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Abstract. The paper studies the optimal placement of multiple cameras and the
selection of the best subset of cameras for single target localization in the frame-
work of sensor networks. The cameras are assumed to be aimed horizontally
around a room. To conserve both computation and communication energy, each
camera reduces its image to a binary “scan-line” by performing simple back-
ground subtraction followed by vertical summing and thresholding, and commu-
nicates only the center of the detected foreground object. Assuming noisy camera
measurements and an object prior, the minimum mean squared error of the best
linear estimate of the object location in 2-D is used as a metric for placement
and selection. The placement problem is shown to be equivalent to a classical in-
verse kinematics robotics problem, which can be solved efficiently using gradient
descent techniques. The selection problem on the other hand is a combinatorial
optimization problem and finding the optimal solution can be too costly to im-
plement in an energy-constrained wireless camera network. A semi-definite pro-
gramming approximation for the problem is shown to achieve close to optimal
solutions with much lower computational burden. Simulation and experimental
results are presented.

1 Introduction

A wireless sensor network (WSN) comprises a collection of many low cost, low-power
nodes each with sensing, processing and communication capabilities. WSNs have many
advantages over traditional sensing modalities including wide coverage, robustness,
scalability, and the ability to observe large scale phenomena distributed over space and
time [1,2].

The scarcest resource in a WSN is energy, as typically nodes operate untethered.
The limited battery life of a node imposes severe constraints on its communication
and computation capabilities. Consequently, recent work on WSNs has focused mainly
on very low data rate sensor nodes [3]. In many applications, however, high data rate
sensors are needed to perform the desired tasks. The most notable example is video
cameras, which are widely used for surveillance and monitoring. Current surveillance
camera installations are expensive and use outdated infrastructure. All captured video
data is shipped to a central station for human operators to watch which makes the sys-
tem non-scalable. As a result, there is a growing need to develop less costly wireless



networks of cameras with automated task-driven capabilities. Such development faces
many challenges. First, current video cameras are expensive and have high power con-
sumption. Second, video cameras are high data rate devices, so transmitting all the data
is costly in terms of energy. Third, video processing algorithms are in general com-
putationally expensive, require floating point arithmetic, and are costly to implement
locally.

The camera cost and power problems can be addressed by recent advances in CMOS
technology, which enable the integration of sensing, processing and communication [4].
It is currently feasible to design very low cost and power camera systems suitable for de-
ployment in a wireless network. To address the communication and computation chal-
lenges facing the development of wireless camera networks, simple local processing
algorithms that produce only the essential information needed for the network to col-
laboratively perform a task or answer a query are needed (e.g., see [5]).

Energy consumption can also be minimized by reducing the number of cameras
used to answer a query. This can be achieved by judicious placement of the cameras
with respect to the objects and selection of the best subset of cameras to collaboratively
answer the query. A proper placement of cameras increases the accuracy of sensing,
while selecting a good subset allows for efficient sensing with little performance degra-
dation relative to using all the cameras. Selection also allows the network to scale to
large numbers of nodes because of the savings in communication, computation, and
sensing.

In this paper, we investigate the problems of placement and selection of camera
nodes in order to minimize the localization error for a single object. Localizing an object
is important in many applications such as tracking, surveillance, and human computer
interaction. For example, if we could localize an object at every time step, the tracking
and correspondence problems become trivial. Very accurate localization is also impor-
tant in several robotics applications, such as navigation through a complex environment
or controlling an end effector to perform a delicate task. Specifically, we focus on 2-D
object localization, i.e., location on the ground plane, because this is the most relevant
information for many real world applications. We assume that the cameras are placed
horizontally around a room. The local processing framework in [5] is used to reduce
the image to a scan-line and only the center of the detected object from each camera is
communicated to the central processor. Given these noisy measurements and the object
prior distribution, the minimum mean squared error (MSE) of the best linear estimate
of the object location in 2-D is used as a metric for placement and selection. To find the
best camera placement, we optimize this metric with respect to the camera positions.
For a circularly symmetric object prior distribution and sensors with equal noise, we
show that a uniform sensor arrangement is optimal. Somewhat surprisingly, we estab-
lish that the general problem is equivalent to solving the inverse kinematics of a planar
robotic arm which can be solved efficiently using gradient descent techniques. We then
devise a semi-definite programming approximation of the optimal solution for the se-
lection problem. We show that this method performs close to optimal and outperforms
naive heuristics (e.g., picking greedily or the closest or uniform sensors).

