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Abstract—In this paper, we propose an unsupervised feature learning method called deep binary descriptor with multi-quantization
(DBD-MQ) for visual analysis. Existing learning-based binary descriptors such as compact binary face descriptor (CBFD) and DeepBit
utilize the rigid sign function for binarization despite of data distributions, which usually suffer from severe quantization loss. In order to
address the limitation, we propose a deep multi-quantization network to learn a data-dependent binarization in an unsupervised
manner. More specifically, we design a K-Autoencoders (KAEs) network to jointly learn the parameters of feature extractor and the
binarization functions under a deep learning framework, so that discriminative binary descriptors can be obtained with a fine-grained
multi-quantization. As DBD-MQ simply allocates the same number of quantizers to each real-valued feature dimension ignoring the
elementwise diversity of informativeness, we further propose a deep competitive binary descriptor with multi-quantization (DCBD-MQ)
method to learn optimal allocation of bits with the fixed binary length in a competitive manner, where informative dimensions gain more
bits for complete representation. Moreover, we present a similarity-aware binary encoding strategy based on the earth mover’s
distance of Autoencoders, so that elements that are quantized into similar Autoencoders will have smaller Hamming distances.
Extensive experimental results on six widely-used datasets show that our DBD-MQ and DCBD-MQ outperform most state-of-the-art

unsupervised binary descriptors.

Index Terms—Binary descriptor, unsupervised learning, deep learning, competitive learning, multi-quantization, K-Autoencoders.

1 INTRODUCTION

Feature description is a fundamental computer vision problem
which is widely applicable in a number of applications, such as
object recognition [18], [44], face recognition [46], [50], [66],
image classification [24], [41] and many others. There are two
essential properties for an effective feature descriptor: strong
discriminative power and low computational cost. On one hand,
since real-world applications usually suffer from large intra-class
variances, it is critical to extract desirable feature descriptors with
high quality representation. On the other hand, mobile devices
with limited computational capabilities and large amount of data
require efficient feature descriptors with high computational speed
and low memory cost.

In recent years, deep convolutional neural network (CNN) has
achieved state-of-the-art performance in various visual analysis
tasks, and numerous discriminative CNN features have been
proposed, such as AlexNet [38], VGG [50], [63], GoogLeNet [67],
ResNet [27] and DenseNet [30]. CNN features obtain high quality
representation by training a feature learning model with large
amount of labeled data to estimate extensive number of param-
eters. However, they suffer from heavy storage costs and low
matching speed as they are high-dimensional real-valued descrip-
tors. Meanwhile, several binary features have been proposed over
the past decade due to their efficiency. Representative binary
features include local binary pattern (LBP) [1], [48] as well
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as its variants [54], [55], binary robust independent elementary
feature (BRIEF) [9], binary robust invariant scalable keypoint
(BRISK) [40], oriented FAST and rotated BRIEF (ORB) [57]
and fast retina keypoint (FREAK) [2]. These methods reduce the
computational cost by substituting the Euclidean distance with
Hamming distance and computing the distances between binary
codes using XOR operations.

Inspired by the fact that CNN features present strong dis-
criminative power and binary representations benefit from low
computational cost, a number of deep binary descriptor learning
methods have been proposed, which achieve the state-of-the-art
results in binary representation [33], [41], [43], [62], such as Deep-
Bit [41], textual-visual deep binaries (TVDB) [62] and supervised
structured binary code (SUBIC) [33]. For binary representation,
binarization is an essential step to enhance the efficiency of the
descriptors at the cost of quantization loss. However, most existing
deep binary descriptors simply utilize the rigid sign function for
binarization despite of data distributions. For many distributions,
the hand-crafted zero is not a reasonable threshold for binarization,
which may lead to severe quantization loss. Fig. 1 shows that the
sign function is not proper for all the three distributions of the
real-valued feature dimensions.

In order to address these limitations, we propose a deep
multi-quantization network to learn data-dependent binarization
functions in an unsupervised manner. For each real-valued ele-
ment, we determine its binary code based on the quantization
result, where the sign function is a special case to quantize
positives into one class and negatives into another. Fig. 1 shows
the data-dependent binarization results of varying distributions.
Compared with the hand-crafted threshold, multi-quantization
exploits the distributions of each feature dimension and obtains
fine-grained binarization results. More specifically, we propose a
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Fig. 1. An illustration of binarizing three real-valued feature dimensions under varying distributions with the sign function, DBD-MQ, and DCBD-MQ,
fixing the total number of bits as three. In the figure, red dashes represent the threshold and we show the binarization results with binary codes.
For all the three distributions, it is not very reasonable to simply employ the sign function by setting the threshold as zero. Compared with the sign
function, DBD-MQ learns a data-dependent binarization to reduce the quantization loss. While the sign function and DBD-MQ evenly allocate bits to
the feature dimensions (1 bit per dimension), DCBD-MQ exploits the elementwise diversity of informativeness by adaptively learning the allocation

of bits with the fixed total binary length.

K-Autoencoders (KAEs) network for data-dependent binarization
and present a deep binary descriptor with multi-quantization
(DBD-MQ) learning method. Fig. 2 illustrates the flowchart of
the proposed approach. With the KAEs based multi-quantization,
we jointly learn the parameters of the network and the binarization
functions to obtain more discriminative binary codes.

While DBD-MQ learns data-dependent binarization functions,
it allocates the same number of bits to each real-valued feature
dimension despite of elementwise diversity of informativeness.
Inspired by the fact that the discriminative dimensions deserve
more bits for complete description, we further propose a deep
competitive binary descriptor with multi-quantization (DCBD-
MQ) learning method by encouraging elementwise contest for
quantizers with the fixed total binary length. Through the com-
petition, discriminative dimensions gain more bits for representa-
tion while some uninformative dimensions are eliminated. Fig. 1
shows that the third dimension grabs one more bit from the
first dimension due to its discriminativeness. Once a real-valued
feature dimension is quantized into multiple bits as shown in the
third distribution of Fig. 1, the binary encoding for quantizers
would be uncertain where different pairs of quantizers may have
varying Hamming distances. In order to obtain a similarity-aware
binary encoding strategy, we present an earth mover’s distance
(EMD) [58] based similarity measurement for Autoencoders, so
that similar quantizers would be encoded into binary codes with
smaller Hamming distances. Extensive experimental results on the
CIFAR-10 [37], Brown [8], HPatches [6], Paris [53], Oxford [52]
and INRIA Holidays [34] datasets show the effectiveness of the
proposed methods.

This paper is an extended version of our conference paper [15],
where we make the following new contributions:

1) We further propose a new DCBD-MQ method based
on DBD-MQ in the conference version by adaptively
learning the allocation of bits for the real-valued fea-
ture dimensions with the fixed total binary length, so
that discriminative dimensions grab more bits from the
uninformative ones for complete description.

2) We present a similarity-aware binary encoding strategy
for multiple bits by designing an EMD based similarity
measurement of Autoencoders, so that similar quantizers
have smaller Hamming distances.

3) We conduct extensive experiments on more public bench-
mark datasets to demonstrate the effectiveness of the
proposed methods, which include the latest image patch
dataset with three baseline visual analysis tasks.

