How much Geometry it takes to Reconstruct
a 2-Manifold in R?

DANIEL DUMITRIU and MARTIN KUTZ
Max-Planck-Institut fiir Informatik, Saarbriicken, Germany
STEFAN FUNKE

Ernst-Moritz-Arndt-Universitat, Greifswald, Germany

and

NIKOLA MILOSAVLJEVIC

Stanford University, Stanford, USA

Known algorithms for reconstructing a 2-manifold from a point sample in R? are naturally
based on decisions/predicates that take the geometry of the point sample into account.
Facing the always present problem of round-off errors that easily compromise the exactness
of those predicate decisions, an exact and robust implementation of these algorithms is
far from being trivial and typically requires employment of advanced datatypes for exact
arithmetic, as provided by libraries like CORE [Karamcheti et al. 1999], LEDA [Mehlhorn
et al. 1997] or GMP [gmp]. In this paper we present a new reconstruction algorithm, one of
whose main novelties is to throw away geometry information early on in the reconstruction
process and to mainly operate combinatorially on a graph structure. More precisely, our
algorithm only requires distances between the sample points and not the actual embedding
in R3. As such it is less susceptible to robustness problems due to round-off errors and also
benefits from not requiring expensive exact arithmetic by faster running times. A more
theoretical view on our algorithm including correctness proofs under suitable sampling
conditions can be found in a companion paper [Dumitriu et al. 2008].

Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—surface representations; geometric algorithms; F.2.2 [Analysis of Al-
gorithms and Problem Complexity]: Nonnumerical Algorithms and Problems—geometrical
problems and computations; computations on discrete structures; G.2.3 [Discrete Mathemat-
ics|: Applications

General Terms: Algorithms, Design, Experimentation, Theory
Additional Key Words and Phrases: Combinatorial surface reconstruction, conservative adjacen-
cies creation

Authors’ addresses: Daniel Dumitriu, Max-Planck-Institut fiir Informatik, Campus E 1.4,
66123 Saarbriicken, Germany; e-mail: dumitriu@mpi-inf.mpg.de. Stefan Funke, Insti-
tut fir Mathematik und Informatik, Jahnstr. 15a, 17487 Greifswald, Germany; e-mail:
stefan.funkeQuni-greifswald.de. Nikola Milosavljevi¢, Clark Center, Room S257, 318 Cam-
pus Drive, Stanford, CA 94305, USA; e-mail: nikolam@stanford.edu. Part of this work has been
done while the third author was at the Max-Planck-Insitut fiir Informatik.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright /server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 0004-5411/20YY/0100-0001 $5.00

Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 1-16.

2 . D. Dumitriu et al.

1. INTRODUCTION

Robust Geometric Computation. Geometric algorithms use geometric predicates
in their conditionals (e.g., does a point r lie to the left or right of an oriented line
through p and ¢). A common strategy for the exact implementation of geometric al-
gorithms is to evaluate all geometric predicates exactly. While floating-point filters
have proved to be quite efficient both in theory and practice to speed-up the exact
evaluation of predicates, they tend to become less efficient for more complicated
(i.e., higher degree) predicates like the insphere predicate?® which is the basis for all
algorithms based on the Delaunay tetrahedralization in R3.

The evaluation of a geometric predicate amounts to the computation of the sign
of an arithmetic expression. Round-off errors during floating-point computation
might easily lead to reporting a wrong sign of such an arithmetic expression, which
most of the time has disastrous consequences [Kettner et al. 2004]. A floating-point
filter evaluates the expression using floating-point arithmetic and also computes an
error bound to determine whether the floating point computation is reliable. If the
error bound does not suffice to prove reliability, the expression is re-evaluated using
exact arithmetic. The quality of the error bounds typically deteriorates, though,
with the complexity of the predicate expression and hence, more predicate decisions
require falling back to expensive exact arithmetic computation.

A different approach to the robustness problem is to design the algorithm to be
able to cope with round-off errors right from the beginning. The difficulty of de-
signing robust algorithms is illustrated in [Fortune and Milenkovic 1991; Milenkovic
1988; Sugihara et al. 1990]. Sugihara et al. [1990] develop an algorithm for com-
puting the Voronoi diagram of a set of points whose termination is guaranteed by
certain purely combinatorial graph properties; geometric predicate evaluations are
only used to steer the execution of the algorithm in a certain direction. In partic-
ular, their algorithm also terminates if the outcome of all geometric predicates are
completely random.

