies in CDM (). To achieve
that, observe that any value 8 > 1 implies that points s1, s € S adjacent in the
(-skeleton of S share a “relatively long” Voronoi edge in the Voronoi diagram of
S; more precisely s1 and sy share a Voronoi edge of length |s1s2]4/32 — 1. Hence
it suffices to show that this long Voronoi edge is also reflected in the a-qUDG by
respective witness paths. This can be easily achieved by choosing a large enough
k (dependent on 3). The following corollary follows immediately:

Corollary 1. The graph induced by S and the adjacencies identified by our al-
gorithm is planar, connected and has (internal) faces of size O(1).

2.2 Conservative Adjacencies in IR®

All the reasoning so far has been concentrating on a flat, planar setting. Let
us now consider the actual setting in IR®. Let V be an e-sampling of a smooth
closed 2-manifold I in IR?.

Here the steps of our algorithm are as follows: (1) we have to compute a
Lipschitz® function ¢ with ¢(p) < elfs(p) for all p € V. This can be done
using the procedure given in [4] in near-linear time. Then in step (2) the graph
G(V,E) is constructed by creating edges between samples pq,ps iff |p1pa] <
6 - @(p1) or |pipa| < 6- d(p2) (Note that the constant 6 is somewhat arbitrary
and only chosen to make every sample connected to its neighbors in the canonical
correct reconstruction). The following steps (3) to (5) are exactly the same as
in the 2-dimensional case. We now want to argue that locally around a sample
point p the constructed graph looks like an a-quasi-unit-disk graph. To keep the
representation simple, we assume that ¢(p) = €lfs(p). Although the procedure
in [4] yields a ¢ which is a poitwise lower bound for the latter, the argumentation
remains the same. The following basic observations are easy to derive (think of
eyl

8 In fact one computes a d-approximate w-Lipschitz function.



Lemma 5. Letp € I be a point on the surface, T}, the tangent plane atp, g € I'
some point on the surface with |pq| < v1lfs(p), v < 1, ¢’ its orthogonal projection
on T,. Then we have |qq'| < v*1fs(p).

Proof. Consider the two balls of radius 1fs(p) tangent at p. By definition of the
local feature size, no point of I' is contained in the interior of either of the
two balls. Let ¢, ¢" and T}, be defined as above, see Fig. 1, left. In the worst
case, ¢ € I lies on one of the two balls tangent at p as in Fig. 1, right. The
angle at p in triangle Apqq’ is equal to the angle at ¢ in the triangle Acmp
— call this angle 6. Since both these triangles are right-angled, we have that
sin® = [pm|/|pc|| = lqq'|/|pq|, or in other words |qq’| = |pm||pg|/|pc|. But since
lpm| = |pg|/2 < y1fs(p)/2, |pc| = Us(p), and |pg| < ~v1fs(p), we obtain [qq| <
72 Ufs(p) /2.

Fig. 1. Sandwiching balls.

Observation 3. Let p € I' be a point on the surface, T, the tangent plane at
D, q1,q2 € I' two points on the surface with |pg;| < vUs(p), v < 1, ¢} their
orthogonal projections on T,,. Then we have |q1q2| — |q1g5| < 272 Ifs(p).

The latter observation means that when projecting into the tangent plane at
p, distances are shortened by at most an additive amount of 27?2 Ifs(p). We are
interested in the largest distance between any two samples s1, so with |ps;| <
~1fs(p) and the smallest (projected!) distance of a non-adjacent pair. If the
ratio of these two distances is at most 1/« we know that locally in a ~y1fs(p)-
neighborhood of p the constructed graph is an a-quasi-unit-disk graph.

Lemma 6. For~y < 1/16 the v 1fs(p)-neighborhood of p in the constructed graph
is an a-quasi-unit-disk graph with o > 1//2.

Proof. Within a distance of v 1fs(p) from p on the surface the local feature size
can increase by at most 272 Ifs(p) (again a sandwiching argument as in the pre-
vious Lemma). Hence the distance of samples identified as adjacent can increase
by a factor of (1 + 2v2). On the other hand, the local feature size can actually
decrease by ~v1fs(p), hence the smallest distance of a non-adjacent pair (taking



into account the projection) can be as little as 6¢1fs(p)(1 — v — 2v?). Therefore
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the ratio between these two distances is 1 Choosing e.g. v = 1/16 makes

this ratio less than v/2.