2 BACKGROUND

In this section, we briefly review two related topics: binary
representation and deep learning.

2.1

Binary representations have aroused extensive interest due to
their efficiency of matching and storing in recent years. Earlier
binary features include BRIEF [9], BRISK [40], ORB [57] and
FREAK [2]. BRIEF directly utilized simple intensity difference
tests to compute binary vectors in a smoothed image patch. BRISK
leveraged a circular sampling pattern to obtain scale and rotation
invariance. ORB shared the similar purpose by employing scale
pyramids and orientation operators. FREAK referenced the human
visual system by utilizing retinal sampling grid for fast computing.
However, these methods have not shown remarkable performance
because pairwise comparison of raw intensity is susceptible to
scale and transformation. In order to address the limitation, several
learning-based binary descriptors have been proposed [7], [69],
[71], [76]. For example, Trzcinski et al. [71] proposed a D-BRIEF
method by encoding similarity relationships to learn discrimina-
tive projections. Balntas et al. [7] presented a binary online learned
descriptor (BOLD) by applying LDA criterion. However, these
methods only employ pairwise learning, which are unfavorable to
transfer the learned binary features into new applications.

In recent years, a number of unsupervised binary descriptor
learning methods have been proposed, which project each local
patch into a binary descriptor [13], [14], [23], [41], [45], [46],
[59], [74]. For example, Salakhutdinov and Hinton [59] proposed
a semantic hashing (SH) approach by learning binary codes
with Restricted Boltzmann Machines (RBM). Weiss et al. [74]
presented a Spectral hashing (SpeH) method through spectral
graph partitioning. Lu er al. [46] proposed a compact binary
face descriptor (CBFD) to learn evenly-distributive and energy-
saving local binary codes. They also presented a simultaneous
local binary feature learning and encoding (SLBFLE) [45] method

Binary Representation
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Fig. 2. The flowchart of the proposed DBD-MQ. For each image patch from the training set, we first learn a real-valued feature vector with a
pre-trained CNN by replacing the softmax layer with a fully connection layer. Then, we binarize the vectors with the K-Autoencoders (KAEs) based
multi-quantization instead of the rigid sign function, which minimizes the reconstruction loss by controlling the residual features AX. K is equal
to 4 in this figure for 2-bit binary encoding, where each feature dimension is quantized to two bits with the same color. Lastly, we optimize the
parameters iteratively with back-propagation in an unsupervised manner to obtain compact binary codes. (Best viewed in color.)

by jointly learning binary codes and the codebook in a one-stage
procedure. Lin et al. [41] proposed a DeepBit by designing a CNN
to learn compact binary codes in an unsupervised manner. Duan et
al. [13] presented a context-aware local binary feature learning
(CA-LBFL) approach to exploit contextual bitwise interaction. Ta-
ble 1 shows an overview of the widely-used binary representations,
where compactness represents whether the redundancy is removed
in the binary representation. We observe that most of these
methods utilize a hand-crafted threshold for binarization, which
ignore the distributions of the real-valued feature dimensions and
the allocation of bits.

2.2 Deep Learning

There has been extensive work on deep learning in recent
years [10], [27], [30], [38], [49], [50], [63], [67], which achieves
the state-of-the-art performance in many computer vision appli-
cations, such as object recognition [27], [30], [63], object detec-
tion [21], [22], [56], face recognition [50], [66] and human action
recognition [36], [64]. With large amount of data, deep learning
methods learn high-level hierarchical features by training powerful
statistical models to obtain higher quality representation. However,
most deep features are high-dimensional and real-valued, which
require strong computational capabilities.

In recent years, several deep binary representation learning
methods have also been proposed [12], [16], [33], [39], [41],
[42], [43], [62], [75], [77], where the recent survey paper [73]
presented an exhaustive review. For example, Xia et al. [75]
proposed a CNN hashing (CNNH) method by learning deep
hashing codes and image representation in a supervised man-
ner. Lai et al. [39] improved CNNH by presenting a one-stage
deep binary representation learning procedure. Liong et al. [16]
proposed a deep hashing (DH) method by learning multiple non-
linear hierarchical transformations under three constraints. Shen et
al. [62] presented textual-visual deep binaries (TVDB) to exploit
the detailed semantics with an integrated deep architecture. Jain et
al. [33] proposed a supervised structured binary code (SUBIC)
with a one-hot block structure. Compared with existing deep
binary representation learning methods, the proposed DCBD-MQ
learns data-dependent binarization with competitive allocation of
bits, which fully exploits the varying distributions of the real-
valued feature dimensions to minimize the quantization loss.

3 DEEP BINARY DESCRIPTOR WITH MuULTI-
QUANTIZATION

In this section, we first present the K-Autoencoders based multi-
quantization, and then propose the deep binary descriptor with
multi-quantization (DBD-MQ) learning approach.

3.1

There have been a number of local binary code learning methods
proposed in recent years [41], [45], [46], yet all of them utilize the
rigid sign function to quantize each dimension of the real-valued
vectors into binary codes. There are two key limitations of the sign
function based binarization:

K-Autoencoders Based Multi-Quantization

1) While existing local binary code learning methods at-
tempt to learn evenly distributive elements, zero is still
not the optimal threshold in many cases. We take the
standard Gaussian distribution and the Gaussian mixture
distributions as examples, which are shown in Fig. 1.
All the models contain the same number of positives
and negatives. For the standard Gaussian distribution, as
the threshold lies in the densest area, a large number
of elements have to be separated into 0 and 1 even
if their real-valued differences are small, which leads
to large quantization loss. For the Gaussian mixture
distributions, it is reasonable to separate different parts
of the distribution with the threshold, yet zero may not
be an ideal choice. Therefore, a fine-grained binarization
strategy should be simultaneously learned with the local
binary codes to obtain more optimal quantization.

2) Existing binarization approaches are applied on each bit
separately, which ignore the holistic information from
feature vectors, thereby are more susceptible to noise. The
holistic feature vectors should provide prior knowledge
for the binarization of each bit, so that the elements in
each dimension from different features are more possible
to be quantized into the same binary codes if their holistic
feature vectors are similar.

In order to address the above limitations, we propose a K-
Autoencoders (KAEs) based multi-quantization method. We for-
mulate the binarization problem as a K-quantization task, where
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TABLE 1
Comparison of the proposed approaches to the widely-used binary representations.

Method Type Supervision ~ Compactness Binarization Allocation of bits
LBP [48] Hand-crafted No No Threshold Even
BRIEF [9] Hand-crafted No No Threshold Even
BRISK [40] Hand-crafted No No Threshold Even
ORB [57] Hand-crafted No No Threshold Even
FREAK [2] Hand-crafted No Yes Threshold Even
CBFD [46] Shallow No Yes Threshold Even
CA-LBFL [13] Shallow No Yes Threshold Even
D-BRIEF [71] Shallow Yes Yes Threshold Even
BOLD [7] Shallow Yes No Threshold Even
BinBoost [69] Shallow Yes Yes Threshold Even
DeepBit [41] Deep No Yes Threshold Even
TVDB [62] Deep Yes No Threshold Even
SUBIC [33] Deep Yes No Data-dependent Even
BDNN [12] Deep Both Yes Data-dependent Even
DBD-MQ [15] Deep No Yes Data-dependent Even
DCBD-MQ Deep No Yes Data-dependent Competitive

K is equal to 2° in DBD-MQ. In the training procedure of KAEs,
we quantize the holistic feature vectors to K Autoencoders for
parameter optimization. In the test procedure for binarization, each
feature dimension is clustered into one of K classes, which leads
to c-bit encoding per dimension. The conventional sign function is
a special case which clusters negatives into one class and positives
into another. As a 2-clustering approach, each feature dimension
is quantized into a 1-bit binary code in this situation.