The rest of the paper is organized as follows: In Sect. 2, we review related sensor
networks, computer graphics and computer vision work. In Sect. 3, we introduce the



camera model and define the placement and selection problems. In Sect. 4, we derive
the optimal solution for the placement problem. In Sect. 5, we develop an approxi-
mate solution to the selection problem and compare our approximation method to other
heuristics and to the optimal solution, both in simulation and experimentally. Section 6
discusses how to handle some non-idealities. Finally, in Sect. 7, we conclude.

2 Related Work

Sensor placement and selection have been addressed in the sensor networks, computer
vision, and computer graphics literature. Selection has been studied in wireless sensor
networks with the goal of decreasing energy cost and increasing scalability. Viewpoint
selection, or the next best view, has been studied in computer graphics and vision for
picking the most informative views of a scene. We summarize the work related to this
paper in this section.

Sensor placement: Camera placement has been studied in computer vision and
graphics. In photogrammetry [6-8], the goal is to place the cameras so as to minimize
the 3D measurement error. The error propagation is analyzed to derive an error met-
ric that is used to rank camera placements. The best camera placement is then solved
numerically. The computational complexity of this approach only allows solutions in-
volving a few cameras. In our approach we simplify the camera model, derive the lo-
calization error analytically as a function of camera places and minimize it to find the
best placement. This is computationally lighter compared to above numerical methods.
In [9] the problem of how to position (general) sensors with 2-D measurement noise
to minimize the overall error is investigated. The paper also presents an algorithm to
compute the optimal sensor placement. Our measurements are 1-D after local process-
ing and we pose the placement problem as a special case of classical inverse kinematics
problem. The emphasis of our work is also on selection, which due to its combinatorial
nature is different from placement.

Sensor Selection: In [10] a technique referred to as IDSQ is developed to select the
next best sensor node to query in a sensor network. The technique is distributed and
uses a utility measure based on the expected posterior distribution. However, expected
posterior distribution is expensive to compute because it involves integrating over all
possible measurements. In [11] the mutual information metric is used to select sensors.
This is shown to be equivalent to minimizing the expected posterior uncertainty, but
with significantly less computation. The work in [12] expands on [11] and shows how
to select the sensor with the highest information gain. An entropy-based heuristic that
approximates the mutual information and is computationally cheaper is used. All these
methods greedily select the next best sensor based on an entropy metric. In our work,
we show how to select the next best group of sensors via combinatorial optimization.
Also, in our approach the utility function is an analytical expression, which makes it
much faster to evaluate than methods requiring numerical integration.

Camera Selection: Sensor selection has also been studied for camera sensors. In
[13-15], a metric is defined for the next best view based on most faces seen (given a
3-D geometric model of the scene), most voxels seen, or overall coverage. The solution
requires searching through all camera positions to find the highest scoring viewpoints.



In [5], a subset of horizontal camera sensors are selected to minimize the visual hull
of all objects in the scene. This problem is solved using heuristics. These works use
numerical techniques or heuristics to compute the viewpoint scores. We investigate a
simpler problem, devise an analytical metric for it and find the optimal solution using
combinatorial optimization techniques.

3 Problem Formulation

Given a number of noisy camera sensors, our goal is to localize an object as accurately
as possible in the ground plane. We first describe the camera model and then formulate
the utility metric used in determining the best placement and selection.

