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Abstract

In this paper, we propose an unsupervised feature
learning method called deep binary descriptor with multi-
quantization (DBD-MQ) for visual matching. Existing
learning-based binary descriptors such as compact bi-
nary face descriptor (CBFD) and DeepBit utilize the rigid
sign function for binarization despite of data distributions,
thereby suffering from severe quantization loss. In order
to address the limitation, our DBD-MQ considers the bi-
narization as a multi-quantization task. Specifically, we
apply a K-AutoEncoders (KAEs) network to jointly learn
the parameters and the binarization functions under a deep
learning framework, so that discriminative binary descrip-
tors can be obtained with a fine-grained multi-quantization.
Extensive experimental results on different visual analysis
including patch retrieval, image matching and image re-
trieval show that our DBD-MQ outperforms most existing
binary feature descriptors.

1. Introduction
Feature description is a fundamental computer vision

problem which is widely applicable in a number of appli-

cations, such as object recognition [11, 27], face recogni-

tion [29,32,43], image classification [15,26] and many oth-

ers. There are two essential properties for an effective fea-

ture descriptor: strong discriminative power and low com-

putational cost. On one hand, since real-world applications

usually suffer from large intra-class variances, it is criti-

cal to extract desirable feature descriptors with high qual-

ity representation. On the other hand, mobile devices with

limited computational capabilities and large amount of data

require efficient feature descriptors with high computational

speed and low memory cost.

∗Corresponding author.

In recent years, deep convolutional neural network

(CNN) has achieved state-of-the-art performance in var-

ious visual analysis tasks, and numerous discriminative

CNN features have been proposed, such as AlexNet [23],

VGG [32,41], GoogLeNet [44] and ResNet [17]. CNN fea-

tures obtain high quality representation by training a feature

learning model with large amount of labeled data to esti-

mate extensive number of parameters. However, they suffer

from heavy storage costs and low matching speed as they

are high-dimensional real-valued descriptors.

Several local binary features have been proposed over

the past decade. Representative binary features include

local binary pattern (LBP) [1, 30] as well as its vari-

ants [36, 37], binary robust independent elementary fea-

ture (BRIEF) [6], binary robust invariant scalable key-

point (BRISK) [25], oriented FAST and rotated BRIEF

(ORB) [38] and fast retina keypoint (FREAK) [2]. These

methods reduce the computational cost by substituting the

Euclidean distance with Hamming distance and compute

the distances between binary codes using XOR operations.

Inspired by the fact that CNN features deliver strong dis-

criminative power and binary features present low compu-

tational cost, DeepBit [26] learns deep compact binary de-

scriptors in an unsupervised manner, which achieves the

state-of-the-art in binary feature description. However, it

simply utilizes the rigid sign function for binarization de-

spite of data distributions. For many distributions, the hand-

crafted zero is not a reasonable threshold for binarization,

which may lead to severe quantization loss. In order to ad-

dress the limitation, we consider the binarization problem as

a general multi-quantization task, where the sign function is

a special case to cluster positives into one class and nega-

tives into another. Specifically, we apply a K-AutoEncoders

(KAEs) network and propose a deep binary descriptor with

multi-quantization (DBD-MQ) learning method. Figure 1

illustrates the flowchart of the proposed approach. With the

KAEs based multi-quantization, we jointly learn the param-
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Figure 1. The flowchart of the proposed method. For each image patch from the training set, we first learn a real-valued feature vector with

a pre-trained CNN by replacing the softmax layer with a fully connection layer. Then, we binarize the vectors with the K-Autoencoders

(KAEs) based multi-quantization instead of the rigid sign function, which minimizes the reconstruction loss by controlling the residual

features ΔXk. K is equal to 2 in this figure for easy illustration. Lastly, we optimize the parameters iteratively with back-propagation in

an unsupervised manner to obtain compact binary codes.

eters of the network and the binarization functions to obtain

more discriminative binary codes. Extensive experimen-

tal results on three different visual analysis tasks including

patch retrieval, image matching and image retrieval show

the effectiveness of the proposed method.

2. Related Work

Binary Feature Descriptors: Binary feature descriptors

have aroused extensive interest due to their efficiency of

matching and storing in recent years. Earlier binary features

include BRIEF [6], BRISK [25], ORB [38] and FREAK [2].

