
Interactive Analysis and Simulation of VANETs
using MOWINE

Ian Downes
Department of Electrical Engineering

Stanford University
Stanford, CA 94305, USA

Email: downes@stanford.edu

Branislav Kusy
CSIRO ICT Centre
Technology Court

Pullenvale, QLD 4069, Australia
Email: Brano.Kusy@csiro.au

Omprakash Gnawali and Leonidas Guibas
Computer Science Department

Stanford University
Stanford, CA 94305, USA

Email: {gnawali,guibas}@cs.stanford.edu

Abstract—We present a mobile wireless network evaluation
tool (MOWINE) that can analyze mobility and wireless connectiv-
ity traces to quantify performance of different network protocols
in a given application scenario. We model the highly dynamic
connectivity of mobile networks using time-expanded graphs
which allow us to study the best-case performance of network
protocols. MOWINE also integrates with a network simulator
that can evaluate performance of recent VANET routing protocols
with a user specified data load. This combination of network
modeling and simulation enables users to gain deeper insights
into the performance of routing protocols, for example, by
distinguishing the limitations of a particular routing protocol
from the fundamental limitations of the underlying network.
Thus, network engineers can use MOWINE to study and fine-
tune performance of real-world network protocols in different
scenarios before deploying the network, and hence engineer
the mobile ad hoc network. We demonstrate the effectiveness
of MOWINE by analyzing and understanding the performance
of six different VANET routing protocols using real-world taxi
cab traces collected in San Francisco. After identifying the
bottlenecks, we demonstrate several basic network engineering
tasks and their implications on the network performance.

I. INTRODUCTION

Engineering and deployment of Vehicular Ad hoc Networks
(VANET) lags far behind research. There are few examples
of deployed VANETs despite the need for communication
between the vehicles and central application and information
servers [1]. Existing networks are limited to one-hop commu-
nication with other vehicles or rely on one-hop communication
to connect to the networking infrastructure. This is feasible
because cities already have communication infrastructure for
mobile phones and devices. However, the operational cost for
this network architecture can be high—each node needs to
subscribe to the mobile data service and such a network may
not be present or functional [2]. Architecting these networks as
Mobile Ad hoc Networks (MANET) can dramatically reduce
the operational cost because the nodes would relay messages
for each other without requiring an infrastructure service.

Despite this clear advantage of MANETs, they are not used
in practice, in part because there are not the tools and method-
ologies necessary for network planners and engineers to reason
about the performance of real-world MANET deployments.
Analysis of such networks is challenging due to the time
variability of the network as induced by the mobility and link

volatility.
Previous work has simulated the performance and optimal

bounds for wireless network protocols under different scenar-
ios [3], [4]. Although useful for comparison the computed
bounds do not provide any specific reason why the perfor-
mance is bounded or insight into how the protocol can be
tuned/improved to achieve performance closer to the bound. In
this paper, we take the first step towards closing this loop. We
develop a new network analysis tool called MObile WIreless
Network Evaluator (MOWINE) that combines analysis, simu-
lation, and engineering. It includes several physically-informed
optimizations to improve the running time over state-of-the-
art modeling techniques used to analyze MANETs to enable
interactive exploration of network and protocol parameters in
larger and more realistic networks.

Simulation of concrete protocols for these delay tolerant net-
works (e.g., First Contact, Direct Delivery, ProPHET) allows
us to understand the performance of these protocols in a given
mobility scenario. Although simulation of these protocols is
not novel, applying the results obtained from these simulations
in the context of achievable performance of these networks is
new and provides an understanding of the performance seen in
the simulation. For example, the low performance achieved by
a particular protocol in a given network scenario could be due
to the properties of the protocol or due to the fundamental
properties of the network itself (e.g., the network is rarely
connected). Studying the results of simulation and modeling
together helps disambiguate these cases and understand the
performance of these protocols with respect to what can be
achieved in those networks.