In this paper we present an algorithm for reconstructing a 2-manifold in R? in
the spirit of the work by Sugihara et al. The main idea is that we require exact
evaluation of a few simple (i.e., low-degree) predicates only at the beginning of the
algorithm. From that point, our algorithm is mostly combinatorial, and does not
evaluate any geometric predicates. Nevertheless, we show (both experimentally as
well as theoretically in a companion paper [Dumitriu et al. 2008]) that the output
of our algorithm is a good approximation to the original 2-manifold. Most impor-
tantly, our algorithm produces this output without any evaluation of a complicated
geometric test, such as the insphere predicate in R, which is the basis of all related
Voronoi-based reconstruction algorithms.

Related Work. The problem of reconstructing a surface I" in R? from a finite point
sample V' has attracted a lot of attention both in the computer graphics community
as well as in the computational geometry community. While in the former the
emphasis is mostly on algorithms that work ‘well in practice’, the latter has focused
on algorithms that come with a theoretical guarantee: if the point sample V satisfies

2The insphere predicate for points p, q,, s, t decides whether point ¢ lies inside, on or outside the
sphere defined by p, q, 7, s.

Journal of the ACM, Vol. V, No. N, Month 20YY.

How much Geometry it takes to Reconstruct a 2-Manifold in R? : 3

a certain sampling condition, the output of the respective algorithm is guaranteed
to be ‘close’ to the original surface.

Amenta and Bern [1998] proposed a framework for rigorously analyzing algo-
rithms reconstructing smooth closed surfaces. They define for every point p € I on
the surface the local feature size 1fs(p) as the distance of p to the medial azis® of T
A set of points V' C T is called an e-sample of T if Yp € ' 3s € V' : |sp| < e - lfs(p).
Many algorithms have been proposed that determine a collection of Delaunay tri-
angles which form a piecewise linear surface that is topologically equivalent to the
original surface and converges to the latter both point-wise as well as in terms of
the surface normals as the sampling density goes to infinity (¢ — 0). Common
to almost all those algorithms is the fact that they require computing the Voronoi
diagram/Delaunay triangulation of a point set in R3, which incurs both an inherent
(n?) running time and the need for exact evaluation of the insphere predicate.

Funke and Milosavljevié¢ [2007] present an algorithm for computing virtual coor-
dinates for the nodes of a wireless sensor network which are themselves unaware
of their location. Their approach crucially depends on a subroutine to identify a
provably planar subgraph of a communication graph that is a quasi-unit-disk graph.
A similar subroutine will also be used in our surface reconstruction algorithm pre-
sented in this paper.

Our Contribution

We propose a new graph-based algorithm for reconstructing a 2-manifold in R3.
Our algorithm fundamentally differs from previous approaches in two respects:
first, it mainly operates combinatorially on a graph structure, which is derived
solely from the distances between the sample points, i.e., with no real geometry
involved; secondly, created adjacencies/edges are ‘conservative’, in a sense that two
samples are only connected if they are adjacent in all ‘reasonable’ reconstructions.
Interestingly, we can show (in the theoretical companion paper [Dumitriu et al.
2008]) that conservative edge creation only leads to small, constant-size faces in the
respective reconstruction, hence the topology of the original surface is faithfully
captured. While the theoretical analysis requires an unrealistically high sampling
density — like most algorithms that come with a theoretical guarantee, such as
CRUST [Amenta and Bern 1998] or CoCone [Amenta et al. 2000] — this paper
shows that our algorithm is actually quite practical for real-world datasets. Due to
the local nature of computation in our algorithm, there is also potential for use in
parallel computing or external memory scenarios.

2. OUR ALGORITHM

The main idea of our algorithm is first to derive a graph G(V) which captures
mutual proximity information of the samples in V', and then decide on adjacencies
between (some of the) samples of V' only based on the connectivity of G(V'). To
keep the presentation simple, we assume that V is a uniform?* e-sample from a
closed smooth 2-manifold T in R3. In practice, sample sets are indeed often close to

3The medial axis of I is defined as the set of points which have at least two closest points on T
4V is a uniform e-sample if for any p € ' Is € V with |ps| < e.

Journal of the ACM, Vol. V, No. N, Month 20YY.