BRIEF directly utilized simple intensity difference tests to

compute binary vectors in a smoothed image patch. BRISK

leveraged a circular sampling pattern to obtain scale and ro-

tation invariance. ORB shared the similar purpose by em-

ploying scale pyramids and orientation operators. FREAK

referenced the human visual system by utilizing retinal sam-

pling grid for fast computing. However, these methods have

not shown remarkable performance because pairwise com-

parison of raw intensity is susceptible to scale and transfor-

mation. In order to address the limitation, several learning-

based binary descriptors have been proposed [4, 45, 47, 51].

For example, Trzcinski et al. [47] proposed a D-BRIEF

method by encoding similarity relationships to learn dis-

criminative projections. Balntas et al. [4] presented a bi-

nary online learned descriptor (BOLD) by applying LDA

criterion. However, these methods only employ pairwise

learning, which are unfavorable to transfer the learned bi-

nary features into new applications.

In recent years, a number of unsupervised binary de-

scriptor learning methods have been proposed, which

project each local patch into a binary descriptor [26, 28, 29]

For example, Lu et al. [29] proposed a compact binary

face descriptor (CBFD) learning method to learn evenly-

distributive and energy-saving local binary codes. They also

presented a simultaneous local binary feature learning and

encoding (SLBFLE) [28] method by jointly learning binary

codes and the codebook in a one-stage procedure. Lin et
al. [26] proposed a DeepBit by designing a CNN to learn

compact binary codes in an unsupervised manner. How-

ever, these methods simply employ the rigid sign function

for binarization, which is not optimal in many cases.

Deep Learning: There has been extensive work on deep

learning in recent years [7, 17, 23, 31, 32, 41, 44], which

achieves the state-of-the-art performance on many com-

puter vision applications, such as object recognition [17,

41], object detection [13], face recognition [32, 43] and hu-

man action recognition [21]. With large amount of data,

deep learning methods learn high-level hierarchical fea-

tures by training powerful statistical models to obtain higher

quality representation. In recent years, several deep binary

codes learning methods have also been proposed [9, 24, 26,

50]. For example, Xia et al. [50] proposed a CNN hashing

(CNNH) method by learning deep hashing codes and image

representation in a supervised manner. Lai et al. [24] im-

proved CNNH by presenting a one-stage deep binary codes

learning procedure. Liong et al. [9] proposed a deep hash-

ing (DH) method by learning multiple non-linear hierarchi-

cal transformations under three constraints. Lin et al. [26]
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Figure 2. An illustration of binarizing with the sign function on

two common distributions. Red dashes represent the threshold,

and the coding results are shown in the figure. For both distribu-

tions, it is not very reasonable to set zero as the threshold.

presented a DeepBit method by learning compact deep bi-

nary codes in an unsupervised manner. However, most deep

binary codes learning methods utilize the rigid sign function

for binarization.

3. Proposed Approach
In this section, we first present the K-AutoEncoders

based multi-quantization, and then propose the deep binary

descriptor with multi-quantization (DBD-MQ) learning ap-

proach.

3.1. K-AutoEncoders Based Multi-Quantization

There have been a number of local binary code learning

methods proposed in recent years [26,28,29], yet all of them

utilize the rigid sign function to quantize each element of

the real-valued vectors into binary codes. There are two

key limitations of the sign function based binarization:

1) While existing local binary code learning methods at-

tempt to learn evenly distributive elements, zero is still

not the optimal threshold in many cases. We take the

standard Gaussian distribution and the Gaussian mix-

ture distribution as examples, which are shown in Fig-

ure 2. Both models contain the same number of pos-

itives and negatives. For the standard Gaussian dis-

tribution, as the threshold lies in the densest area, a

large number of elements have to be separated into 0

and 1 even if their real-valued differences are small,

which leads to large quantization loss. For the Gaus-

sian mixture distribution, it is reasonable to separate

different parts of the distribution with the threshold,

yet zero may not be an ideal choice. Therefore, a fine-

grained binarization strategy should be simultaneously

learned with the local binary codes to obtain more op-

timal quantization.