Finally, network engineering allows us to perform what-if
experiments and design deployments that will meet the com-
munication requirement of the applications. Figure 1 shows
the user’s interaction with the MOWINE toolkit. If modeling
of a network indicates that a network cannot fundamentally
meet the data rate requirements, would it be better to deploy
some static nodes or increase the transmit power of the radios?
Network engineering has been used to answer such questions
in the context of the Internet and enterprise networks for
decades. We believe that MOWINE is a first attempt to bring
network engineering tools to the analysis and planning of these
delay tolerant VANETs.

Scenario Generator

Trace File Event File Network
Protocols

Analysis
EngineSimulator NetworkEngine

MOWINE

Network
Engineering

Vis ali ation Performance ReportsVisualization Performance Reports

Fig. 1. The main components of the MOWINE toolkit. The simulator and
analysis engine enable users to explore and optimize network parameters for
the desired mobility and application scenarios.

We demonstrate the benefits of MOWINE by using it
to analyze and understand the performance of a network
formed by 500 taxi cabs in San Francisco using real-world
mobility traces. We then use the engineering tools available
in MOWINE to explore the parameters of this network to
eliminate performance bottlenecks.

In summary, we make the following contributions in this
paper:

• Design of a fast modeling tool that can estimate the upper
bound of network performance at interactive speeds even
with hundreds of nodes and complex connectivity and
mobility.

• Design and implementation of MOWINE, a tool that
combines modeling, simulation, and network engineering
tasks for mobile and vehicular ad hoc networks.

• Demonstrate the effectiveness of MOWINE in examin-
ing real-world VANET, diagnosing the bottlenecks, and
performing network engineering tasks to plan network
servicing.

In the remaining parts of the paper, we first review related
work in Section II. We then describe the network modeling
and analysis part of MOWINE in Section III and the network
simulation engine that MOWINE runs internally in Section IV.
We review various network engineering tasks in Section V and
provide an evaluation of MOWINE in Section VI. Finally, we
conclude the paper and discuss future work in Section VII.

II. RELATED WORK

A. Routing protocols

In dynamic networks the route between source and desti-
nation may change rapidly, quickly leading to poor routing
performance of traditional proactive protocols, or a route
may not exist, leading to the failure of even reactive routing
protocols [5], [6], [7]. Delay tolerant protocols succeed by
using routes that exist over time and space, storing packets
as necessary and then forwarding when a suitable next-hop

is encountered [8]. In our case studies we evaluate DTN
protocols as the network is frequently disconnected.

Routing under such conditions is challenging as the routes
to be used are over time and are not known in advance. DTN
protocols must explore the network to discover routes and this
can be costly, depending on the network dynamics. In the
simplest approach, epidemic routing, the protocol floods the
network, finding the optimal path but with high overhead [9].
Recently developed protocols attempt to find good routes with
low overhead and network cost. In [10] the number of packet
replications is limited, resulting in only some of the possible
routes being explored but much lower cost. In MaxProp nodes
use contact likelihood vectors to estimate paths and their
cost, enabling ordering of packet replication [11]. Additions to
MaxProp include acknowledgements to purge the network of
successfully delivered packets and preference given to packets
with low hop count, encouraging early replication. Other
protocols try to determine the most suitable next hop based
on historical information [12], [13]. In each protocol there
are parameters that can be tuned to optimize the performance
of the protocol under a particular scenario [12] but it often
through empirical comparison. MOWINE combines simulation
of routing protocols while also analysing the underlying net-
work to understand how each protocol behaves under different
conditions.

B. Performance bounds

Determing the performance bounds of wireless networks,
even without mobility, is difficult due to the broadcast channel
and resulting interference and the degrees of freedom in choos-
ing transmit power levels and modulation schemes. Toumpis
explored the capacity regions of wireless networks and con-
sidered multi-hop networks under a variety of transmission
strategies [14]. In was noted that it was not feasible to analyse
networks larger than approximately 15 nodes. MOWINE has
a simpler communication model, sufficient for DTN networks,
allowing it to scale to the analysis of hundreds of nodes. For
very large networks with random and independent and iden-
tical mobility patterns Grossglauser and Tse showed in [15]
that the average asymptotic throughput is kept constant for
communicating nodes, independent of the number of nodes in
the network.