K-Means has been one of the most widely used clustering
algorithms for over 50 years [32], which iteratively optimizes
with a two-step procedure: 1) classifying each data point into a
cluster, and 2) optimizing each cluster with corresponding data
points. Inspired by the fact that K-Means achieves outstanding
performance in many quantization tasks, we train our KAEs with
the similar iterative approach. In KAEs, we first associate each
real-valued feature vector x,, with the Autoencoder, which obtains
the minimum reconstruction error:

k, = argmkingnk, (1

where £, = ||AXpk||2 is the reconstruction error of x,, with
the kth Autoencoder. Then, we utilize the corresponding x,, to
update the parameters of the k,th Autoencoder. Fig. 3 shows the
detailed procedure of training the KAEs. The learned KAEs can be
considered as K clustering centers, where each feature is clustered
to the Autoencoder with the minimum reconstruction error.

In order to quantize each dimension of the feature vectors
into binary codes, we consider the elementwise quantization loss
ngg = |Ax£f,z , and the clustering approach of each dimension is
formulated as follows:

kﬁf) :argmkinefflz, k=1,2--- K 2)
where the ith dimension of Xx,, is clustered into the ky(f)th Au-
toencoder. Each feature dimension is clustered to the Autoencoder
with the minimum elementwise reconstruction error, so that the
total quantization loss is minimized.

As one of the main purposes of binary code learning is to
reduce the storage costs, we encode K clusters into c-bit binary
codes to balance the accuracy and the binary length without special

encoding strategies. Having clustered real-valued elements into K
classes, we obtain the corresponding binary codes for each feature
dimension, which are concatenated into the binary descriptor.

3.2 DBD-MQ

We initialize the CNN with the pre-trained 16 layers VGGNet [63]
trained on the ImageNet dataset, which replaces the softmax layer
with a fully connection layer. Fig. 2 shows the flowchart of the
proposed DBD-MQ. Let X = [xj,Xa, - ,Xy] be the CNN
features of N images, where x,, € R% (1 < n < N) is the nth
feature of the input images. The objective function of our approach
to learn the parameters of the holistic deep neural network with
KAEs is shown as follows:

J1 4+ Ado + AaJs

N K
D enk, ALY [[WilIE
n=1 k=1

- lotr((X-U)"(X-1)), 3)

where W, represents the parameters of the kth Autoencoder, and
U € RV is the mean feature of X repeating N times.

Jp aims to minimize the reconstruction error of the features.
This term not only directs the projection parameters of KAEs,
but also leads to better real-valued features with the minimum
quantization loss. Jo is the regularization term for KAEs to
prevent from overfitting. The physical meaning of .J3 is to enlarge
the variance of the learned features. The first term J; may
lead to similar features for all input patches, which harms the
discriminativeness of the learned feature, while the third term J3
maximizes the variance of each dimension of the features, so that
each dimension of descriptors contains more information from the
training patches.

As it is not convex to simultaneously optimize CNN and
KAE:s, we use an iterative approach to update one fixing the others.

Learning W, with a fixed X: when X is fixed, the objective
function (3) can be rewritten as follows:

min J =
X, W

N K
. _ 2 2
g = >0 <+ A Y Wl @

n=1 k=1
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Fig. 3. A detailed explanation of training KAEs. For each image from the input set, we first encode and decode its CNN feature with all KAEs. Then,
we associate each feature with the Autoencoder obtaining the minimum reconstruction loss, which is highlighted with a red box. Lastly, we utilize
the corresponding features to train the associate Autoencoder. These steps are executed iteratively until convergence.

Algorithm 1: DBD-MQ

Input: Training image set, parameters A; and A2, and iteration
number 7.
Output: Projection parameters of CNN W and parameters of KAEs
Wi.
1: Initialize pre-trained CNN features X and parameters of KAEs
Wi.
2: for iter =1,2,--- ;T do
3 loop
4 Cluster each x,, into an Autoencoder using (1).
5 Update W, with corresponding x,, using (4).
6: end loop until convergence
7
8
9

Update CNN with W, fixed using (5).
: end for
: return W and Wy,.

and we apply stochastic gradient descent (SGD) approach to
update W.

Learning X with fixed Wy: when the parameters of the
KAEs are fixed, the objective function (3) can be rewritten as
follows:

N
min J = T;sikn —otr(X - U)T(X - 1)). (5)

Similarly, the SGD approach with back-propagation is applied
to train the network iteratively, and we learn effective and discrim-
inative local binary codes in an unsupervised manner. Algorithm 1
details the approach of the proposed DBD-MQ.

In the training procedure, we simultaneously learn the param-
eters of CNN and the KAEs to obtain energy-saving and evenly-
distributive binary descriptors. In the test procedure, for each local
patch, we first learn its real-valued feature representation using the
learned CNN, and then quantize each feature dimension into bina-
ry codes with the learned KAEs using (2), which are concatenated
into a longer binary descriptor as the final representation. Fig. 4 (a)
shows an example of binary encoding with the learned KAEs. As
the dimension of features is relatively small, we utilized the term
of Js to prevent from overfitting instead of dropout, by fixing A; as
0.001 and A, as 1.0, respectively. Moreover, we rotate each image
by -10, -5, 0, 5, 10 degrees for data augmentation. For each image,
we first reshape its size into 256 X 256 by following [41], and then
crop it into 224 X 224 to remove the background information.

@ —|0AEQ)| 1LAET |[—>| 0

@ — | 0AEQ|| LAE1|—>|0

@ — | oAE0|| LAEY|—> 1

X B
(a) DBD-MQ

oy / 1
0

——>‘01:AEO‘|00:AE1,H10:AE3|4 0

—-»] 0: AE 1 H 1:AE:§,\

X Elementwise Competition. B
(b) DCBD-MQ

Fig. 4. Examples of data-dependent binarization in (a) DBD-MQ, and
(b) DCBD-MQ. For DBD-MQ, we set K = 2 for easy illustration, where
each dimension is binarized into one bit. We quantize each real-valued
element to the Autoencoder with the minimum reconstruction loss ac-
cording to (2), and obtain the binary code through the quantization
result. For DCBD-MQ, there are four KAEs in the original set, where
the real-valued dimensions compete for more Autoencoders from the
set with the fixed total binary length. Based on the informativeness of
each feature dimension, the first dimension only obtains AE 2 with 0 bit
for representation, the second dimension receives AE 1 and AE 3 with
1 bit, and the third dimension gains AE 0, AE 1 and AE 3 with 2 bits.