4 . D. Dumitriu et al.

uniform, and even small non-uniformities in the sample set never prevented our al-
gorithm from working in practice. In theory, a preprocessing stage can enforce local
uniformity, which is sufficient to prove correctness of our algorithm (see [Dumitriu
et al. 2008] for more details). The high-level view of our algorithm is as follows:

(1) Construct a local neighborhood graph G(V) by creating an edge from every
point v to its k nearest neighbors

(2) Compute a subsample S of V' as a maximal k-hop stable set in G(V)

(3) Construct the graph Voronoi diagram for V with respect to the subsample S

(4) Identify adjacencies between elements in S by inspection of the graph Voronoi
diagram

(5) Output faces of the reconstruction as minimal cycles in the graph induced by
the adjacencies between elements in S

In Step 1 we approximate the creation of a unit-disk graph of the point set, where
two samples are connected if and only if their distances are less than some constant
times €. To be independent of the sampling density parameter €, we chose to create
adjacencies to the k nearest neighbors each. In practice, for values of k¥ around 15,
we obtained very good results, independent of the scale of the scanned objects, that
is, without the algorithm knowing the actual value of e.

In Step 2 we compute a maximal subsample S C V with the property that there
are no two s1, s3 € S closer than k hops in the graph G(V). Such a maximal (not
maximum!) k-hop stable set can be computed easily in a greedy fashion.

In Step 3, we essentially compute a discrete analogue of the geometric Voronoi
diagram but using G(V) as a discrete approximation of the space between the
subsample vertices in S. That is, we assign each node v € V its closest (in terms of
hop-distance) node in S (breaking ties according to node IDs). This partitions V'
into graph Voronoi cells (also called tiles) consisting of nodes which have the same
closest s € S, called landmark or site.

Two elements s1,s5 € S are then declared adjacent, in Step 4, if and only if
the respective tiles are touching each other by a sufficient amount, i.e., the number
of nodes in one of the tiles with direct neighbors in the other tile is above some
threshold, more precisely, if there is a path between s; and ss all of whose nodes
are at least two hops away from any tile other than those of s; and ss.

Finally, in Step 5, we collect the adjacencies to actually create faces of the recon-
struction of our algorithm. Observe that only the first step involves some geometry
of the sample set V. In fact, it does not really require geometry, but only dis-
tances between the sample points. If the geometry is given, the respective distance
comparisons involve only very low-degree predicates that can be evaluated exactly
and efficiently using known floating-point filter techniques. All other steps can be
implemented fully combinatorially.

We want to emphasize two things:

(1) Our algorithm does not compute a reconstruction of V' with respect to the
original surface I' (involving all v € V') but only of a subsample S C V. For
sufficiently dense sample sets, this reconstruction of S with respect to I' still
captures the topology of I'. There is also a generic (and rather simple) way
of incorporating the remaining points of V' into the reconstruction (requiring

Journal of the ACM, Vol. V, No. N, Month 20YY.

How much Geometry it takes to Reconstruct a 2-Manifold in R? : 5

some higher-degree geometric predicates, though), see [Funke and Ramos 2002].
In practice, with the presence of scanning devices producing millions or even
billions of point samples, the fact that we only compute a reconstruction of a
subsample is less of a concern.

(2) The reconstruction computed by our algorithm does not only contain triangular
faces, but also larger faces (though of size less than 5 in practice, and of constant
size in theory). If required, these non-triangular faces can be triangulated easily
(requiring only low-degree geometric predicates).

In [Dumitriu et al. 2008] we provide a theoretical justification for the correctness of
(a slight modification of) our algorithm under the e-sampling condition proposed
by Amenta and Bern [1998]. The core components of the correctness proof are:

—We show that the local neighborhood graph corresponds locally to a quasi-unit-
disk graph for a set of points in the plane.

—The identified adjacencies locally form a planar graph.

—The faces of this graph have bounded size.

This implies that the graph that we constructed on the subsample of points S is
a mesh that is locally planar and covers the whole 2-manifold. The mesh has the
nice property that all its cells (i.e., faces) have constant size (number of bounding
vertices). Therefore it faithfully reflects the topology of the underlying 2-manifold.

3. IMPLEMENTATION

We implemented our algorithm in C++, using Qt4 and OpenGL for rendering and the
graphical user interface.

As mentioned before, we make the simplifying assumption that the set of input
data points V' is a (locally) uniform sampling, which is typically true for sample data
acquired by laser scanning (this means in particular that apart from a lower bound
on the density of the sample there is also an upper bound, see the companion paper
for a more precise definition). This actually makes the local neighborhood graph
G (V) (determined by connecting a sample to its k nearest neighbors) look quite
similar to a unit-disk graph, where each sample is connected to all its nearby sample
points within distance O(g). The value of kK = 15 worked well in our experiments.