Several descriptions of DTN protocols have included com-
parisons to a computed optimal bound where full knowledge
about the network is assumed. These bounds have been
formulated as linear or mixed-integer programs [4], [3] and
solved using an appropriate solver. In [4] the delay of their
RAPID protocol was compared to the delay from optimizing a
integer program where time was dividing into discrete intervals
and it was assumed that a node meets at most one other node
in an interval. They note that the integer program grows in
complexity with the number of packets and that it was only
feasible to solve the program with at most 350 packets. In [3]
their linear program formulation permits the fragmentation
of packets and seeks to minimize the average delay over all
packets in the network. In both cases interference was not

considered due to the additional complexity but others have
incorporated this for optimizing smaller networks [16].

C. Simulation

Several wireless network simulators have recently been
developed for DTN and/or MANET simulation [17], [18].
The JiST/SWANS simulator provides an efficient simulator
that can scale to tens of thousands of nodes and includes
support for several MANET protocols while providing realistic
modeling of the radio and channel. The ONE simulator,
used in MOWINE, has been developed specifically for DTN
simulation and uses a simplified radio model, making large-
scale simulations feasible [19]. It provides implementations of
many DTN protocols.

III. NETWORK ANALYSIS

Static networks can be naturally described using a graph.
The nodes represent the communicating agents and edges
represent connectivity between the agents and can include
attributes such as capacity, delay and expected successful
delivery rates. In static scenarios these attributes are assumed
to be time-invariant (or at least stationary) and the network
can be analyzed using graph-based techniques. However, if
the communicating agents are mobile, the network is dynamic
and the existence and attributes of connecting edges is strongly
time dependent and traditional analysis cannot be applied.

Our network analysis technique expands the time depen-
dence and constructs a much larger graph which is a com-
plete representation of the network over a time interval. The
representation is can be considered an oracle which contains
information about all of the mobile agents and their contacts
with each other. Routing on this expanded network will
provide the best possible paths and gives an upper bound to
the performance of any routing algorithm.

A. Modeling Assumptions

Several assumptions are made in modeling the dynamic
network which influence the representation and construction
of the time-expanded network. These assumptions are more
simplifying than those used for static wireless networks but
can be justified for a dynamic network where throughput and
delivery is generally limited by the agents’ motion rather than
the characteristics of the radio or channel.

1) A fixed communication range is assumed
2) Agents that can communicate do so without interfering

with any other communicating agents.
3) Communication success is deterministic, depending only

on the communication range.
These assumptions are the same as those of the DTN simulator
used for comparison.

B. Network Representation and Construction

The dynamic network is represented as a time-expanded net-
work, a representation first introduced by Ford and Fulkerson
in [20]. The time-expanded network is a static network where
nodes are replicated and connected according to the dynamic

changes in the network. In effect a copy of the network in
each of its configurations is made.

The edges between replicated nodes for each configuration
are directed and enforce the directionality of time. Edges
between replicated nodes of the same agent encode the option
of a node buffering a packet from one time to another.
Communication links are encoded as edges between replicated
nodes of distinct agents and occur between nodes at the same
time. Edges are weighted by their delay, for communication
edges this is the packet size/data rate while for buffering edges
it is the delay between the times the nodes represent. Edges
are also labeled by the radio data rate and the maximum buffer
size. A path through the time-expanded network is a sequence
of communication and buffering directed edges.

A time-expanded network can be much larger than the
original network, depending on the degree of change over time
and how it is modelled. The naive approach is to sample time
at discrete points and replicate the network at each point. This
approach is not scalable due to two related reasons. First, it
leads to an extremely large graph which may not capture all
necessary information, i.e. changes within an interval. Second,
it includes unnecessary duplication if the graph, or parts of it,
are static across multiple intervals. A more efficient approach
is to determine the discrete points in time where the structure
of the network changes and to only include those times in the
time-expanded network.

In the dynamic communication network, it is the times
when the connectivity changes which dictate the structure of
the time-expanded network. For example, for communication
purposes, under the fixed communication range model, it does
not matter if the nodes move relative to each other provided
they either stay out of range or stay within range. It is only the
times when the communication link is established or broken
that need to be included.