We assume that the cameras are aimed roughly horizontally. An overhead camera
may have a less occluded view, and may allow better localization. But overhead cameras
are often impractical to deploy and can only observe a small area limited by the field
of view. Horizontal cameras are often more practical to install. They can also observe a
larger area. Additionally targets may be easier to identify in a horizontal view.

As discussed earlier, the camera nodes in a WSN must perform cheap local image
processing to reduce the video data. Following a similar approach to [5], we limit this
processing to background subtraction. The background subtracted images are vertically
summed and thresholded, as the horizontal location of the object in the camera plane
is most relevant to the 2-D localization (see Fig. 1). We refer to the resulting linear
bitmap as a “scan-line”. For the localization method that we use, only the center of the
detected foreground object in the scan-line is communicated to the central processor.
This reduces the data per frame from a 2-D array of pixel values to a single integer. This
approach requires very little computation and communication and is thus compatible
with a resource constrained WSN framework.
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Fig. 1. Local processing at each camera.

We assume that the cameras are far enough from the object that they can be modeled
by weak perspective projections. We assume that the measurement error variance is of
the form o2 = (d? + of, where d is the distance from the camera to the object (see
Fig. 1). It can be shown that making camera noise variance dependent on d effectively
models the weak perspective projection while allowing the usage of projective model
in the equations. Our noise model also accounts for errors in the calibration of the



cameras. Errors in the 2-D camera locations can be accounted for in o¢ and errors in the
orientation can be accounted for in (.

Our specific problem is to localize one point object in a room with N cameras placed
around its perimeter (See Fig. 2). As there is only one object to localize, we do not need
to consider occlusions from other objects. For now, we also assume that there is no static
object that occludes the view of the cameras. We discuss how static occlusions can be
handled later in Sect. 6. The orientations of the cameras with respect to the abscissa are
given by 0;,7 =1,2,..., N. For simplicity, it is assumed that the point to be localized
is in the FOV of all cameras. The consequences of limited FOVs is also addressed in
Sect. 6. We assume that the mean p,, and covariance ', of the prior distribution of the
object location are known.

Room

Cameras

Object Distribution

Fig. 2. Ilustration of the problem definition.

We formulate the problem of camera placement for target localization in the frame-
work of linear estimation. Given the first and second order statistics of the object prior
and the camera noise parameters, we use the minimum MSE of the best linear estimate
of the object location, which is a function of the camera orientations 6;, as a measure
for localization error. The best placement is then obtained by finding the camera ori-
entations that minimize this metric. As explained in Sect. 4, the best orientations give
the best positions of the cameras uniquely based on our assumptions for the placement
problem. The same formulation is then used to investigate the camera selection prob-
lem, with some of the simplifying assumptions removed.

The measurement model is illustrated in Fig. 3. As explained before, we use the pro-
jective model in our equations. The weak perspective dependence of the measurements
is hidden in the error model for the cameras. Let the object location be z = [x1, 727,
and the measurements from the N cameras be z = [z7 ... zy]T. The relationship be-
tween the measurements and the object location is then given by

z=Ax+v ,

where A is given by
—sin#; cos by

—sinfy cosbs
A= . . ’

—sin Oy cos Oy



and v is the measurement error.

Fig. 3. The measurement model.

The best linear unbiased estimator for x is given by
&= pp + X, AT(AZ AT + X)) (2 — Apy) (1)

where 1, is the mean and X, is the covariance of the object location prior, and X, is
the covariance of the measurement noise.

Assuming the measurement noise is independent for different cameras, its covari-
ance is

Y, =diag(o? , -+ ,05,) .

'Y UN

The object prior can be assumed to be diagonal with a horizontal major axis without loss
of generality because one can rotate everything, solve the problem and rotate everything
back, so

Y, = o2diag(1,1/a) ,
where a > 1. It can be shown that the MSE of the best linear estimate in (1) is
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Note that only the latter two terms in the denominator of (2) are functions of the camera
orientations. Given fixed o, s, the MSE is minimized by setting these two squared terms
as close to zero as possible. If these two terms are set to zero, we obtain a lower bound
for MSE:

4

MSE > B ——
41
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7
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The cameras with lower noise achieve a smaller lower bound. In our noise model, closer
cameras have less noise, so this means closer cameras achieve a smaller lower bound.