2) Existing binarization approaches are applied on each

bit separately, which ignore the holistic information

from feature vectors, thereby are more susceptible to

noise. The holistic feature vectors should provide prior

knowledge for the binarization of each bit, so that el-

ements from similar features have higher tendency to

be quantized into the same binary codes, which deliver

stronger robustness.

In order to address the above limitations, we propose a

K-AutoEncoders (KAEs) based multi-quantization method.

We formulate the binarization problem as a K-quantization

task, where K is equal to 2c in this work. Each element

is clustered into one of K classes, which leads to a c-bit

encoding. The conventional sign function is a special case

which clusters negatives into one class and positives into

another. As a 2-clustering approach, each element is quan-

tized into a 1-bit binary code in this situation.

K-Means has been one of the most widely used clus-

tering algorithms for over 50 years [19], which iteratively

optimizes with a two-step procedure: 1) classifying each

data point into a cluster, and 2) optimizing each cluster

with corresponding data points. Inspired by the fact that

K-means achieves outstanding performance in many quan-

tization tasks, we train our KAEs with the similar iterative

approach. In KAEs, we first associate each real-valued fea-

ture vector xn with the AutoEncoder, which obtains the

minimum reconstruction error:

kn = argmin
k

εnk, (1)

where εnk = ||Δxnk||2 is the reconstruction error of xn

with the kth AutoEncoder. Then, we utilize the correspond-

ing xn to update the parameters of the knth AutoEncoder.

Figure 3 shows the detailed procedure of training the KAEs.

The learned KAEs can be considered as K clustering cen-

ters, where each feature is clustered to the AutoEncoder

with the minimum reconstruction error.

In order to quantize each element of the feature vectors

into binary codes, we consider the element-wise quantiza-

tion loss ε
(i)
nk = |Δx

(i)
nk|, and the clustering approach of each

element is formulated as follows:

k(i)n = argmin
k

ε
(i)
nk, k = 1, 2, · · · ,K (2)

where the ith element of xn is clustered into the k
(i)
n th Au-

toEncoder. Each element is clustered to the AutoEncoder

with the minimum element-wise reconstruction error, so

that the total quantization loss is minimized.

As one of the main purposes of binary code learning

is to reduce the storage costs, we simply encode K clus-

ters into c-bit binary codes to balance the accuracy and the

binary length without special encoding strategies. Having

clustered real-valued elements into K classes, we obtain
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Figure 3. A detailed explanation of training KAEs. For each image from the input set, we first encode and decode its CNN feature with

all KAEs. Then, we associate each feature with the AutoEncoder obtaining the minimum reconstruction loss, which is highlighted with

a red box. Lastly, we utilize the corresponding features to train the associate AutoEncoder. These steps are executed iteratively until

convergence.

the corresponding binary codes for each element, which are

concatenated into the binary descriptor.

3.2. Learning Deep Binary Descriptor with Multi-
Quantization

We initialize the CNN with the pre-trained 16 layers

VGGNet [41] trained on the ImageNet dataset, which re-

places the softmax layer with a fully connection layer. Let

X = [x1,x2, · · · ,xN ] be the CNN features of N images,

where xn ∈ R
d (1 ≤ n ≤ N ) is the nth feature of the input

images. The objective function of our approach to learn the

parameters of the holistic deep neural network with KAEs

is shown as follows:

min
X,Wk

J = J1 + λ1J2 + λ2J3

=
N∑

n=1

ε2nkn
+ λ1

K∑

k=1

∑

l

||W(l)
k ||2F

− λ2tr((X−U)T (X−U)), (3)

where W
(l)
k represents the parameters of the lth layer of the

kth AutoEncoder, and U ∈ R
d×N is the mean feature of X

repeating N times.

J1 aims to minimize the reconstruction error of the fea-

tures. This term not only directs the projection parame-

ters of KAEs, but also leads to better real-valued features

with the minimum quantization loss. J2 is the regulariza-

tion term for KAEs to prevent from overfitting. The physi-

cal meaning of J3 is to enlarge the variance of the learned

features. The first term J1 may lead to similar features for

all input patches, which harms the discriminativeness of the

learned feature, while the third term J3 maximizes the vari-

ance of each element of the features, so that each element

of descriptors contains more information from the training

patches.

As it is not convex to simultaneously optimize CNN and

KAEs, we use an iterative approach to update one by fixing

the others.