The construction of the time-expanded graph is achieved
with the following steps:

1) Determine the node distance function over time for all
node pairs.

2) Threshold the distances according to the communication
range.

3) Determine pairwise contact intervals and convert to an
ordered list of connection and disconnection events.

4) Process events and keep track of the creation and
destruction of connected components in the graph. As
components are created and destroyed add these as
replicated nodes to the time-expanded graph, creating
buffer and communication edges as appropriate.

IV. NETWORK SIMULATION

Simulation of delay tolerant protocols allows us to un-
derstand the performance of these protocols under a given
mobility and data traffic scenario at the packet level. Numerous
simulators and simulation frameworks have been used in the
literature, ranging from wireless network simulators adopted
to the VANET domain [17], [21], to complex simulation
frameworks designed to support realistic mobile traces and

event generators. MOWINE is independent from the underly-
ing simulation tool. It extends the results obtained from the
simulations in the context of achievable performance of the
underlying networks. Studying the results of simulation and
modelling helps disambiguate the cases when poor perfor-
mance of a protocol is due to poorly connected underlying
network from the cases where a protocol is a poor match to
the given mobility and data traffic patterns.

We study performance of delay-tolerant network rout-
ing protocols using the Opportunistic Network Environment
(ONE) Simulator [19]. The simulator framework implements
six popular delay-tolerant routing protocols and includes op-
tions for generation of motion patterns and radio traffic. In
the reminder of this section we provide a brief overview of
the routing protocols used, describe how we achieve realistic
simulation using traces of taxi cars in San Francisco, and
discuss a several application scenarios that motivated our
choice of data traffic patterns.

A. Routing Protocols

One framework provides implementation of the following
routing protocols:

• First Contact (FC): a single copy protocol where packets
are propagated through random walks;

• Direct Delivery (DD): a single copy protocol where
nodes cary packets until they reach destination;

• Spray-and-wait (SW): an n-copy protocol that dis-
tributes at most n copies of packets through chance
encounters [10];

• Epidemic (E): a flooding protocol that copies packets to
all encountered nodes;

• ProPHET (P): a protocol that for each node estimates
the probability of delivery of a packet to a destination
based on the previous history of the nodes [12];

• MaxProp (MP): a flooding protocol that prioritizes
message transmissions based on message hopcounts and
message delivery probabilities [11].

For all protocols, we run two hour simulations and use
either an IEEE 802.15.4 based radio model with 250kbps
bandwidth and 200m radio range or an 802.11 based model
with 10Mbs bandwidth and 500m range. Nodes transmit 10-
50kB packets, with the size selected uniformly at random. Data
buffers at each node hold approximately 100 packets and the
time-to-live of packets was set to 60 minutes. We focus on
the metrics of the reliability of data delivery, measured as the
ratio of successfully received unique packets out of the total
transmitted and of the latency of data packet delivery.

B. Motion Patterns

The ONE framework provides a spectrum of motion models,
from a simple random waypoint model, to more complex
models that select a destination from pre-configured points
of interest and trace shortest paths between two points using
freely available road maps. The simulator also allows for more
realistic simulations using external traces of moving objects.
We used the San Franciso taxicab dataset which recorded the

5 min. 30 min. 1 1.5 2 4
time (hours)

1 0
-2

1 0
-1

1 0
0

in
te
r-
co
n
ta
ct

ti
m
e
C
C
D
F

10% of inter-contact times <30 minutes

90% of inter-contact times < 2 1
2 hours

Fig. 2. Intercontact time complementary cumulative distribution plotted on
a log-log scale. The distribution indicates that very few nodes reconnect with
intervals less than 30 minutes but do after approximately 2 hours. Routes are
expected to require several hops and have high average latency.

motion of 500 taxicabs in San Francisco over a period of one
month.

C. Data Traffic Patterns

We explore two communication primitives in our mobile
networks. Peer-to-peer messages are transferred through pos-
sibly multiple unicast transmissions from source to destination.
Data collection, on the other hand, delivers packets from all
nodes in the network to a common data sink. Both modes of
transmission are important in the realm of wireless vehicular
networks: mobile vehicles can exchange information between
themselves using peer-to-peer communication, while a taxi
dispatcher might want to receive periodic status updates from
all cars in the fleet. We set inter-packet-intervals (IPI) to
30 seconds for peer-to-peer transmissions and triggered data
collection every 5-10 minutes.