Now we can invoke Corollary 1
which implies that locally for any
p € S the graph constructed by our
algorithm is planar, connected and
has internal faces of constant size.
Note: The faces or more precisely
the local embedding can be simply
obtained by reusing the geometry
again and locally projecting the ad-
jacent points s; of a point s € §
into an (almost) tangent plane and
reading off the cyclic order around
s. Global connectivity is ensured by
choosing v large enough (compared
to €) such that large faces are com-
pletely contained in the ~lfs(p)-
neighborhood of any node bound-
ing the face.

What does this mean? The Fig.2. Main steps of our algorithm: Point
graph that we constructed on the cloud, Graph Voronoi Diagram, CDM(S),
subsample of points S is a mesh identified faces.
that is locally planar and covers the
whole 2-manifold. The mesh has the nice property that all its cells (aka faces)
have constant size (number of bounding vertices). The edge lengths of the cre-
ated adjacencies between S are proportional to the respective local feature sizes.
Therefore its connectivity structure faithfully reflects the topology of the under-
lying 2-manifold.

=242

Algorithm Epilog We did not talk about steps (6) and (7) of our approach
since they follow exactly the description in [4] and are not novel to this work;
we nevertheless give a brief summary here. Essentially in step (6) we triangulate
non-triangular faces by projecting them into a nearby (almost) tangent plane and
computing the Delaunay triangulation. The resulting triangulated faces behave
nicely since all faces have small size (and hence their vertices are almost coplanar)
and because S is a locally uniform sampling of the surface. In step (7) the
points pruned in step (3) are reinserted by computing a weighted Delaunay
triangulation on the supporting planes of the respective faces. The resulting
triangulations are guaranteed to patch up. The proofs for convergence both
point-wise as well as with respect to triangle normals can be carried over from
[4] since S can be made an arbitrarily good, locally uniform &’-sampling (the
original e-sampling V has to be accordingly denser, i.e. € < ¢’). Therefore, the
same theorem holds for the result of our algorithm:



Theorem 4. There exists €* such that for all ¢ < €*, smooth surfaces I' in
R® and e-samplings V C I', the triangulated surface I' output by our algorithm
satisfies the following conditions:

1. BIJECTION: u : I — I', determined by closest point, is a bijection

2. POINTWISE APPROXIMATION: For all x € I, d(x, u(z)) = O(e? ifs(u(x)))

3. NORMAL APPROXIMATION: For all z € T, Zng(x)np(pu(xr)) = O(e) where
nr(y) denotes the (outside) normal of F at y.”

4. TorPOLOGICAL CORRECTNESS: I and I have the same topological type.

3 Implementation and Experimental Evaluation

We have prototyped the novel steps of our algorithm in C++. This implementation
is the topic of a companion paper to this paper ([3]). This companion paper
also highlights another novelty of our approach in that most of our computation
does not use any geometry information: after establishing neighborhood relations
between nearby points, the main steps of our algorithm operate combinatorially
on a graph structure. As such, they are by far less susceptible to robustness
problems due to round-off errors in floating-point arithmetic.

In Fig. 2 we have visualized the main steps of our algorithms: starting with a
point cloud we compute a Graph Voronoi diagram, based on that the CDM(S)
and finally we inspect the CDM(S) to identify faces, some of which might be
non-triangular (here in light color) due to the conservative edge creation. In Fig. 3
you can find a picture of a reconstruction of a complete object (the standard
“Dragon” dataset).

4 Outlook

Theoretically our approach has the potential to work for reconstructing 2-manifolds
even in higher dimensions. It does not extend to non-2-manifolds, though, as the
“local planarity property” of a graph that our algorithm crucially depends upon,
has no equivalent for non-2-manifolds.

A more in-depth discussion on the advantages/disadvantages of dropping
geometry information early-on can be found in the companion paper to this
submission [3], further studies are required, though, whether this can be extended
to a general paradigm when designing geometric algorithms.

In parallel computing or external memory scenarios, it is much easier to
obtain efficient algorithms if the performed operations require only local access
to data. In the former, making non-local data available typically incurs a runtime
penalty for the data transfer or more complicated access control mechanisms,
in the latter, local data can be cached in internal memory, while non-local data
has to be read from external memory again incurring considerable latency. The

9 For I the normal is well-defined in the interior of triangles; at edges and vertices it
can be defined as an interpolation from that at the incident triangles.



manifold extraction step as for example employed by the CoCone algorithm is a
global, highly non-local operation. It remains to be seen whether the localization
property exhibited in this paper leads to practically more efficient algorithms in
the parallel computing or external memory scenario.

Fig.3. Output of our implementation for the standard “Dragon” model. Non-
triangular faces are denoted in light color.
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