Learning Wk with a fixed X: when X is fixed, the

objective function (3) can be rewritten as follows:

min
Wk

J =
N∑

n=1

ε2nkn
+ λ1

K∑

k=1

∑

l

||W(l)
k ||2F , (4)

and we apply stochastic gradient descent approach to update

Wk.

Learning X with fixed Wk: when the parameters of the

KAEs are fixed, the objective function (3) can be rewritten

as follows:

min
X

J =

N∑

n=1

ε2nkn
− λ2tr((X−U)T (X−U)). (5)

Similarly, the stochastic gradient descent approach with

back-propagation is applied to train the network iteratively,

and we learn effective and discriminative local binary codes

in an unsupervised manner. Algorithm 1 details the ap-

proach of the proposed DBD-MQ.

In the training procedure, we simultaneously learn the

parameters of CNN and the KAEs to obtain energy-saving

and evenly-distributive binary descriptors. In the test proce-

dure, for each local patch, we first learn its real-valued fea-

ture representation using the learned CNN, and then quan-

tize each element into binary codes with the learned KAEs

using (2), which are concatenated into a longer binary de-

scriptor as the final representation. As the dimension of
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Algorithm 1: DBD-MQ

Input: Training image set, parameters λ1 and λ2, and iter-

ation number T .

Output: Projection parameters of CNN W, and parame-

ters of KAEs Wk.

1: Initialize pre-trained CNN features X and KAEs Wk.

2: for iter = 1, 2, · · · , T do
3: loop
4: Cluster each xn into an AutoEncoder using (1).

5: Update Wk with corresponding xn using (4).

6: end loop until convergence

7: Update CNN with Wk fixed using (5).

8: end for
9: return W and Wk.

features is relatively small, we utilized the term of J2 to

prevent from overfitting instead of dropout, by fixing λ1 as

0.001 and λ2 as 1.0, respectively. Moreover, we rotate each

image by -10, -5, 0, 5, 10 degrees for data augmentation.

For each image, we first reshape its size into 256 × 256 by

following [26], and then crop it into 224 × 224 to remove

the background information.

3.3. Discussion

The proposed DBD-MQ improves the conventional sign

function based binary codes learning methods in the follow-

ing two aspects:

1) Instead of employing a hand-crafted threshold, the pro-

posed DBD-MQ simultaneous learns the parameters

of CNN and KAEs to minimize the quantization loss.

With the fine-grained multi-quantization, we cluster

similar elements of real-valued descriptors into the

same class and obtain more energy-saving binary de-

scriptors.

2) KAEs are learned from holistic feature vectors, mini-

mizing the reconstruction error of similar real-valued

descriptors in the corresponding AutoEncoder. There-

fore, elements from similar features vectors belonging

to the same AutoEncoder have higher tendency to be

quantized into the same class, as the total reconstruc-

tion error is small in this AutoEncoder. Unlike ex-

isting binarization approaches [26, 29] which quantize

each bit separately, the holistic real-valued descriptors

provide strong prior knowledge for the binarization of

each element, which enhances the robustness and sta-

bleness of the learned binary descriptors.

4. Experiments
We evaluated the proposed DBD-MQ method on three

challenging datasets including CIFAR-10 [22], Brown [5]

and Oxford [34] datasets. We conducted experiments on

three different visual analysis tasks, including patch re-

trieval on CIFAR-10, image patch matching on Brown and

image retrieval on Oxford. We compared the proposed

method with several state-of-the-art local descriptors to

evaluate the effectiveness of DBD-MQ.

4.1. Results on Patch Retrieval

The CIFAR-10 dataset [22] contains 10 subjects with

6000 images for each class. The image size is 32×32, with

50,000 training images and the other 10,000 test images. In

the experiments, we followed the standard evaluation proto-

col [22], and tested the proposed DBD-MQ under different

binary length: 16 bits, 32 bits and 64 bits.

Parameter Analysis: We first tested the dimensions of

layers of each AutoEncoder by using cross validation under

different binary length. For 16-bit DBD-MQ, the dimen-

sions for each AutoEncoder were empirically set as [16 →
12 → 8 → 12 → 16] with cross validation. For 32-bit, the

dimensions were set as [32 → 24 → 16 → 24 → 32]. For

64-bit, the dimensions were set as [64 → 50 → 32 → 50

→ 64]. Moreover, we utilized the ReLU function as the

nonlinear units.