V. NETWORK ENGINEERING

Network engineering allows us to consider various design
alternatives for the network while achieving the required
application requirements. Studying these design alternates and
what-if experiments can guide network planning and deploy-
ment.

Although network engineering is routinely used in the In-
ternet and enterprise network planning and deployment, there
is no prior work in using those tools in VANETs. To apply
network engineering to VANETs, we need to first identify
relevant engineering primitives in the context of VANETs.
After a survey of wireless network and MANET/VANET
literature, we have identified the following common operations
the engineers perform during deployment and performance
tuning:

• Add nodes. Add nodes in certain parts of the network to
improve connectivity or to provide additional relay nodes
in multihop routing.

• Remove nodes. Remove nodes to reduce interference and
improve spatial diversity.

• Adjust radio transmit power. Set the radio transmit power
to increase or decrease the communication range. An
increase in communication range can increase network
connectivity. Sometimes, receiver gain can be adjusted
separately.

• Adjust node placement and orientation. Wireless network
engineers sometimes move the nodes away from obstruc-
tions, put the nodes in line of sight, move nodes closer
to each other, or rotate to align the antenna.

There are additional engineering tasks that are not relevant
in wireless networks in general, but are applicable in VANETs.
We synthesized these VANET engineering tasks based on the
common experimental setup reported in the literature:

• Adjust velocity. Adjust the velocity of the mobile agent
depending on the type of the mobile agent (person,
vehicle, etc.).

• Adjust mobility structure. Adjust the structure of the
mobility of the mobile agents. For example, random
waypoint and reference point group mobility [22].

The network engineering toolset in MOWINE also allows
the users to specify these application requirements:

• Communication pattern. Currently MOWINE supports
collection (all the nodes sending data to the base station)
and dissemination (the base station sending data to all the
nodes) communication patterns.

• Data timeout. The data is not useful if it is not received
within this timeout interval after the source injects the
packet into the network.

MOWINE allows the network engineers to explore the de-
sign space of their networks in the context of these application
requirements by performing the engineering tasks and seeing
how they impact the performance of the protocols. By analyz-
ing real-world networks the best protocol and parameters can
be chosen for the network before deployment.

VI. EVALUATION

In this section, we describe the evaluation setup and demon-
strate the power of an analysis, simulation, and engineering
tool by interactively exploring the design space of a VANET.

A. Implementation

We implemented the three tools that constitute MOWINE as
three separate components. The analysis tool is implemented
in Python using the LANL NetworkX library [23]. The sim-
ulation tool is a script that drives the ONE simulator. The
network engineering tool is a set of scripts that interact with
the analysis and simulation components. These three toolsets
are glued together using shell scripts. They will be integrated
using a GUI in the future.

B. Scenarios and Datasets

We have used MOWINE with simple to complex synthetic
and real-world VANET scenarios. In practice, we found that
analysis of large real-world scenarios is most challenging

Fig. 3. Screen capture of our simulator in action, showing street map of
San Francisco on the left. The Google Earth map of San Francisco overlayed
with trajectories from the cab traces dataset on the right.

to the network engineers. It is in these complex scenarios
that tools like MOWINE that combine modeling, simulation,
and network engineering tasks become critical to not only
understanding the performance but also the reasons for the
bottlenecks and engineering ways to overcome those bottle-
necks. For this reason, we will focus our discussion in this
section on the network scenario with 500 taxi cabs in San
Francisco.

The dataset containing 500 vehicles recorded over 1 month
period is freely available online [24]. Limited filtering was
applied to the traces, namely we removed points that violated
the maximum speed constraint (160 kph) and fell outside our
region of interest.