Also using the assumption that V is a (locally) uniform sample, we can declare
two samples s1, so € S adjacent as follows: s; and s9 are adjacent if the number of
edges linking a sample v; (belonging to the graph Voronoi cell of s1) to a sample
vy (belonging to s2’s cell) is above a certain threshold a (a = 7 worked well in our
experiments). Note that this criterion is somewhat different from the theoretically
prescribed Step 4 of the algorithm, although the two are quite similar in spirit, i.e.,
both require that the two tiles have ‘significant common boundary’. We opt for
the threshold-based rule because we find it easier to implement, and expect it to
be faster in practice because its computation involves only two graph Voronoi cells
(per adjacency check) and is therefore more ‘local’.

Figure 1 illustrates the main steps of our algorithm using a close-up of the Dragon
model.

Journal of the ACM, Vol. V, No. N, Month 20YY.

6 . D. Dumitriu et al.

Fig. 1. The Dragon model, head close-up: point cloud, graph Voronoi diagram, identified adja-
cencies between subsamples and discovered faces (left to right, top to bottom)

3.1 Implementation Details

We provide here some additional information about our design choices.

Input. The input represents the points in a point cloud P and comes in a
simplified PLY format, a simple object description designed as a convenient format
for working with polygonal models. In our case there is no special header, since
we are only interested in the points themselves. That is why each line in the file
corresponds to a sample point and is a simple list of its three coordinates. We
simply report but skip any line not conforming to this format.

Spatial representation. In order to allow for efficient positional queries, the
points in V are stored in an octree. An octree is a structure suited for storing
spatial data, which takes into consideration relative distribution of points. Each
node in this 8-ary tree represents a cube in R3. The root of the tree corresponds to
a bounding cube of the points, and stores all the points. This cube is split in two
along each axis, yielding eight smaller cubes.

A threshold o (called octree granularity) is imposed on the number of points that
can lie within any node/cube. When the threshold is exceeded, the cube is split into
eight smaller cubes of equal volume. They provide a refinement of the larger cube
and this is recorded by making them the children of the tree node corresponding
to the big cube. The process of splitting continues recursively and stops when all
the tree leaves contain less than o points.

k-nearest neighbors. The octree structure is particularly useful for computing

Journal of the ACM, Vol. V, No. N, Month 20YY.

How much Geometry it takes to Reconstruct a 2-Manifold in R? . 7

the k nearest neighbors of a given point.

First, we perform a traversal of the tree starting at the root and aiming at ending
in the leaf that contains the query point. The decisions about which direction to
follow at each step in this traversal are made based on the geometric coordinates
of the query point; three simple comparisons with the middle coordinates of the
current node’s bounding box along each axis are enough to decide which child to
move to. As we go down in the traversal, we insert all siblings of nodes on this path
into a priority queue based on the Euclidean distance from the query point to the
circumsphere of the current node’s corresponding cube. The priority queue’s first
element will contain the node with the smallest distance.

After finishing the traversal, a top-«-like algorithm is used. The first node in the
priority queue is extracted and if it is a leaf, a test is performed for the points stored
in the node to check whether they are eligible for the set of k-nearest neighbors. For
internal nodes, their eight children are inserted back into the queue. The algorithm
ends when the distance d;,q, to the furthest nearest-neighbor cannot be improved,
i.e., when the distance to the circumsphere of the node currently popped out of the
queue is larger than d,qz-

Neighborhood graph. We compute an (undirected) neighborhood graph Gy =
(Viv, En) by taking as vertices all the initial sample points V. For each of them we
compute its k-nearest neighbors as shown above, and we create an edge between
points and each of its nearest neighbors discovered in this way.

Independent set. In the next step, we compute a maximal set S in G such
that any two vertices in .S are at least k£ hops away. To this end, we use a straightfor-
ward greedy algorithm: in the beginning, all vertices of G are marked as eligible.
We choose an eligible vertex v and perform a breadth-first search to discover all
vertices reachable in less than k hops from v, which are then marked as ineligible.
This process continues until there are no more eligible vertices left.

Graph Voronoi diagram. The vertices in S are used as landmark nodes (sites)
for a graph Voronoi diagram in the neighborhood graph G. Since the distance
function for this diagram is simply the number of hops in the graph (i.e., all edges
have unit weight), we use a parallel breadth-first search.

The processing queue is initialized with all the landmarks, then when a new
vertex v is first seen, it is assigned to the vertex u from which it was reached. If
u had already been assigned to a landmark ¢ (i.e., it is not a landmark itself), we
assign v also to £. In this way in the end we know the ‘dominating’ landmark for
each vertex, and we can easily determine the graph Voronoi cells.