We tested the mean average precision (mAP) under dif-

ferent number of AutoEncoders K, with the structure of

AutoEncoders fixed as [16→ 12→ 8→ 12→ 16]. Figure 5

shows that the best result was obtained when K is equal to

4. Although the binary lengths are 16, 32, 64 and 128 re-

spectively when K is set as 2, 4, 8 and 16, they share the

same original real-valued feature vectors. In other words,

they share the same original information and use different

lengths of binary codes to represent each element, which

differ from the sign function based methods under differ-

ent binary lengths. The learned binary codes preserve more

information when K is increasing. However, the mean av-

erage precision will decrease if the searching space is too

large. Therefore, the mean average precision increases at

first, and then decreases when K is too large. Most binary

codes utilize a one-bit code to present each real-valued ele-

ment. Hence, we apply K = 2 to all the following experi-

ments for a fair comparison.

Comparison with the State-of-the-Art Unsupervised
Hashing Methods: We compared the proposed DBD-MQ

method with several state-of-the-art unsupervised hashing

approaches on this image retrieval task, where deep hashing

(DH) and DeepBit are two latest deep binary codes learn-

ing methods. Table 1 illustrates the mean average precision

(mAP) of the proposed method compared with several state-

of-the-art unsupervised hashing methods. Among previous

unsupervised hashing methods, DeepBit delivers outstand-

ing mAP, yet our DBD-MQ improves the performance by

2.10%(= 21.53% - 19.43%), 1.64%(= 26.50% - 24.86%)

and 4.12%(= 31.85% - 27.73%) with 16 bits, 32 bits and
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(c) 64 bits

Figure 4. Precision/Recall curves of the Cifar-10 dataset compared with the state-of-the-art unsupervised hashing methods under varying

binary lengths (a) 16 bits, (b) 32 bits and (c) 64 bits.
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Figure 5. The mean average precision (mAP) performance (%) un-

der varying number of AutoEncoders.

64 bits respectively. The main reason is that DeepBit simply

applies rigid sign function for binarization thereby suffering

from severe quantization loss. Our DBD-MQ simultane-

ously learns the features and the fine-grained quantization

function in an end-to-end network, so that the learned bi-

nary codes are more compact and deliver stronger discrim-

inative power for each bit. Figure 4 illustrates the Preci-

sion/Recall curves of the proposed DBD-MQ and the state-

of-the-art unsupervised hashing methods. We observe that

the proposed DBD-MQ consistently outperforms other ap-

proaches.

Evaluation of Different Binarization Strategies: One

of the most significant contributions of the proposed DBD-

MQ is the application of KAEs for fine-grained binariza-

tion. In the previous experiments, we obtained state-of-the-

art performance compared with the state-of-the-art unsuper-

vised hashing approaches, yet it could not directly show the

effectiveness of our multi-quantization. In order to better

evaluate our KAEs, we conducted an experiment to com-

pare different binarization strategies. We fixed all other pa-

rameters and simply changed our KAEs with sign functions

for binarization to test the mean average precision perfor-

mance on CIFAR-10. Table 2 shows the experimental re-

Table 1. The mean average precision (mAP) performance (%) of

top 1,000 returned images compared with different state-of-the-art

unsupervised hashing methods under different binary code length.

Method 16 bits 32 bits 64 bits

KMH [16] 13.59 13.93 14.46
SphH [18] 13.98 14.58 15.38
SpeH [49] 12.55 12.42 12.56
SH [39] 12.95 14.09 13.89
PCAH [48] 12.91 12.60 12.10
LSH [3] 12.55 13.76 15.07
PCA-ITQ [14] 15.67 16.20 16.64
DH [9] 16.17 16.62 16.96
DeepBit [26] 19.43 24.86 27.73
DBD-MQ 21.53 26.50 31.85

Table 2. The mean average precision (mAP) performance (%) of

different binarization strategies on the Cifar-10 dataset under dif-

ferent binary code length.