C. Running time

The biggest hurdle in building an interactive tool such
as MOWINE is reducing the running time for the analysis
tool. Traditionally, estimating the upper bound of the per-
formance of a mobile ad hoc network has taken hours [3].
This computational overhead and the long latency render these
tools unsuitable for inclusion in an interactive tool. In our
experiments, we found that MOWINE can analyze the typical
VANET scenarios at close to interactive speeds. Table I show
the running time for different scenarios based on the taxicab
dataset. The time required for construction and analysis of
a network depends on the number of mobile agents and the
complexity of their mobility and communication graphs. A
four hour snapshot of the 500 node taxi cab dataset with a 200
meter radio range is constructed in under three minutes using
a single processor core of Sun Blade X6240 (AMD Opteron
2384) and requires approximately 2 GB of memory. Increasing
the snapshot time window leads to an approximately linear
increase in the processing time and memory requirements. In
contrast, increasing the communication range leads to a super-
linear (but generally sub-quadratic) increase in processing
time and memory due to the more complex and far-reaching
interactions between the mobile agents.

TABLE I
CONSTRUCTION AND AGGREGATION ANALYSIS TIME FOR DIFFERENT

SCENARIOS BASED ON THE TAXICAB DATASET

Time interval Comm. range Running time Memory
8–10 am 200m 30 sec. 450 Mb
8–10 am 500m 2 min. 1.05 Gb
8–12 noon 500m 3 min. 2.0 Gb

06:
00:

00

08:
00:

00

10:
00:

00

0.0

0.2

0.4

0.6

0.8

1.0

d
el
iv
er
y
ra
te

4 hours

4hours

1 min.

5 min.

30 min.

1 hr.

4 hr.

Fig. 4. Delivery rates for different timeout values. The relative high delivery
rate at short times (1 and 5 minutes) in the early part of the interval is due
to taxicabs stationary at the depot.

Through these experiments, we conclude that MOWINE
satisfies the requirement of interactive running speed. As a
comparison, The One simulator required almost 10 hours to
simulate the MaxProp protocol running on a two hour trace
of the taxicab network.

D. Temporal Variation in Performance

The main advantage of a tool like MOWINE is being able
to study the performance of a network using simulation and
analysis and synthesizing the insights using a combination of
those results. Figure 4 illustrates this technique by plotting the
maximum achievable delivery rate for a selection of timeouts
over an eight hour interval. The delivery rate is the fraction of
packets that were sent by the sender and that were received at
the intended destination within the timeout.

Several observations can be made from these results. Firstly,
the performance of the network does change over both small
and large time intervals. Second, we notice that the achievable
delivery ratio is also less than 100%. With a timeout of
30 minutes, the delivery rate fluctuates between 50% and
70% while the four hour rate remains greater than 90%,
indicating that long timeouts are necessary. We also find that
the occasional dips in performance are due to the fundamental
property of the network at the given time (e.g., disconnection),
which also reduced the achievable rate.

MOWINE thus allows us to put the simulation results in
context. Simulation results are informative on their own and

 40%

 60%

 80%

 100%

Peer2peer Peer2base Collection

D
el

iv
er

y
 P

ro
b

ab
il

it
y

 (
%

)

 DD

 FC

 E

 SW

 P

 MP

 Opt

 0%

 20%

 100

 150

 200

 250

 300

 350

Peer2peer Peer2base Collection

O
v
er

h
ea

d
 R

at
io

 DD

 FC

 E

 SW

 P

 MP

 Opt

 0

 50

Peer2base Collection

A
v

er
ag

e
L

at
en

cy
 (

se
c)

 DD

 FC

 E

 SW

 P

 MP

 Opt

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

 1,800

Peer2peer

Fig. 6. Delivery rates, overhead ratios, and average latency for the six delay
tolerant routing protocols and three different data traffic patterns. The optimal
performance is denoted by Opt. Spray and wait (SW) protocol might be a good
choice if a good network performance and modest resource usage is desired.
Otherwise, the MaxProp (MP) protocol clearly outperforms other protocols
in all application scenarios.

give insight about the performance of a protocol in a network.
Combining these results with analysis results in a single tool
helps us explain the cause of good or bad performance based
on the fundamental property of the mobile network.