3.3 Discussion

Our DBD-MQ improves the conventional sign function based bi-
nary representation learning methods in the following two aspects:

1) Instead of employing a hand-crafted threshold, the pro-
posed DBD-MQ simultaneously learns the parameters of
CNN and KAEs to minimize the quantization loss. With
the fine-grained multi-quantization, we cluster similar
elements of real-valued descriptors into the same class
and obtain more energy-saving binary descriptors.

2) The parameters of KAEs are learned from holistic feature
vectors, minimizing the reconstruction error of similar
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real-valued descriptors in the corresponding Autoencoder.
Therefore, elements from similar features vectors belong-
ing to the same Autoencoder have higher tendency to be
quantized into the same class, as the total reconstruc-
tion error is small in this Autoencoder. Unlike existing
binarization approaches [41], [46] which quantize each
bit separately, the holistic real-valued descriptors pro-
vide strong prior knowledge for the binarization of each
feature dimension, which enhances the robustness and
stability of the learned binary descriptors.

4 DEeP COMPETITIVE BINARY DESCRIPTOR WITH
MULTI-QUANTIZATION

In this section, we first propose the deep competitive binary
descriptor with multi-quantization (DCBD-MQ) learning method,
and then present the earth mover’s distance (EMD) based
similarity-aware binary encoding for KAEs.

4.1 DCBD-MQ

While DBD-MQ learns data-dependent binarization for real-
valued features, it allocates the same number of bits for each
feature dimension, which ignores the elementwise diversity of
informativeness. With the fixed total binary length, discriminative
dimensions deserve more bits for fully representation as shown
in Fig. 1. In order to address the limitation, we further propose
a DCBD-MQ learning approach by encouraging elementwise
competition for Autoencoders. Different from DBD-MQ which
uses all the KAEs to quantize each real-valued feature dimensions,
elements in DCBD-MQ fight for more Autoencoders from the
original KAEs set, so that more informative dimensions gain more
Autoencoders and result in more bits for representation. Fig. 4 (b)
shows an example of elementwise competition in DCBD-MQ.

Let K = {1,2,---, K} be the original set of KAEs, where
K; C K represents the K; Autoencoders picked by the ith
dimension. We define a binary matrix C € {0, 1}?*¥ to register
the allocation of Autoencoders, where C;;, = 1 only if k € K;
and K; = Zszl C;r. DBD-MQ can be seen as a special case
of DCBD-MQ when all the elements in C are ones. Note that K
and K; can be any positive integers in DCBD-MQ rather than 2,
and the number of bits for the ith dimension is determined by the
shortest binary encoding of K; Autoencoders:

¢; = [logy K7, (6)

where [2] is the minimum integer greater than or equal to x.
We define the objective function for DCBD-MQ as follows:

X%ﬁcJ = J1+ Mo+ Aads+ A3y
N d o
= Zl(fikn'f‘a(zlg:k%))%
K
+ A D Wil[E = detr(X - U)T(X - 1))
= HCHF d 2 d 2
+ As(Q_( K _Zcik) —527"1')7
k=1 i=1 i=1
d
subject to Z c; =d, @)
i=1

where
e(i) o= ]gnin egf,)c )

represents the minimum reconstruction loss of the ith dimension
Ty ) in x,, among the Autoencoders in K;, and r; = 2% — K is
the remaining number of Autoencoders that can be used with ¢;
bits. For example, the third dimension in Fig. 4 (b) gains three Au-
toencoders (K; = 3), which requires two bits for representation
(¢; = 2), and one more Autoencoder can further be used without
increasing the binary length (r; = 1).

Compared with (3), the objective function of DCBD-MQ
modifies J; and add Jy for competitive binarization. In Jy, we si-
multaneously minimize the reconstruction losses of the real-valued
features and elements for elementwise selection of Autoencoders.
In Jy, the first term encourages each Autoencoder to be selected by
the same number of elements, and the second term prevents from
redundant Autoencoders which make little contribution under the
same binary length. We set A1, A2, A3, o and (8 as 0.004, 0.4,
10, 0.1 and 0.1, respectively. Similarly, we employ an iterative
training strategy to update one with the others fixed.

Learning W, fixing X and C: when X and C are fixed, we
can rewrite the objective function (7) as follows:

man Z Enk, T Zs k(”

and we also employ SGD to update W.

Learning C fixing W, and X: when the parameters of KAEs
and CNN are fixed, we can rewrite the objective function (7) to
learn the elementwise allocation of Autoencoders as follows:

K
DM WilE ©
k=1

m(i:nJ = a; ;E(Zk“ 2
||C|\F <,
+ )\3(2 ZC -8y r})
k=1 i=1
d
subject to D ei=d. (10)
=1

With the constraint of the binary length, we learn an optimal
allocation of Autoencoders to minimize (10), so that more discrim-
inative feature dimensions gain more bits for representation. As
optimizing (10) is a combinatorial problem, we initialize C by u-
tilizing two Autoencoders for each dimension, and apply dynamic-
programming to learn the optimal allocation of Autoencoders.

Learning X fixing W; and C: when KAEs and their
elementwise allocation are fixed, we can rewrite the objective
function (7) as follows:

N d
m)énJ = Z(sflkn—l—a(z:s:;g))%
n=1 i=1

- (X -U)T(X -1)), (11

and we update X with the SGD algorithm.

4.2 Similarity-Aware Binary Encoding

When a real-valued feature dimension gains more than two Au-
toencoders (K; > 2) for quantization, it would be binarized into
multiple bits. However, the binary encoding for Autoencoders
is uncertain in this case, where different pairs of Autoencoders

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2018.2858760, IEEE

Transactions on Pattern Analysis and Machine Intelligence

Consumer

Supplier

Autoencoder 1 Autoencoder 2

Fig. 5. An example of pointwise distances between Autoencoders. In
the figure, the points in the same color are reconstructed from the

same original samples, and py, », and wﬁl ) show the weights and the
total supply/capacity, respectively. We exploit all the pointwise distances
through the reconstruction results to completely describe the distance
between Autoencoders. (Best viewed in color.)

may have varying Hamming distances. For example, in the third
dimension of Fig. 4 (b), the Hamming distance between AE 0 and
AFE 3 is 2, while the distance between AE 0 and AE [ is 1. In order
to obtain a similarity-aware binary encoding strategy, the key is to
measure the distances between pairs of Autoencoders.