Binarization 16 bits 32 bits 64 bits

KAEs 21.53 26.50 31.85
Sign 19.16 23.89 26.90
ΔmAP 2.37 2.61 4.95

sults. As the only difference between these two methods

is the binarization strategy, this experiment shows that the

fine-grained multi-quantization approach outperforms the

rigid sign function under all three binary lengths. More-

over, we observe that with the increase of binary length,

the improvement of KAEs becomes more significant. On

one hand, KAEs minimize the quantization loss for each

bit, so that the learned binary codes are more compact and

longer descriptors benefit more from the fine-grained multi-

quantization. On the other hand, longer descriptors are able

to train better KAEs, so that the holistic descriptors provide

more precise prior knowledge for the binarization of each

element.

Computational Time: Our hardware configuration

comprises of a 2.8-GHz CPU and a 32G RAM. As we ap-

plied a very deep VGG convolutional network to initialize

our CNN, we utilized a Tesla K80 GPU for acceleration.
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Table 3. 95% error rates (ERR) compared with the state-of-the-art binary descriptors on Brown dataset (%), where Boosted SSC, Brisk,

BRIEF and DeepBit are unsupervised binary feature and LDAHash, D-BRIEF, BinBoost and RFD are supervised. The real-valued feature

SIFT is provided for reference.

Train Yosemite Yosemite Notre Dame Notre Dame Liberty Liberty Average

Test Noter Dame Liberty Yosemite Liberty Notre Dame Yosemite ERR

SIFT [27] (128 bytes) 28.09 36.27 29.15 36.27 28.09 29.15 31.17
Boosted SSC [40] (16 bytes) 72.20 71.59 76.00 70.35 72.95 77.99 73.51
BRISK [25] (64 bytes) 74.88 79.36 73.21 79.36 74.88 73.21 75.81
BRIEF [6] (32 bytes) 54.57 59.15 54.96 59.15 54.57 54.96 56.23
DeepBit [26] (32 bytes) 29.60 34.41 63.68 32.06 26.66 57.61 40.67
LDAHash [42] (16 bytes) 51.58 49.66 52.95 49.66 51.58 52.95 51.40
D-BRIEF [47] (4 bytes) 43.96 53.39 46.22 51.30 43.10 47.29 47.54
BinBoost [45] (8 bytes) 14.54 21.67 18.96 20.49 16.90 22.88 19.24
RFD [10] (50-70 bytes) 11.68 19.40 14.50 19.35 13.23 16.99 15.86
DBD-MQ (32 bytes) 27.20 33.11 57.24 31.10 25.78 57.15 38.59
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(d) Notre Dame-Liberty
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(e) Liberty-Notre Dame
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(f) Liberty-Yosemite

Figure 6. ROC curves of the proposed method compared with several methods on the Brown dataset, under all the combinations of training

and test of Liberty, Notre Dame and Yosemite.

We tested the total computational time of extracting fea-

tures from a pair of images in CIFAR-10 and computing

their similarities. It took 0.043s for the proposed DBD-MQ,

while HOG [8] and SIFT [27] took 0.028s and 0.051s, re-

spectively. For the storage cost, a 32-bit DBD-MQ descrip-

tor requires 4 bytes memory for each image patch, while 9

bytes are required for HOG and 128 bytes for SIFT. This

shows that our DBD-MQ is more suitable for scalable vi-

sual matching and search in practical applications.

4.2. Results on Image Matching

We evaluated the proposed DBD-MQ on the Brown

dataset [5], including Liberty, Notre Dame and Yosemite

where each of them contains more than 400,000 image

patches. For each dataset, there are 200,000 to 400,000

training images and 100,000 test pairs with half of them

matched (positive) and the others mismatched (negative).

In the experiments, we followed the settings in [46] where

all six training and test combinations were used: Yosemite-

Notre Dame, Yosemite-Liberty, Notre Dame-Yosemite,

Notre Dame-Liberty, Liberty-Notre Dame and Liberty-

Yosemite. We fixed the binary length as 256, applying the

KAEs with the structure of [256 → 160 → 100 → 60 →
100→ 160→ 256].

Comparison with the State-of-the-Arts: Table 3 shows

the 95% error rates (ERR) of the proposed DBD-MQ com-
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Table 4. 95% error rates (ERR) of different binarization strategies on the Brown dataset (%).