Landmark adjacencies. We create landmark adjacencies in a conservative
manner, i.e., only if their graph Voronoi cells have significant ‘common boundary’.
Let S; and S5 be two graph Voronoi cells corresponding to landmarks s; and s
respectively; we calculate the number bg, s, of points in S; with at least one (1-hop)
neighbor in Sy. If bg, 5, + bs,s, is greater than some threshold a, we make s; and
so adjacent.

Face enumeration. The adjacencies on S are further used for face detection.
Faces correspond to elementary cycles in this graph, with the supplementary con-
straint that any edge is allowed to appear in at most two cycles. Since we are
interested in finding faces, i.e., small cycles, we need an algorithm that enumerates

Journal of the ACM, Vol. V, No. N, Month 20YY.

8 . D. Dumitriu et al.

‘ Open ‘ | Randomize |
Granularity | Snji-:i
‘ Compute Octree ‘ | Show Octree |

- Drawing style for patches

® Points () Quads

_ Triangle fan) Quad strip

() Triangle strip
Neighbors |715 2
Hops |—
Threshold [e
® SUmM) MIN
[] Show points [| Show patches
[%| Show graph [] Show unused

[%) Show 3-faces (% Show big faces

‘.J-faces color ‘ ‘gaig faces color

) BF line ® BF filled

["| Draw normals [| Reversed

‘ Update Scene |

\ Quit |

Fig. 2. Main window of our application

the graph cycles in increasing order of cycle length. To this end, we implemented
a simple enumeration algorithm which first outputs cycles of length 3, then 4, and
so forth, always only considering those edges which have not already been used in
two cycles before.

4. EXPERIMENTAL EVALUATION

Our reconstruction application was compiled with g++ 3.3.5, optimization level
-03, and evaluation was performed on a machine with a Pentium 4 processor at
3 GHz, 1 GB of RAM, running Debian Linux kernel version 2.6.13. A screenshot
of the main window of our implementation is given in Figure 2.

4.1 Benchmarking on Standard Data Sets

We benchmarked our implementation® on publicly available data sets obtained from
laser scans of physical models, most of them from the Large Geometric Models
Archive at Georgia Institute of Technology and the 38D Scanning Repository at
Stanford University.

Table I shows a detailed account of the running times spent in different parts
of our implementation. We also ran® the CoCone algorithm [Amenta et al. 2000]
on the same datasets to give a rough comparison with other algorithms. We want
to emphasize, though, that the Cocone algorithm does more than ours, as it in-

5The source code of the application and some models used in our experiments are available online
at http://www.mpi-inf.mpg.de/~dumitriu/work/genus
6We thank Tamal K. Dey for providing us with an executable of the CoCone code.

Journal of the ACM, Vol. V, No. N, Month 20YY.

How much Geometry it takes to Reconstruct a 2-Manifold in R? . 9

Table I. Time spent in different stages (in seconds). Octr: octree, Ngb: local neighborhood graph, MIS:

landmark set, Vor: graph Voronoi diagram, Adj: landmark adjacencies, Cyc: face cycles.

Model Points Open Read Octr Ngb MIS Vor Adj Cyc Total CoCone

Bunny 35947 0.8 0.3 0.1 3.4 0.4 0.2 0.2 0.1 5.7
Bone 177907 0.8 1.6 0.9 20.4 2.7 1.7 1.2 0.6 30.2
Hand 327323 0.8 3.0 2.1 36.8 4.7 2.8 2.3 0.8 53.6
Dragon 435545 0.8 4.7 2.9 49.0 6.4 4.0 3.5 1.3 72.9
Buddha 543524 0.8 6.1 4.1 63.1 8.3 5.1 4.2 1.8 93.7

29
137
1216
761
876

Blade 882954 0.8 6.9 6.2 104.3 14.3 8.4 7.0 4.7 1529 >1800

110 ‘ ‘ "
——— open application
100 read input file
90 | — build octree
—=— find neighbors

80 r compute MIS T

70 F find Voronoi i
—e— compute CDM

60 - enumerate cycles 1

Time (s)

50
40 -
30 |
20
10

0 100 200 300 400 500 600 700 800 900
Number of points in model (thousands)

Fig. 3. Plot of the time spent in different stages of the algorithm for different input sizes

corporates all sample points into the reconstruction (which would be done in a
postprocessing step of our algorithm which we expect to take only a fraction of the
overall time). Figure 3 shows a plot of the same data.