E. Protocol Selection

If we know that a protocol performs far worse than the
achievable performance, MOWINE helps us identify alterna-
tive protocols that might perform better in the given network.
To enable this decision making, we select a number of relevant
protocols and configure MOWINE to simulate the selected
protocols in the same network. We also run the analysis tool.
MOWINE then combines the results of these simulations and
analysis into a single graph as shown in Fig. 6.

The figure shows that different protocols are better suited
for different optimization goals. For example, in energy con-
strained systems (such as wireless sensor networks), SW
protocol provides the best performance while requiring modest
energy resources. On the other hand, MP protocol is clearly
the preferred under all application scenarios, if high delivery

Fig. 5. Exploring the change in delivery ratio and maximum achievable delivery using the network engineering tool in MOWINE

rates are required irrespective of the cost. MOWINE allows
us to explore the space of possible solutions, by providing
the explicit upper (lower) bounds on the network performance
(overhead rates).

F. Network Engineering

One of the observations from figure 6 is that even the
best of the protocols still achieve lower performance than
the maximum achievable performance. Is there a way we
can get closer to the maximum achievable performance? We
answer this question while we explore the network engineering
features of MOWINE.

We select E and MP protocols and run MOWINE with these
settings:

• Inter Packet Interval (IPI) of 5 minutes.
• Synchronized packet injection across the network.
• 2 MB packet buffer.
• 15.4 radio.
The network engineering tools in MOWINE allows us to

change each of these parameters one at a time and visualize
the change in not only the performance of specific protocols
but also the achievable performance. Figure 5 shows the results
from this experiment, which involved these tasks performed in
MOWINE:

• First, we de-synchronize the packet injection. We observe
an increase in the performance of both the protocols.
This is due to fewer collisons and channel contention as
the nodes inject packets at different times. The tool also
reported that packet buffer overflowed on some nodes.

• Second, we increase the packet buffer to 5 MB. We note
an improvement in performance.

• Third, we increase the IPI to 10 minutes. This task
increased the delivery ratio as well as the maximum
achievable delivery ratio because of the added opportunity
to deliver the packets before the links are disconnected.

• Finally, we select WiFi interface and rerun the scenario
and we discover that the delivery ratio increases further.

Thus, MOWINE allows us to explore a number of network-
ing scenarios and their impact on the performance so that we

can make informed decisions about network parameters when
we deploy the network.

VII. CONCLUSIONS AND FUTURE WORK

The MOWINE tool combines analysis, simulation, and
network engineering to understand network performance and
optimization. We found that MOWINE can help analyze and
explain the observed performance in a network. It also enables
rapid exploration of the network design space to find the
optimum protocols and parameters required to overcome the
performance bottlenecks and meet application requirements.

We plan to improve MOWINE to study further graph
properties of the underlying communication graph. This will
provide deeped insight to the performance of protocols in
poorly connected or otherwise constrained networks and will
help identify parameters of protocols that be optimized for the
mobility and data traffic scenarios.

REFERENCES

[1] J. Yin, T. ElBatt, G. Yeung, B. Ryu, S. Habermas, H. Krishnan, and
T. Talty, “Performance evaluation of safety applications over DSRC
vehicular ad hoc networks,” in VANET ’04: Proceedings of the 1st ACM
international workshop on Vehicular ad hoc networks. New York, NY,
USA: ACM, 2004, pp. 1–9.

[2] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek, and M. Degermark,
“Scenario-based performance analysis of routing protocols for mobile
ad-hoc networks,” in MobiCom ’99: Proceedings of the 5th annual
ACM/IEEE international conference on Mobile computing and network-
ing. New York, NY, USA: ACM, 1999, pp. 195–206.

[3] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant network,” in
SIGCOMM ’04: Proceedings of the 2004 conference on Applications,
technologies, architectures, and protocols for computer communications.
New York, NY, USA: ACM, 2004, pp. 145–158.

[4] A. Balasubramanian, B. Levine, and A. Venkataramani, “DTN routing
as a resource allocation problem,” SIGCOMM Comput. Commun. Rev.,
vol. 37, no. 4, pp. 373–384, 2007.

[5] C. E. Perkins, E. M. Belding-Royer, and S. Das, “Ad hoc on demand
distance vector (AODV) routing,” IETF Internet draft, draft-ietf-manet-
aodv-09.txt, November 2001 (Work in Progress).