The two additional terms in the denominator of MSE (2) balance this low noise criterion
with the direction criterion. Given o,,s, (3) can be utilized to estimate the number of
cameras that must be used to achieve a certain allowable error.

Given the above formulation, we define the following two problems:

Placement: Minimize (2) over 01,05, ...,0x. The resulting 6;s provide the loca-
tions of the cameras that result in the best localization error.

Selection: N cameras are previously placed. This means that the ;s and o,,s are
fixed. We need to select the best subset of k£ cameras. As we are using a subset of the
cameras, the summations in (2) also need to run over the selected set of cameras. The
metric to minimize then becomes

ies Vi
1\’ 29, \° in20.\’ @
il ol cos 20; sin 26,
((wzg—Q) (z = )(z - )
€S Vi €S Vi €S Vi

where S is the set of selected cameras. Formally defined, the selection problem be-
comes: Minimize (4) over the set S such that S C {1,...,N} and |S| = k. The
resulting set S gives the best selection.
In the following section we show that the optimal placement problem can be solved
efficiently. An approximate solution to the selection problem is presented in Sect. 5.

4 Placement

We wish to find 6;s that minimize (2), given the object location prior statistics and the
0y, s for each camera.

The placement of the cameras is usually done before there is actually any object
in the room. Therefore, it is natural to assume in this problem that the object prior is
centered in the room. However, it does not have to be circularly symmetric, as people
might tend to walk along certain directions more than others. For example, in a hallway,
the major axis of the prior distribution would be aligned with the hallway.

Cameras are usually placed on the walls of the room, so the distance of the cam-
era to the object prior cannot vary by much and can be approximated by a constant.
Therefore, for the placement problem specifically, we are trying to come up with the
best orientations of the cameras, and we assume a circular room for simplicity. As the
cameras are fixed to the periphery and oriented towards the center, the orientations of
the cameras (6;s) uniquely determine their placement.

Note that all of the above assumptions are specific to the placement problem. In the
selection problem (see Sect. 5), the circular room assumption and the centered object
prior assumption are removed and our approach is applicable to any room shape, camera
configuration and object prior. In Sect. 6 we give a recipe on how to handle general case
for the placement problem with non-circular room and non-centered prior.

Given these assumptions, the camera noise parameters are constant. From (2) we
note that only the last two terms of the denominator depend on the ;s. Thus minimizing



(2) is the same as minimizing

1 X cos26; ) N in26; )
o — cos 20; sin 26;
<02 +) — ) +<Z g ) : (5)
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It is clear that (5) is bounded below by 0. The following subsections show when this
can be achieved for the optimal camera orientations.

4.1 Symmetric Case

When the cameras have the same error variance, o,, = o, forall 1 <4 < N, and the
object prior is circularly symmetric (o« = 1), the problem of minimizing (5) reduces to
minimizing

N 2 N 2
<Z cos 29i> + <Z sin 29i> . (6)
i=1 =1

This is equivalent to the norm-squared of the sum of N unit vectors with angles
20;. Thus (6) is equal to zero when the 6;s are chosen uniformly between 0 and 7. This
leads to the intuitive conclusion that when the object prior is circularly symmetric and
the cameras have the same amount of noise, uniform placement of cameras is optimal.
An illustration of this result for 6 cameras is depicted in Fig. 4(a). The angles of the
vectors are twice the orientation angles of the cameras. For example, for two cameras,
an orthogonal placement of the cameras is optimal, so that the unit vectors are 180
degrees apart.

and

(a) (b)

Fig. 4. (a) Uniform placement of 6 cameras that minimizes (6). (b) Locally optimal clusters are
globally optimal. Relative orientations of clusters do not matter.