As can be read from Table I, the running times are heavily dominated by the
construction of the local neighborhood graph. Considerable improvements by an
order of magnitude by performing batched nearest neighbor queries (and not asking
for the x nearest neighbors separately for each sample) might be possible.

The output of our algorithm on the Bunny model can be seen in Figure 5; light-
colored faces are non-triangular. The main features are correctly detected, including
paws, snout, and ears. On the right we give a close-up on the carved ears, whose
concavity can be easily noticed (dots represent the original sample points).

Figure 4 shows the largest model tested (Blade), with almost 900,000 sample
points. We show on the left a full view of the model — at its right edge, we can
observe the ragged structure, and on the lower part the reconstructed curved areas;
on top right, the long sharp edge has been correctly discovered; we can also clearly
recognize the concavity of the blade. On the bottom right we give close-up on the
lower side of the model, where a screw hole pierces through the blade from one side
to the other.

Journal of the ACM, Vol. V, No. N, Month 20YY.

10 . D. Dumitriu et al.

Fig. 4. Turbine blade: full view (left), cutting edge and screw hole (right)

@

Fig. 5. Bunny: full view (left), carved ears (right). Due to the conservative adjacency creation,
some faces (light color) are non-triangular, but can easily be triangulated later on.

Journal of the ACM, Vol. V, No. N, Month 20YY.

How much Geometry it takes to Reconstruct a 2-Manifold in R? . 11

Fig. 6. Hand: full view (left), metacarpi (right)

In Figure 6 we see the Hand model. In the full view we observe that the pha-
langes are correctly separated, as well as the wrist. On the right (close-up on the
metacarpi) the holes in-between are visible; the algorithm detects the narrow spaces
between the bones.

Figure 7 shows one of the most difficult models, Happy Buddha, because of its
curved features: the face, the hand-supported object, the necklace, and especially
the folded outfit embellished with religious symbols. This causes sharp transitions,
holes and concave regions. We notice on top right, close-up on discovered openings
in the cape, and on bottom right, details of the bottom of the small round three-
legged seat on which Buddha stands; its rims were correctly emphasized, as well as
the decorative embossed rings just above the seat legs.

Figure 8 shows the Dragon model. The spurs on front and back legs are visible,
as well as the front claw clenched on a ball. On the right we show a close-up of the
scale ridge on the back; notice that the individual scales are clearly delimited.

4.2 Robustness and Accuracy

Both the CoCone algorithm and our algorithm never exhibited any robustness is-
sues. The reason in case of CoCone is the fact that it is based on an exact geometry
kernel provided by CGAL [cga |, i.e., all geometric predicates (in particular the in-
sphere test) are guaranteed to return the correct result. This, of course, comes
at the cost of an increased running time compared to a pure (and typically in-
correct) floating-point implementation where geometric predicates might err. Our
algorithm, on the other hand, is robust because its flow of computation is hardly
determined by the evaluation of geometric predicates. We were told by the authors
of CoCone that their algorithm actually requires an underlying exact geometry ker-
nel, otherwise its output is flawed or the program crashes even for simple problem
instances.

It would certainly be interesting to compare with a floating-point-only CoCone
version and see what datasets can be robustly reconstructed with our algorithm, but
not with the floating-point CoCone implementation. Unfortunately, we do not have
access to the CoCone source code, and hence cannot replace the exact geometry

Journal of the ACM, Vol. V, No. N, Month 20YY.

12 . D. Dumitriu et al.

Fig. 7. Happy Buddha: full view (left), side holes and bottom ridge (right)

Fig. 8. Dragon: full view (left), back scales (right)

kernel by a float kernel. Equally interesting is an analysis of the amount of time
CoCone spends for the exact predicate evaluations. The common way to (lower)
bound the time spent in the arithmetic parts is to evaluate all predicates twice
(this only yields a lower bound since evaluating twice typically requires less than
twice the time due to cache effects and other issues related to the implementation of
exact arithmetic) and use the timings to infer the time spent on arithmetic. Again,

Journal of the ACM, Vol. V, No. N, Month 20YY.

How much Geometry it takes to Reconstruct a 2-Manifold in R? : 13

Fig. 9. Detailed view on subsampled reconstruction of our algorithm (left) vs. reconstruction
computed by CoCone (right).

without the source code of CoCone it is hard to break down the execution time of
Cocone into arithmetic and non-arithmetic parts.