In this paper, we propose an earth mover’s distance
(EMD) [58] based similarity measurement for Autoencoders. For a
pair of Autoencoders k1 and ko, each sample x,, would have two
reconstruction results xglkl) and x;’”), respectively. We employ
the pointwise distance HAX(kl’kz)Hg ||x£Lk1) - xSL’”)Hg t
describe the pointwise distance of the same sample between a
pair of Autoencoders. However, as the reconstructed subspace
of each Autoencoder suffers from highly nonlinearity, the point-
wise distance of the same sample may not be optimal to fully
describe the distance between Autoencoders. To this end, we
consider all the pointwise distances between the Autoencoders
||Ax%ﬁﬁ;lkj) [l2 = ||x(k1 —x{?) ||2 in a more general manner as
shown in Fig. 5 rather than only using the ones reconstructed from
the same original samples. We convert the distance between a pair
of Autoencoders to the integrated pointwise distances:

Dl k) = 3 3 i axtitd
nl—lnz—
subject to Z Z Pk =1, plrke) >0 (12)
ni=1ns=1

where the distance between Autoencoders is represented as a

weighted average of pointwise distances, and we should choose

proper p to determine D(kq, k2) in (12). In the following, we
. . (K1, ko .

omit the superscript of Pp, n, for simplicity.
We exploit EMD to compute the weights in (12). We consider

xﬁ,’? as N suppliers, where the total supply of each supplier is
w,(ﬁ v Similarly, we consider xg?) as N consumers, where the

total capacity of each consumer is wr(Lz 2) We set the default value
of w%’“) as m, so that the points with less reconstruction
losses gain larger supply or capacity. The task is to deliver prod-

ucts from suppliers to consumers, and the weight p,,, ., represents

Algorithm 2: DCBD-MQ

Input: Training image set, parameters A; and A2, and iteration
number 7.
Qutput: Projection parameters of CNN W, parameters of KAEs
‘W, and allocation of KAEs C.
1: Initialize pre-trained CNN features X, parameters of KAEs Wy,
and allocation of KAEs C.

2: for iter =1,2,--- ;T do

3 loop

4: Cluster each x,, into an Autoencoder using (1).

5: Quantize each 1:53 ) into an Autoencoder with (8).

6 Update W, with corresponding x,, and zt) using (9).

7 end loop until convergence

8 Allocate KAEs to feature dimensions with others fixed using

(10).
9: Update CNN fixing others with (11).
10: end for
11: Encode the Autoencoders of each element according to (13).
12: return W, W, and C.

the quantity of the x(kl) — xsl o 2) delivery. Figure 5 shows an

example to illustrate the physical meanings of the variables. We
compute the EMD between Autoencoders by:

ki1,k
S N P X,

N N
anzl Zn2:1 Pny,ng
(k1,k2

where ||Axy; n )||2 is the ground distance, and we obtain the
optimal flow p,,, », by solving the linear programming problem
as follows:

D(ky, ko) = , (13)

Pnyng, = arg mln Z Z pnl,n2||AX£Lkll,;zk22)||2
”1 "2 n1=1ns=1
TSI RSN e
= ni=1
N N
k k
Z Z Py = min( Y- Wi, 37 wii?)
n1=1ne=1 ni=1 ng=1
Phyma 2 0. (14)

In (14), the first two constraints limit the total amount of
supply and capacity for each point. The third constraint aims at the
total flow by encouraging maximum supplies. The last constraint
allows a directional flow. With the learned weights p;,, n,, we
measure the distances between Autoencoders according to (13).
As each real-valued feature dimension would obtain only a few
bits for representation at most, we can encode the selected Autoen-
coders for each element to maintain the relative distances through
exhaustive search. Algorithm 2 summarizes the detailed approach
of the proposed DCBD-MQ.

5 EXPERIMENTS

We evaluated the proposed DBD-MQ and DCBD-MQ methods on
six challenging datasets including the CIFAR-10 [37], Brown [8],
HPatches [6], Paris [53], Oxford [52] and INRIA Holidays [34]
datasets. We conducted experiments on four different visual
analysis tasks, which contain patch retrieval, patch matching,
patch verification and image retrieval. We compared the proposed
methods with several state-of-the-art unsupervised binary descrip-
tors to demonstrate their effectiveness. Table 2 summarizes the
benchmark datasets used in the experiments.
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TABLE 2
Summarization of the benchmark datasets used in the experiments.

Dataset Input type Task Category  Training samples  Test samples
CIFAR-10 Image patch Patch retrieval 10 classes 50,000 10,000
Brown Image patch Patch matching Pairwise 200,000 100,000
HPatches Image patch Patch verification, matching, retrieval ~ 76 classes ~ 108 ~ 10°
Paris Landscape image Image retrieval N/A N/A 55
Oxford Landscape image Image retrieval N/A N/A 55
INRIA Holidays Natural image Image retrieval N/A N/A 500

5.1 Results on Patch Retrieval

The CIFAR-10 dataset [37] contains 10 subjects with 6000 images
for each class. The image size is 32 x 32, with 50,000 training
images and the other 10,000 test images. In the experiments, we
followed the standard evaluation protocol [37], and tested the
proposed DBD-MQ and DCBD-MQ under different binary length:
16 bits, 32 bits and 64 bits.

Parameter Analysis: We first tested the dimensions of layers
of each Autoencoder by using cross validation under different bi-
nary length. For 16-bit DBD-MQ and DCBD-MQ, the dimensions
for each Autoencoder were empirically set as [16 — 12 — 8§ —
12 — 16] with cross validation. For 32-bit, the dimensions were
set as [32 — 24 — 16 — 24 — 32]. For 64-bit, the dimensions
were set as [64 — 50 — 32 — 50 — 64]. Moreover, we utilized
the ReLLU function as the nonlinear units.

Then, we tested the mean average precision (mAP) under
different number of Autoencoders K, with the structure of Au-
toencoders fixed as [16 — 12 — 8 — 12 — 16]. For DBD-MQ,
Fig. 6 (a) shows that the best result was obtained when K is equal
to 4. Although the binary lengths are 16, 32, 48 and 64 respectively
when K is set as 2, 4, 8 and 16, they share the same original
real-valued feature vectors. In other words, they share the same
original information and use different lengths of binary codes
to represent each dimension, which differ from the sign function
based methods under different binary lengths. The learned binary
codes preserve more information when K is increasing. However,
the mean average precision will decrease if the searching space
is too large. Therefore, the mean average precision increases at
first, and then decreases when K is too large. For DCBD-MQ,
it is worth noticing that the binary length is fixed to 16 despite
of varying numbers of Autoencoders, and the only difference
between DCBD-MQ and DBD-MQ would be the first term .J;
and the parameters in the objective function if K is equal to 2.
As each feature dimension only selects some of the Autoencoders
rather than using all of them, the description would suffer from
severe locality when K is too large.

In our experiments, we fix K = 2 for DBD-MQ and K = 4
for DCBD-MQ. For DBD-MQ, K = 2 leads to 1-bit encoding per
dimension and K = 4 results in 2-bit encoding. In general, there
are mainly three reasons that we set K to 2:

1)  One of the key advantages for binary representation learn-
ing is the high efficiency. In Fig. 6 (a), the improvement
is relatively small (by 1.15% mAP) from K = 2 to
K = 4 at the cost of doubling the dimension of the final
representations, where we consider the setting of K = 2
to be more applicable in most cases.

2) The mAP is 22.68% on CIFAR-10 to binarize 16-
dimensional real-valued features with K = 4, while the
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Fig. 6. The mean average precision (mAP) performance (%) of (a) DBD-
MQ and DCBD-MQ under varying number of Autoencoders, and (b) 16-
bit DCBD-MQ under different A1 and A2.

performance is 26.50% for 32-dimensional real-valued
features with ' = 2 according to the experimental
results on CIFAR-10 in Table 4. As both methods share
the same binary length of 32, it is more effective to
increase the dimension of real-valued features for longer
binary codes.