Uniform placement, however, is not the only optimal way to place the cameras. If
we partition the vectors into subgroups and all subgroups of vectors sum to zero, then
the combination of all the vectors also sums to zero. This means that we can cluster
the cameras into (local) groups (with at least 2 cameras in each group) and solve the
problem distributedly in each cluster. If each group finds a locally optimal solution, then
the combined solution is globally optimal (see Fig. 4(b)). This is true no matter what
the relative orientations between the groups of cameras are.



4.2 General Case

We now discuss the general placement problem, i.e., when o # 1 and the o,,s are
not all equal. The problem corresponds to minimizing (5). Again this is the sum of NV
vectors, but the vectors can have different lengths 1 /02 . The MSE is minimized when
the sum equals — 251 (offset from zero) on the abscissa. Again, the resulting angles of
the vectors are twice the optimal 6; of the cameras (see Fig. 5).

o2

Fig. 5. An optimal solution.

This problem can be thought of as an inverse kinematics robotics problem. Our
vectors describe a planar revolute robot arm with /N linkages. The base of the robot
arm is at the origin and it is trying to reach a point — (’0_21 on the abscissa with its end
effector. If the o, s are ordered such that :

Oun ZO—’UN—I Z~~~20—v1 9

then any point in an annulus with inner and outer radii

§ : 2
Tout = 1/0.1)7: 5

%

max | 0, 1/4712)1 - Z 1/012)1,
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Tin

is achievable. If the point the robot is trying to reach is inside the annulus, we use
gradient descent algorithms to find an optimum solution that minimizes (5) by setting
it to zero [16]. If the point is outside the annulus, we minimize the distance to the point
the robot arm is trying to reach by lining up all the vectors along the abscissa such that
the tip of the arm touches the outer or inner radius of the annulus. This configuration
does not zero out (5) but gives the minimum achievable error. Figure 6 illustrates these
two cases.

The gradient descent technique might give different solutions for different starting
arm configurations. However, under the assumptions made earlier, all such solutions
yield the same MSE on average. This leaves room for further relaxations of these as-
sumptions. Some of these generalizations will be discussed in Sec. 6.

In Fig. 6(b), note that all the vectors point in the same direction. The best placement
for this scenario is putting all cameras orthogonal to the object prior’s major axis (such



(b)

Fig. 6. Inverse kinematics can solve for the best 6;: The case when the point to reach is (a) inside
the annulus, and (b) outside of the annulus. Note that r;y, is O for this example.

that twice the angles are 180 °). This seems counterintuitive since we expect an orthog-
onal placement to be better for triangulation. However in this case, the prior uncertainty
along the minor axis is small enough ((«—1) /o2 > >".1/0,,) that the optimal solution
is to place all cameras to minimize the uncertainty along the major axis.

An example placement for N = 4, « = 5, 0, = 4 and ogi = 5,10, 15, and 20 is
given in Fig. 7(a). The room, object prior and resulting camera placements are shown.
Note that the three higher noise cameras are placed close to each other, while the first
camera is placed separately. The interpretation here is that the similar views from these
bad cameras are averaged by the linear estimator to provide one good measurement.
This is verified by the example in Fig. 7(b). Here, an optimal placement for two high
quality cameras (012” = b for both) is shown. The first camera is placed roughly at the
same position as before, while the second camera is placed in the middle of the three
bad camera positions. Note that the cameras are placed in [0, ), as the corresponding
vectors have angles in [0, 27) and they are twice the angles of the cameras. However,
one can flip any camera to the opposite side of the room without changing its measure-
ment.

Fig. 7. Two optimal placements for the given object prior. (a) One good camera and 3 worse ones.
(b) Two good cameras.

Note that for the general case, clustering the cameras into multiple groups can still
achieve global optimality while solving the placement problem for each cluster as long
as the clusters zero out their share of the offset. Suppose N cameras are clustered into ¢



groups. Then one algorithm might ask each cluster’s “arm” to reach — 9= _ If this can

2
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be achieved by all the clusters, the solution is globally optimal.