Regarding the issue of accuracy: a typical measure of quality of a reconstruction
is the distance from the ‘real surface’, here one would consider both the CoCone
output as well as the output from our algorithm. Unfortunately, we do not have the
‘real surface’ at hand. In Figure 9 we show two close-ups of the same region for the
Dragon model — one from CoCone, the other from our algorithm. This should give
an idea of what the difference in the output is (though certainly not a quantitative
comparison). With our algorithm using a subsample, it is certainly not as close to
the 'real surface’ as CoCone’s output, its topology is correctly determined, though.
How many samples are removed during the execution of our algorithm can be seen
in Table II. Using the method described in [Funke and Ramos 2002], one could
reinsert the removed samples to obtain a reconstruction with respect to all samples.
This will require some higher-degree predicates, though.

4.3 Parameter Variation

We examine more closely the effect of varying parameters k and a on the experi-
mental results obtained. In the following we use the Bunny model, fixing the other
parameters at o = 50 (the octree is built with at most fifty original points stored in
any leaf), and k = 15 (for each input point, we find its fifteen nearest neighbors).
As a supplementary measure of the reconstruction quality, we also computed

Table II. Size of the selected subsample
for some models (k =15, k = 5)

Model Points Subsample size
Bunny 35947 868
Bone 177907 3649
Hand 327323 7822
Dragon 435545 9979
Buddha 543524 12245
Blade 882954 20973

Journal of the ACM, Vol. V, No. N, Month 20YY.

14 . D. Dumitriu et al.

Table III. Dependence on k (left, for a = 7) and a (right, for k = 5) (the Bunny

model)
k faces genus a faces triangles genus
2 6415 62.5 2 1024 99.4% 43
3 3199 5 3 1023 99.5% 24
4 1620 1 6 998 97.3% 1.5
5 976 0 7 976 95.3% 0
7 457 1.5 11 898 87.0% 0
14 94 0 15 778 73.3% 3.5
15 80 0 20 543 48.4% 18.5

a value corresponding to the genus of the reconstruction if it forms a 2-manifold.
The genus is a topological invariant, defined as the largest number of mutually non-
intersecting simple closed curves that can be drawn on the surface such that the
surface stays connected after it has been cut along the curves. Roughly speaking,
it is the number of handles of an orientable 2-manifold.

The genus of a surface, also called the geometric genus, is related to the Euler’s
formula. In fact, Euler’s formula is a particular version (for simply connected
polyhedra, i.e., manifolds of genus 0) of the general relation

n—e+ f=2-2g (1)

where n = number of vertices, e = number of edges, f = number of faces, and g =
geometric genus. Solving Equation 1 for g, we get

2—-n+e—f

——nresd 2)

We computed the genus of our Bunny reconstruction according to the formula in
Equation 2. A genus different than zero shows that something went wrong in the

reconstruction (either the reconstruction does not form a 2-manifold or it does, but
exhibits handles). The results are shown in Table III and Figure 10.

Dependence on k. To determine the dependence on k, we fixed the threshold
a at 7 and varied k. For small values of k, there is not enough ‘room’ to identify
reasonable adjacencies, hence the reconstruction does not patch up to a 2-manifold,
leading to bad genus. As we increase the parameter, things improve quickly (with
a strange anomaly at k = 7 which we cannot explain at this time), of course at the
cost of a much coarser subsampling.

Dependence on a. This time we fixed k at 5 and varied a. A small value yields
a denser combinatorial Delaunay map, with a higher percentage of triangles, but
the genus is extremely large (since there are too many adjacencies and the recon-
struction does not form a 2-manifold). Increasing the value causes a drastic drop
in adjacencies and finally leads to a 2-manifold with correct genus. With larger
values of a, of course, there are more and more non-triangular faces. Too large
values for a lead to too few adjacencies and hence the reconstruction does not form
a 2-manifold.

Overall, we consider k the most crucial parameter for our algorithm, which es-
sentially determines the ‘coarseness’ of the subsample S. According to the theory

Journal of the ACM, Vol. V, No. N, Month 20YY.

How much Geometry it takes to Reconstruct a 2-Manifold in R? : 15

Fig. 10. Effect of varying parameters k (top, for values 2,5, 14) and a (bottom, for values 2,7, 15);
the thick red edges are not part of any face

in [Dumitriu et al. 2008], & must be chosen extremely large to guarantee suffi-
cient density of the landmark adjacency graph; of course, this comes at the cost
of a coarse subsample S (see Figure 10, top right). A too large value of k might
‘smooth out’ important details of the model. A too small choice of k, on the other
hand, even in practice allows only for few certified adjacencies (see Figure 10, top
left). This results in larger faces. In our experiments, a value of k = 5 has proven
to perform well in practice also for the other models, see Figure 10 (center top).