3) As most existing binary representations employ 1-bit
encoding strategies [16], [28], [41], we set K to 2 for
fair comparisons.

For DCBD-MQ, we directly select K = 4 with the best result
as the binary length is fixed with different X in DCBD-MQ.

We also studied the influence of different terms. More specifi-
cally, we examined the mAP of 16-bit DCBD-MQ versus different
values of A1 and )\, by fixing other parameters. Fig. 6 (b) shows
that the best performance was obtained when the parameters \;
and )y were selected as 0.004 and 0.4, respectively.

There are five parameters including A1, A2, A3, @ and S in
(7), and we designed an ablation study with some parameters set
to 0 to demonstrate the impact of each term. As Ay and « are
the bases of feature learning and bitwise allocation which cannot
be removed, we tested the performance of DCBD-MQ by fixing
A1, A3 and (8 to 0 on CIFAR-10, respectively. Table 3 show the
experimental results. For \; = 0, the performance drops slightly
and the training process of KAEs may suffer from overfitting.
For A3 = 0, DCBD-MQ is more likely to degenerate to DBD-
MQ (with the modified .J;) as feature dimensions may tend to
select the same well-trained Autoencoders. For 3 = 0, redundant
Autoencoders would be selected with the same binary length. For
example, four Autoencoders will always be used instead of three
for 2-bit encoding.

Comparison with the State-of-the-Art Unsupervised Bi-
nary Descriptors: We compared the proposed DBD-MQ and
DCBD-MQ with several state-of-the-art unsupervised binary de-
scriptors on this image retrieval task, where deep hashing (DH)
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Fig. 7. Precision/Recall curves of the CIFAR-10 dataset compared with the state-of-the-art unsupervised hashing methods under varying binary

lengths (a) 16 bits, (b) 32 bits and (c) 64 bits.

TABLE 3
The mean average precision (mAP) performance (%) of top 1,000
returned images for DCBD-MQ without specific terms on CIFAR-10.

Method 16 bits 32 bits 64 bits
DCBD-MQ (\; =0) 30.46 32.95 36.52
DCBD-MQ (\; = 0) 22.06 27.41 32.73
DCBD-MQ (3=0) 30.14 32.09 35.64
DCBD-MQ 3058  33.01 3659

and DeepBit are two latest deep binary representation learning
methods. Table 4 illustrates the mean average precision (mAP) of
the proposed method compared with several state-of-the-art un-
supervised hashing methods. Among previous unsupervised hash-
ing methods, DeepBit delivers outstanding mAP, yet our DBD-
MQ improves the performance by 2.10%(= 21.53% - 19.43%),
1.64%(= 26.50% - 24.86%) and 4.12%(= 31.85% - 27.73%) with
16 bits, 32 bits and 64 bits respectively. The main reason is
that DeepBit simply applies rigid sign function for binarization
thereby suffering from severe quantization loss. Our DBD-MQ
simultaneously learns the features and the fine-grained quantiza-
tion function in an end-to-end network, so that the learned binary
codes are more compact and deliver stronger discriminative power
for each bit. While DBD-MQ allocates the same number of bits
to each dimension despite of the diversity in informativeness (1
bit per dimension under K = 2), the proposed DCBD-MQ learns
a more optimal allocation of bits in a competitive manner. As
the discriminative feature dimensions gain more bits for fully
representation, it further boosts the average mAP by 6.77%. We
also evaluated the performance of only modifying .J; according
to (7) for DBD-MQ, as shown in DBD-MQ + .J; of Table 4. We
observe that the modified J; term slightly boosts the performance
of DBD-MQ. Fig. 7 illustrates the Precision/Recall curves of the
proposed methods and the state-of-the-art unsupervised binary
descriptors. We observe that the proposed DBD-MQ and DCBD-
MQ consistently outperform other approaches.

Evaluation of Different Binarization Strategies: One of
the most significant contributions of the proposed DBD-MQ and
DCBD-MQ is the application of KAEs for fine-grained bina-
rization. In the previous experiments, we obtained state-of-the-
art performance compared with existing unsupervised binary de-
scriptors, yet it could not directly show the effectiveness of multi-
quantization. In order to better evaluate our KAEs, we conducted
an experiment to compare different binarization strategies. We

TABLE 4
The mean average precision (mAP) performance (%) of top 1,000
returned images compared with different state-of-the-art unsupervised

hashing methods under different binary code length.

Method 16 bits 32 bits 64 bits
KMH [26] 13.59  13.93  14.46
SphH [28] 13.98 1458  15.38
SpeH [74] 1255 1242 12.56
SH [59] 12.95 14.09 13.89
PCAH [72] 12.91 1260  12.10
LSH [3] 12.55 13.76  15.07
PCA-ITQ[23] 15.67 1620 16.64
DH [16] 16.17  16.62  16.96
DeepBit [41] 19.43  24.86  27.73
DBD-MQ[15] 21.53 26.50 31.85
DBD-MQ+.J; 2171 26.84 32.15
DCBD-MQ 3058  33.01 3659

fixed all other parameters and simply changed our KAEs with
sign functions for binarization to test the mean average precision
performance on CIFAR-10. Table 5 shows the experimental re-
sults. As the only difference between these two methods is the
binarization strategy, this experiment shows that the fine-grained
multi-quantization approach outperforms the rigid sign function
under all three binary lengths. Moreover, we observe that with
the increase of binary length, the improvement of KAEs becomes
more significant. On one hand, KAEs minimizes the quantization
loss for each bit, so that the learned binary codes are more compact
and longer descriptors benefit more from the fine-grained multi-
quantization. On the other hand, longer descriptors are able to train
better KAEs, so that the holistic descriptors provide more precise
prior knowledge for the binarization of each feature dimension.

As other quantization methods can also be used in the pro-
posed framework, we conducted another experiment on CIFAR-
10 to compare our KAEs with the K-Means method, where the
same real-valued descriptors were used. Table 5 shows that KAEs
achieves higher mAP and suffers from less mean quantization loss.
The main reason is that KAEs performs quantization by learning
K subspace projections rather than K centroids, which presents
stronger descriptive power and robustness.

Moreover, we evaluated the proposed similarity-aware binary
encoding strategy on the CIFAR-10 dataset. As aforementioned,
the discriminative dimensions in DCBD-MQ may gain more than
two Autoencoders for representation, which leads to confusing
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TABLE 5
The mean average precision (mAP) performance (%) of different
binarization strategies on the CIFAR-10 dataset under different binary
code length. Numbers in parentheses represent the mean quantization
loss for the quantization based methods.