5 Selection

For the selection problem defined in Sect. 3, the camera locations are fixed and we wish
to select the best set S of size k that minimizes (4). In this problem, the object prior is
not necessarily assumed to be at the center of the room. Also, the room does not have to
be circular, and the cameras neither have to be placed at the periphery nor be oriented
towards the center. This problem is difficult to solve because:

— All the terms in (4) change with different selections since the summation involving
the o, s is a function of the selected set .S.

— A naive search for the global optimum requires a combinatorial search among all
possible sets S, which is O(N*). This is too costly.

To overcome these difficulties, we drop the numerator of (4) and focus only on op-
timizing the denominator. This is reasonable because it is equivalent to maximizing the
mutual information between the measurements and the object location assuming Gaus-
sian distributions, which is another good metric for camera selection ( [11, 12]). Simu-
lations also show that this modification does not introduce much performance degrada-
tion. We added the weights w; inside the sums of (4), instead of running them over the
subset S. The weights can be either 0 or 1. That is, they have to satisfy w? — w; = 0.
With the above, the problem can be formulated as follows:

2 2 2
N N N .
L w; w; cos 20; w; sin 26,
Maximize atl | E ; — L+ E % — E %
Tz lops Tz ol ol
k3 k3

=1 i =1 =1

N
Subject to Z w; =k,
i=1

2 _ .
w; —w; =0,Vi .

This problem is not convex — neither the objective function nor the feasible set is
necessarily convex. We use the following heuristic to find a good solution. We form the
dual of the problem and use semi-definite programming (SDP) to find the dual optimal
variables [17]. We then plug the dual optimal variables in the Lagrangian and solve for
the w;s. We select the k£ cameras with the highest weights.

In practice, the selection technique we described might be performed distributedly
as follows. The user asks for the location of an object with a desired accuracy. The
query is passed to a cluster head near the object prior. The cluster head knows the
locations of the other cameras near him. Using (3) with the lowest noise cameras, it
computes a lower bound of the number of required cameras. It can also compute an
upper bound assuming uniformly placed cameras and that the final selection will do
better than the uniform selection. Using this lower and upper bounds, the cluster head



decides on k. It then can compute the optimal selection of k cameras. If the predicted
MSE from (4) for this selection is above the desired accuracy, k is incremented and
the selection algorithm is repeated. Computing the optimal selection is feasible on a
sensor node because it is computationally inexpensive. Finally, the selected cameras are
queried for a measurement and the result is sent back to the cluster head to compute the
measured localization. The relatively cheap processing is only done on the cluster head,
and only the minimum number of camera nodes are queried. This limits the amount of
networking and processing required of each node and is expected to greatly extend the
overall network lifetime.

5.1 Simulation Results

We performed Monte-Carlo simulations to compare the performance of the above SDP
approach to the optimal using brute-force enumeration as well as to the following other
heuristics:

— Uniform: Pick uniformly placed cameras.

— Closest: Pick the closest cameras to the object mean.

— Greedy: Pick one camera at a time, using the expected posterior after each selected
camera’s measurement (w/o actually making a measurement) as the prior for the
next camera.

In Fig. 8(a) we show a typical simulation run for £ = 3 to 11 cameras out of 30
uniformly placed cameras on a circle of radius 100 units. The camera noise parameters
used were

o2 = (0.1xd;)*+4,

where d; is the distance from the ith camera to the object mean. For this run we chose
a = 5 and 02 = 80. As seen in the figure, the SDP approach achieves very close to
optimal and clearly outperforms the other heuristic approaches. We can also predict the
expected RMS of the localization using (2), for the selected cameras. Figure 8(b) shows
the predicted RMS values, which are close to the RMS errors in Fig. 8(a).