Train Yosemite Yosemite Notre Dame Notre Dame Liberty Liberty Average

Test Noter Dame Liberty Yosemite Liberty Notre Dame Yosemite ERR

KAEs 27.20 33.11 57.24 31.10 25.78 57.15 38.59
Sign 29.84 36.13 60.42 32.97 28.52 59.04 41.15
ΔERR 2.64 3.02 3.18 1.87 2.74 1.89 2.56

pared with several state-of-the-art descriptors, and Figure 6

shows the ROC curves on all six training and test com-

binations. Among these compared approaches, Boosted

SSC [40], BRISK [25], BRIEF [6] and DeepBit [26] are

unsupervised binary descriptors while LDAHash [42], D-

BRIEF [47], BinBoost [45] and RFD [10] are supervised.

The real-valued SIFT [27] is provided for reference. Among

the existing unsupervised binary descriptors, DeepBit ob-

tains outstanding results due to its strong discriminative

power. However, DeepBit employs the rigid sign function

for binarization, while the proposed DBD-MQ learns fine-

grained KAEs to minimize the quantization loss, leading to

better performances on all six experiments. Our DBD-MQ

also achieves better average 95% error rate than supervised

approaches. As an unsupervised manner, DBD-MQ fits for

the applications where it is difficult to collect label infor-

mation, while supervised approaches fail to work in such

scenarios.

Evaluation of Different Binarization Strategies: Sim-

ilar to the experiment designed on the CIFAR-10 dataset,

we conducted an additional experiment to evaluate the ef-

fectiveness of the proposed multi-quantization based bina-

rization. Table 4 shows the experimental results of different

binarization strategies on the brown dataset. We find that

the proposed KAEs based method outperforms the conven-

tional sign function on all the experiments of the Brown

dataset, which shows the effectiveness of binarization with

multi-quantization.

4.3. Results on Image Retrieval

The Oxford dataset [34] contains 5,062 images of Ox-

ford landmarks collected from Flickr, where 11 locations

are manually generated comprehensive ground truth, repre-

sented by 5 bounding boxes for each as queries. We need to

retrieve all the image of the same place with the 55 queries.

We followed the experimental settings in [33] by training

on the Paris dataset [35] and learning a 256-centroid vocab-

ulary. We set the length of the binary codes as 128, applying

the KAEs of [128→ 90→ 60→ 90→ 128].

Table 5 shows the image retrieval results on the Ox-

ford dataset. The SIFT descriptor [27] is listed as a base-

line method. As our DBD-MQ only exploits raw RGB

patches as the input without any pre-processing, the result

of CKN [33] is reported with the raw input for a fair com-

parison. AlexNet [23] is one of the most popular convo-

lutional neural networks, which consists of 7 layers. We

Table 5. The mean average precision (mAP) performance (%) of

different approaches on the Oxford dataset.

Method mAP

SIFT [27] 43.7
BoW 200k-D [20] 36.4
AlexNet-conv1 [23] 18.8
AlexNet-conv2 [23] 12.5
AlexNet-conv3 [23] 33.3
AlexNet-conv4 [23] 34.3
AlexNet-conv5 [23] 33.4
PhilippNet [12] 38.3
CKN-raw [33] 23.0
DBD-MQ 38.9

evaluate the mean average precision of the output after

ReLU of all 5 convolutional layers. Our DBD-MQ obtains

encouraging result on the Oxford dataset. CKN extracts

patch-level descriptors using an unsupervised CNN, while

the proposed DBD-MQ learns energy-saving and evenly-

distributive binary descriptors, which deliver stronger dis-

criminative power. Moreover, as a binary descriptor learn-

ing method, the proposed DBD-MQ has higher efficiency to

store and compute on image retrieval tasks compared with

real-valued descriptors.

5. Conclusion
In this paper, we have proposed a deep binary descriptor

learning with multi-quantization (DBD-MQ) method. Un-

like most existing binary codes learning methods which uti-

lize the rigid sign function for binarization, our DBD-MQ

simultaneously learns the parameters of CNN and KAEs,

replacing the sign function with the fine-grained multi-

quantization to minimize the quantization loss. The pro-

posed DBD-MQ outperforms most existing unsupervised

binary descriptors on three widely used datasets.
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