Binarization 16 bits 32 bits 64 bits

KAEs 21.53 (1.43) 26.50(1.92) 31.85 (2.84)

Sign 19.16 (-) 23.89 (-) 26.90 (-)

K-Means 20.59 (1.56)  24.94 (2.20)  30.92 (3.18)
TABLE 6

The mean average precision (mAP) performance (%) of different
encoding strategies on the CIFAR-10 dataset under different binary

code length.
Encoding 16 bits 32 bits 64 bits
Similarity-aware 30.58 33.01 36.59
Random 30.20 31.81  34.97
AmAP 0.38 1.20 1.62

binary encoding. The proposed similarity-aware binary encoding
strategy is designed to minimize the Hamming distance between
similar Autoencoders. Table 6 shows the experimental results of
the similarity-aware binary encoding strategy compared with the
random encoding. We observe that the proposed encoding strategy
has a more precise similarity measurement in Hamming space,
which achieves better performance on the CIFAR-10 dataset.
Learning with Light-Weight CNN Models: While the pro-
posed binary descriptors are efficient for storage and matching, a
natural question is raised: can we use a light-weight CNN model
to further accelerate the procedure of feature extraction? As we
have evaluated the effectiveness of the proposed methods with a
very deep network structure VGG, we tested the performance of
DCBD-MQ with simplified CNN models in this subsection. We
employed SqueezeNet [31] and MobileNet [29] to initialize the
network, where SqueezeNet replaces 3 x 3 filters with 1 x 1 to
reduce the number of parameters and MobileNet utilizes depth-
wise separable convolutions. In order to train DCBD-MQ, we
replace the softmax layer of SqueezeNet and MobileNet with a
fully connected layer, which is initialized with random Gaussian.
Table 7 shows the mAP of DCBD-MQ with varying CNN models
under different binary code length and the total number of param-
eters on the CIFAR-10 dataset. We observe that DCBD-MQ also
achieves encouraging performance with much less parameters.
Image Clustering Results: As KAEs quantizes the input
image patches into K classes, we show the cluster samples in
Fig. 9 under K = 4 on the CIFAR-10 dataset. We observe
that patches with similar semantic contents are usually clustered

TABLE 7
The mean average precision (mAP) performance (%) and total
parameters of DCBD-MQ with varying CNN models on the CIFAR-10
dataset under different binary code length.

Encoding 16 bits 32 bits 64 bits  Parameters
VGG 30.58 33.01 36.59 134M
SqueezeNet — 22.32 24.20 27.81 1.2M
MobileNet 27.13 2997  32.42 4.2M

10

R
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Fig. 9. Samples of the clustered images under K = 4, where each group
of images is clustered with the same Autoencoder.

SE ENE 605 ¢

together by the same Autoencoder, where vehicles and ships are
quantized into the first group, quadrupeds for the second, birds
for the third and aircrafts for the last group. Moreover, the mean
quantization loss of KAEs is less than the widely-used K-Means
as shown in Table 5, because KAEs quantizes each vector to a
subspace rather than a centroid in a nonlinear manner. Besides
minimizing the binarization loss in binary code learning, the
proposed KAEs can also be used as an unsupervised deep cluster,
which present stronger discriminative power than K-Means.

Computational Time: Our hardware configuration comprises
of a 2.8-GHz CPU and a 32G RAM. As we applied a very
deep VGG convolutional network to initialize our CNN, we
utilized a GTX 1080 Ti GPU for acceleration. We tested the total
computational time of extracting one probe feature and retrieving
from 50,000 gallery features in CIFAR-10. It took 0.022s for a
32 bit DCBD-MQ, while HOG [11] and SIFT [44] took 0.030s
and 0.054s, respectively. For the storage cost, a 32-bit DCBD-MQ
descriptor requires 4 bytes memory for each image patch, while 9
bytes are required for HOG and 128 bytes for SIFT. This shows
that our DCBD-MQ is more suitable for scalable visual matching
and search in practical applications.

5.2 Results on Patch Matching

We evaluated the proposed DBD-MQ and DCBD-MQ on the
Brown dataset [8], including Liberty, Notre Dame and Yosemite
where each of them contains more than 400,000 image patches.
For each dataset, there are 200,000 to 400,000 training images
and 100,000 test pairs with half of them matched and the others
mismatched. In the experiments, we followed the settings in [70]
where all six training and test combinations were used. We fixed
the binary length as 256, applying the KAEs with the structure of
[256 — 160 — 100 — 60 — 100 — 160 — 256].

Comparison with the State-of-the-Arts: Table 8 shows the
95% error rates (ERR) of DBD-MQ and DCBD-MQ compared
with several state-of-the-art descriptors, and Fig. 8 shows the
ROC curves. Among the existing unsupervised binary descrip-
tors, DeepBit [41] obtains outstanding results due to its strong
discriminative power. However, DeepBit employs the hand-crafted
sign function for binarization, while the proposed DBD-MQ learns
data-dependent KAEs to minimize the quantization loss. DCBD-
MQ further boosts the performance by encouraging elementwise
competition for bits to obtain a more optimal allocation, which
leads to better performances on all six experiments. Our DBD-
MQ and DCBD-MQ also achieve better average 95% error rates
than some of the supervised approaches without using any label
information. As unsupervised methods, DBD-MQ and DCBD-
MQ fit for the applications where it is difficult to collect labels,
while supervised approaches fail to work in such scenarios. More-
over, DCBD-MQ achieves comparable average error rate than the
widely-used real-valued descriptor SIFT. As label information
is unused for both DCBD-MQ and SIFT, DCBD-MQ obtains
encouraging performance with 4 times less storage costs, which
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TABLE 8
95% error rates (ERR) compared with the state-of-the-art binary descriptors on Brown dataset (%), where Boosted SSC, BRISK, BRIEF and
DeepBit are unsupervised binary features and LDAHash, D-BRIEF, BinBoost, RFD, RMGD, Binary L2-Net and Binary DOAP are supervised. The
real-valued feature SIFT is provided for reference.

Train Yosemite Yosemite Notre Dame  Notre Dame Liberty Liberty = Average
Test Notre Dame  Liberty Yosemite Liberty Notre Dame  Yosemite ERR
SIFT [44] (128 bytes) 28.09 36.27 29.15 36.27 28.09 29.15 31.17
Boosted SSC [60] (16 bytes) 72.20 71.59 76.00 70.35 72.95 77.99 73.51
BRISK [40] (64 bytes) 74.88 79.36 73.21 79.36 74.88 73.21 75.81
BRIEF [9] (32 bytes) 54.57 59.15 54.96 59.15 54.57 54.96 56.23
DeepBit [41] (32 bytes) 29.60 34.41 63.68 32.06 26.66 57.61 40.67
LDAHash [65] (16 bytes) 51.58 49.66 52.95 49.66 51.58 52.95 51.40
D-BRIEF [71] (4 bytes) 43.96 53.39 46.22 51.30 43.10 47.29 47.54
BinBoost [69] (8 bytes) 14.54 21.67 18.96 20.49 16.90 22.88 19.24
RFD [17] (50-70 bytes) 11.68 19.40 14.50 19.35 13.23 16.99 15.86
RMGD [20] (172-200 bytes) 10.86 17.42 13.82 15.09 10.15 14.46 13.63
Binary L2-Net [68] (32 bytes) 2.51 6.65 4.04 4.01 1.90 5.61 4.12
Binary DOAP [25] (32 bytes) 1.76 4.17 3.64 2.87 0.96 3.93 2.89
DBD-MQ [15] (32 bytes) 27.20 33.11 57.24 31.10 25.78 57.15 38.59
DBD-MQ + Ji (32 bytes) 26.94 32.67 56.37 30.78 25.40 56.83 38.17
DCBD-MQ (32 bytes) 20.13 25.77 50.99 22.92 18.95 50.36 31.52
TABLE 9
95% error rates (ERR) of different binarization strategies on the Brown dataset (%).