5.2 Experimental Results

We tested our selection algorithm in an experimental setup consisting of 12 web cam-
eras placed around a 22" x 19’ room. The horizontal FOV of the cameras used is 49 °,
and they all look toward the center of the room. The relative positions of the cameras in
the room can be seen in Fig. 9(a). The cameras are hooked up to a PC via an IEEE 1394
(FireWire) interface and can provide 8-bit 3-channel (RGB) raw video at 15 Frames/s.
The PC connected to a camera models a sensor node with processing and communica-
tion capabilities. Each PC is connected to 2 cameras, but the data from each camera is
processed independently. The data is then sent to a central PC, where further processing
is performed.

A process was run for each camera to perform background subtraction and generate
the scan-lines (as described in Sect. 3). Only the selected cameras need to take a mea-
surement and send the scan-line data over the network to an aggregating node where
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Fig. 8. (a) Localization performance for different selection heuristics. (b) Expected RMS local-
ization error.

the localization is performed. The actual object that is localized is a point light source
(see Fig. 9(b)).
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Fig. 9. (a) The object prior and positions of the cameras in the real setup. Cones show FOV of
cameras and grid spacing is 1°. (b) Object to be localized. (c) Experimental Results.

The object was randomly placed 100 times according to the prior:

=7 < o0
1

and localized using the selection algorithm. The noise parameters for the cameras were
measured separately. The selection algorithm was applied for 2 to 6 cameras using the
object prior and noise statistics. Figure 9(c) shows the localization error of the selection
heuristics. For £ = 2 and 3, the SDP and brute-force enumeration heuristics perform
the best. While uniform selection scheme is also much better compared to greedy and
closest schemes, it performs about 40% worse than SDP or brute-force. For this specific
localization problem, around 4 cameras is enough to localize the object to the accuracy



of the ground truth, so for £ > 4, the localization error of all the heuristics levels off to a
similar value. From the figure we see that a good selection scheme can allow us to task
a very small number of cameras (2 or 3 out of 12) and localize with an accuracy that
is very close to optimum. On the other hand, if we have the luxury of tasking a large
number of the cameras (e.g., 6 out of 12), then a simple scheme like uniform selection
works just as well.

6 Discussion

In this section, we discuss how some of the non-idealities can be handled in our frame-
work.

Static Occlusions: As we are localizing a single object, there is no occlusion from
other moving objects. But there might be occlusions due to static objects such as parti-
tions, tables, etc. For the case of selection, handling these is simple. If a camera cannot
see a considerable portion of the object prior (if the prior probability of the object be-
ing in the area that a camera cannot see is bigger than a user defined threshold), we
simply discard that camera from the feasible set of cameras and limit the search to the
remaining set. For the placement, the following approach could be used: As mentioned
in Sect. 4, flipping the camera to the other side of the room does not affect the result.
So, the type of occlusions that do not have any occluding object at the other side of the
room can easily be handled. If the solution obtained in Sect. 4 places the camera behind
such an occluding object, one can still achieve the same result by flipping the cameras
to the other side of the room. (See Fig. 10(a)).

Flip second cam here ~ Not allowed angles

(a) (b)

Fig. 10. (a) Static occlusions can be avoided if there is no other occluding object on the other side
of the room. (b)We cannot place the cameras at some angles due to occlusion.

If it is the case that for some region of angles there are occluding objects at both
sides of the room, then we cannot place the cameras at those angles (Fig. 10(b)). This
places regions of angles that are not allowed (and regions that are allowed) for our
inverse kinematics solution of Sect. 4. For the case that the number of allowed regions
is one, a solution is given in [18]. Note that the situation illustrated in Fig. 10(b) is an
example of one region of allowed angles (not two), as two flip sides of the room are



equivalent. However, for the case of more than one such allowed regions, there is no
general inverse kinematics solution. For this case, we can restrict each joint angle to be
in a specific region and try all possible combinations until a feasible solution is found.
Although the complexity of this search is exponential in the number of allowed regions,
in practice we do not expect the number of occluding objects to be too high to make the
computation infeasible.