[6] I. Chakeres and C. Perkins, “Dynamic MANET On-demand (DYMO)
Routing,” Internet-Draft, draft-ietf-manet-dymo-12.txt, 2008.

[7] W. Zhao, M. Ammar, and E. Zegura, “A message ferrying approach
for data delivery in sparse mobile ad hoc networks,” in MobiHoc ’04:
Proceedings of the 5th ACM international symposium on Mobile ad hoc
networking and computing. New York, NY, USA: ACM, 2004, pp.
187–198.

[8] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant network,” in
SIGCOMM ’04: Proceedings of the 2004 conference on Applications,
technologies, architectures, and protocols for computer communications.
New York, NY, USA: ACM, 2004, pp. 145–158.

[9] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad
hoc networks,” Duke University, Tech. Rep., April 2000.

[10] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and wait: an
efficient routing scheme for intermittently connected mobile networks,”
in WDTN ’05: Proceedings of the 2005 ACM SIGCOMM workshop on
Delay-tolerant networking. New York, NY, USA: ACM, 2005, pp.
252–259.

[11] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, “MaxProp:
Routing for vehicle-based disruption-tolerant networks,” apr. 2006, pp.
1–11.

[12] A. Lindgren, A. Doria, and O. Scheln, “Probabilistic routing in inter-
mittently connected networks,” in Service Assurance with Partial and
Intermittent Resources, ser. Lecture Notes in Computer Science, P. Dini,
P. Lorenz, and J. N. d. Souza, Eds. Springer Berlin / Heidelberg, 2004,
vol. 3126, pp. 239–254.

[13] T. Spyropoulos, “Spray and focus: Efficient mobility-assisted routing for
heterogeneous and correlated mobility,” in In Proceedings of IEEE Per-
Com Workshop on Intermittently Connected Mobile Ad Hoc Networks,
2007.

[14] S. Toumpis and A. Goldsmith, “Capacity regions for wireless ad hoc
networks,” IEEE Transactions on Wireless Communications, vol. 2, pp.
736–748, 2001.

[15] M. Grossglauser and D. Tse, “Mobility increases the capacity of ad hoc
wireless networks,” IEEE/ACM Trans. Networking, vol. 10, no. 4, pp.
477–486, 2002.

[16] V. Kolar and N. B. Abu-ghazaleh, “A multi-commodity flow approach
to globally aware routing,” in in Multi-Hop Wireless Networks,” in IEEE
PerCom, 2006.

[17] S. McCanne and S. Floyd, “ns Network Simulator,” http://www.isi.edu/
nsnam/ns/.

[18] R. Barr, Z. J. Haas, and R. van Renesse, “JiST: an efficient appraoch to
simulation using virtual machines,” Software: Practice and Experience,
vol. 35, pp. 539–576, 2005.

[19] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE Simulator for
DTN Protocol Evaluation,” in SIMUTools ’09: Proceedings of the 2nd
International Conference on Simulation Tools and Techniques. New
York, NY, USA: ICST, 2009.

[20] L. R. F. Jr. and D. R. Fulkerson, “Constructing maximal dynamic flows
from static flows,” Operations Research, vol. 6, no. 3, pp. pp. 419–433,
1958.

[21] X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: a library for paral-
lel simulation of large-scale wireless networks,” SIGSIM Simul. Dig.,
vol. 28, no. 1, pp. 154–161, 1998.

[22] X. Hong, M. Gerla, G. Pei, and C.-C. Chiang, “A group mobility model
for ad hoc wireless networks,” in MSWiM ’99: Proceedings of the 2nd
ACM international workshop on Modeling, analysis and simulation of
wireless and mobile systems. New York, NY, USA: ACM, 1999, pp.
53–60.

[23] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proceedings of
the 7th Python in Science Conference (SciPy2008), Pasadena, CA USA,
Aug. 2008, pp. 11–15.

[24] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, “CRAW-
DAD data set epfl/mobility (v. 2009-02-24),” Downloaded from
http://crawdad.cs.dartmouth.edu/epfl/mobility, Feb. 2009.