Train Yosemite Yosemite Notre Dame Notre Dame Liberty Liberty  Average

Test Notre Dame  Liberty Yosemite Liberty Notre Dame  Yosemite ERR

KAEs 27.20 33.11 57.24 31.10 25.78 57.15 38.59

Sign 29.84 36.13 60.42 32.97 28.52 59.04 41.15

AERR 2.64 3.02 3.18 1.87 2.74 1.89 2.56

demonstrates the effectiveness of DCBD-MQ. We also observe TABLE 10

that DBD-MQ + J; obtains lower error rates than DBD-MQ.

Evaluation of Different Binarization Strategies: We con-
ducted an additional experiment to evaluate the effectiveness
of the proposed multi-quantization based binarization. Table 9
shows the experimental results of different binarization strategies
on the brown dataset. We find that the proposed KAEs based
method outperforms the conventional sign function on all the
experiments of the Brown dataset, which shows the effectiveness
of binarization with multi-quantization.

5.3 Results on HPatches

The HPatches dataset [6] is a recent benchmark for local descrip-
tors. The dataset provides three visual analysis tasks for com-
prehensive evaluation, which includes patch verification, patch
matching and patch retrieval. The HPatches dataset contains 116
sequences with 57 under photometric changes and 59 under
significant geometric deformations.

We followed the standard evaluation protocol [6] to test the
mean average precision (mAP) on the patch verification, patch
matching and patch retrieval tasks, respectively. We provided the
results of BinBoost [69], SIFT [44] and RSIFT [4] as important
references, and compared the proposed DCBD-MQ with the
unsupervised binary descriptors including BRIEF [9], ORB [57]
and DeepBit [41]. Table 10 shows that the proposed methods
outperform other unsupervised binary descriptors due to the data-
dependent binarization, and they also achieve comparable perfor-
mance with the real-valued and the supervised binary descriptors.

Comparison of mean average precision (mAP) (%) with baseline
methods under various tasks on HPatches.

Method Verification Matching  Retrieval
BinBoost [69] (32 bytes) 66.67 14.77 22.45
SIFT [44] (128 bytes) 65.12 25.47 31.98
RSIFT [4] (128 bytes) 58.53 27.22 33.56
BRIEF [9] (32 bytes) 58.07 10.50 16.03
ORB [57] (32 bytes) 60.15 15.32 18.85
DeepBit [41] (32 bytes) 61.27 13.05 20.61
DCBD-MQ (32 bytes) 64.78 14.01 24.41

5.4 Results on Image Retrieval

The Paris dataset [53] is a standard benchmark for image retrieval,
which consists of 6,412 images of Paris landmarks. We need to
retrieve all the image of the same place with the 55 queries. The
Oxford dataset [52] contains 5,062 images of Oxford landmarks
collected from Flickr, where 11 locations are manually generated
comprehensive ground truth, represented by 5 bounding boxes
for each as queries. 55 queries are employed for evaluation. The
INRIA Holidays dataset [34] has 1,491 images from 500 groups,
with varying rotations and scales. We evaluate on 500 queries
in the dataset. We followed the experimental settings in [5] by
training on the Landmark dataset [S] and testing on Paris, Oxford
and Holidays, respectively. We set the length of the binary codes
as 512, applying the KAEs of [512 — 400 — 256 — 400 — 512].
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Fig. 8. ROC curves of the proposed method compared with several methods on the Brown dataset, under all the combinations of training and test

of Liberty, Notre Dame and Yosemite.

TABLE 11
The mean average precision (mAP) performance (%) of different
approaches on the Paris, Oxford and INRIA Holidays dataset.

Methods Paris Oxford Holidays
BoW 200k-D [35] 46.0 36.4 54.0
IFV [35] - 41.8 62.6
AlexNet [38] - 334 75.3
PhilippNet [19] - 383 74.1
CKN [51] - 56.5 79.3
Neural codes [5] - 55.7 78.9
VLAD-CNN [47] 583 55.8 83.6
CNN+aug+ss [61]  79.5 68.0 84.3
DCBD-MQ 83.9 64.1 84.6

Table 11 shows the image retrieval results on the three baseline
datasets. The SIFT descriptor [44] based methods BoW 200k-
D [35] and IFV [35] are listed as baselines. Among the compared
methods, only Neural codes [5] is 512-bit binary descriptor,
while others are real-valued descriptors. Our DCBD-MQ obtains
encouraging result on the Oxford dataset. CKN [S1] extracts
patch-level descriptors using an unsupervised CNN, while the
proposed DCBD-MQ learns energy-saving and evenly-distributive
binary descriptors, which presents stronger discriminative power.
Moreover, as a binary descriptor learning method, the proposed
DCBD-MQ has higher efficiency for storage and computation on
image retrieval tasks compared with real-valued descriptors.

5.5 Analysis
The above experiments suggest the following key observations:

1)  Our DBD-MQ achieves encouraging performance on the
widely-used datasets. Unlike existing binary descriptors

which utilize the hand-crafted sign function for binariza-
tion, DBD-MQ performs a data-dependent binarization
by simultaneously learning the parameters of KAEs and
the CNN model to minimize the quantization loss.

2) KAEs achieves better performance than the commonly-
used sign function, because the fine-grained multi-
quantization minimizes the quantization loss and enables
the holistic descriptors to provide prior knowledge for the
elementwise binarization.

3) Based on DBD-MQ, the proposed DCBD-MQ further
learns an optimal allocation of bits in a competitive
manner, so that informative dimensions gain more bits
for complete description to achieve better results.

4) The proposed similarity-aware binary encoding strategy
ensures relatively small Hamming distances for the el-
ements which are quantized into similar Autoencoders,
and improves the discriminative power of the learned
binary codes compared with random encoding.

5) The evaluation of different numbers of Autoencoders
shows that, the mean average precision (mAP) increases
with K at first, and then descents when K is relatively
too large. The reason is that while binary codes preserve
more information of a real-valued element with a larger
K, it enlarges the searching space and the locality of each
Autoencoder, which leads to a lower mAP.

6 CONCLUSION

In this paper, we have proposed a deep binary descriptor with
multi-quantization (DBD-MQ) learning method. Unlike most ex-
isting binary representation learning methods which utilize the
hand-crafted sign function for binarization, our DBD-MQ simul-
taneously learns the parameters of CNN and KAEs, replacing
the sign function with the data-dependent multi-quantization to
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minimize the quantization loss. While DBD-MQ evenly allo-
cates bits to the real-valued feature dimensions despite of the
diversity of informativeness, we have further proposed a deep
competitive binary descriptor with multi-quantization (DCBD-
MQ) and a similarity-aware binary encoding strategy to learn
an optimal allocation of bits in a competitive manner. In the
elementwise contest, the discriminative dimensions grasp more
bits from the uninformative ones for complete description. The
proposed DBD-MQ and DCBD-MQ outperform most state-of-the-
art unsupervised binary descriptors on six widely-used datasets.
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