5. OUTLOOK

Theoretically, our approach has the potential to work for reconstructing 2-manifolds
even in higher dimensions; it does not extend to non-2-manifolds, though, as the
‘planarity property’ of a graph that our algorithm crucially depends on (see [Du-
mitriu et al. 2008] for more details) does not have an equivalent for non-2-manifolds.

On the practical side, one might look into incorporating the pruned sample
points into the reconstruction via weighted Delaunay triangulations; this would
lead to a more ’geometric’ algorithm with more complicated, higher-degree pred-
icates, though. A probably more interesting field of research would be to apply
our algorithm to massive datasets; the inherently local computation and decision
making exhibits nice locality properties which might be of use both in a parallel
computing as well as an external memory scenario.

In summary, we consider the most interesting aspect of this paper the fact that
we were able to produce reasonable reconstructions of scanned 3D objects in a very
robust manner using only simple geometric predicates (comparison of distances
between points).

Journal of the ACM, Vol. V, No. N, Month 20YY.

16 . D. Dumitriu et al.

ACKNOWLEDGMENT
In memory of our dear friend and colleague Martin Kutz.

REFERENCES

GNU Multiple Precision Arithmetic Library. http://gmplib.org.

CacAL, Computational Geometry Algorithms Library. http://www.cgal.org.

AMENTA, N. AND BERN, M. 1998. Surface reconstruction by Voronoi filtering. In SCG ’98:
Proceedings of the fourteenth annual symposium on Computational geometry. ACM, New York,
NY, USA, 39-48.

AMENTA, N., CHOI, S., DEY, T. K., AND LEEKHA, N. 2000. A simple algorithm for homeomor-
phic surface reconstruction. In SCG ’00: Proceedings of the sizteenth annual symposium on
Computational geometry. ACM, New York, NY, USA, 213-222.

Duwmitriu, D., FUNKE, S., KuTz, M., AND MILOSAVLJEVIC, N. 2008. On the Locality of Ex-
tracting a 2-Manifold in R3. In 11th Scandinavian Workshop on Algorithm Theory (SWAT),
J. Gudmundsson, Ed. Lecture Notes in Computer Science, vol. 5124. Springer, 270-281.

FORTUNE, S. AND MILENKOVIC, V. 1991. Numerical stability of algorithms for line arrangements.
In SCG ’91: Proceedings of the seventh annual symposium on Computational geometry. ACM,
New York, NY, USA, 334-341.

FUNKE, S. AND MILOSAVLJEVIC, N. 2007. Network sketching or: ”How Much Geometry Hides in
Connectivity?—Part II”. In SODA ’07: Proceedings of the eighteenth annual ACM-SIAM sym-
posium on Discrete algorithms. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 958-967.

FuUNKE, S. AND Ramos, E. A. 2002. Smooth-surface reconstruction in near-linear time. In SODA
’02: Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA, 781-790.

KARAMCHETI, V., L1, C., PECHTCHANSKI, I., AND YAP, C. 1999. A core library for robust numeric
and geometric computation. In 15th ACM Symp. on Computational Geometry, 1999. 351-359.

KETTNER, L., MEHLHORN, K., PION, S.; SCHIRRA, S., AND YAP, C. 2004. Classroom examples
of robustness problems in geometric computations. In 12th Annual European Symposium on
Algorithms. LNCS, vol. 3221. Springer, Bergen, Norway, 702-713.

MEHLHORN, K., NAHER, S., AND UHRIG, C. 1997. The LEDA Platform of Combinatorial and
Geometric Computing. In ICALP ’97: Proceedings of the 24th International Colloguium on
Automata, Languages and Programming. Springer-Verlag, London, UK, 7-16.

MILENKOVIC, V. 1988. Verifiable implementation of geometric algorithms using finite precision
arithmetic. Artif. Intell. 37, 1-3, 377-401.

SUGIHARA, K., OoisHl, Y., AND Imal, T. 1990. Topology-oriented approach to robustness and
its applications to several Voronoi-diagram algorithms. In Proc. 2nd Canad. Conf. Comput.
Geom. 36-39.

Received Month Year; revised Month Year; accepted Month Year

Journal of the ACM, Vol. V, No. N, Month 20YY.