Limited FOV: We can also handle limited FOV of cameras. For placement, one can
place the cameras such that the object prior mean is mostly in the FOV of the camera.
Of course there is still a possibility that the actual object position is too far away from
the prior mean and it is out of the FOV of some cameras but this is very unlikely. For
selection, again one can discard the cameras that cannot see a considerable portion of
the object prior beforehand and restrict the selection only to the remaining cameras.

General Case for Placement: In Sect. 4 we assumed the object prior is centered in a
circular room. Any general room shape and non-centered prior can be also handled as
follows. We discretize all possible locations that a camera can be placed and assume
there exists a camera at all of the locations. Then using the SDP heuristic described
above, we select best k cameras. The actual placement is then done at the locations of
these k selected cameras. Note that the selection heuristic we used did not require a
circular room or centered object prior. This placement method can also handle the non-
idealities such as limited FOV of the cameras and static occlusions, using the extensions
described above.

7 Conclusion

With the goal of accurately localizing an object, we have shown how to efficiently
compute the best sensor placement and selection in an idealized setting. Our results
are analytical, and yield algorithms that are more computationally efficient than the
numerical utility maximization techniques for sensor placement/selection [10—12]. For
the placement problem, the globally optimal solution is found. For selection, an efficient
approach using SDP is proposed. We demonstrated using simulation and experimentally
that our selection algorithm performs as well as the exhaustive search and outperforms
other heuristics.

Our algorithm for selection are performed assuming a static object. It can be easily
extended to a moving object using a Kalman filter approach. Initially, the prior can be
assumed circular. Using the measured data, the posterior of the object location can be
computed and used as a prior for the next iteration.

In order to make the analysis tractable, we made several simplifying assumptions
that resulted in some performance degradation in experiments. However, as the op-
timization criterion tries to distribute the viewing directions of the cameras, the re-
sults were still promising. When the noisy weak perspective camera assumption is valid
(when the object is far enough from the cameras), our method is expected to work even
better, as the results of our simulations showed.



Acknowledgments

The work in this paper was supported by Stanford SNRC Consortium, Stanford Media-
X Consortium, Max Planck Center for Visual Computing and under NSF NeTS NOSS
grant 0535111. We wish to thank Prof. John T. Gill III for his help in setting up the ex-
perimental lab, and to Prof. Jack Wenstrand, Prof. Balaji Prabhakar, Helmy Eltouhkhy,
Sam Kavusi and James Mammen for their comments.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Pottie, G.J., Kaiser, W.J., Clare, L., Marcy, H.: Wireless integrated network sensors. Com-
munications of the ACM 43(5) (2000) 51-58

Akyildiz, LF., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: A
survey. Computer Networks 38 (2002) 393-422

Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless sensor net-
works for habitat monitoring. In: Proceedings of First International Workshop on Sensor
Networks and Applications. (2002)

Yazawa, Y., Oonishi, T., Watanabe, K., Nemoto, R., Kamahori, M., Hasebe, T., Akamatsu,
Y.: A wireless biosensing chip for DNA detection. In: Proceedings of ISSCC’05. (2005)
Yang, D.B.R., Shin, J.W., Ercan, A.O., Guibas, L.J.: Sensor tasking for occupancy reasoning
in a network of cameras. In: Proceedings of BASENETS’04. (2004)

Chen, X., Davis, J.: Camera placement considering occlusion for robust motion capture.
Stanford University Computer Science Technical Report, CS-TR-2000-07 (2000)

Olague, G., Mohr, R.: Optimal camera placement for accurate reconstruction. Pattern Recog-
nition 35(4) (2002) 927-944

Wu, J., Sharma, R., Huang, T.: Analysis of uncertainty bounds due to quantization for three-
dimensional position estimation using multiple cameras. Optical Engineering 37(1) (1998)
280-292

Zhang, H.: Two-dimensional optimal sensor placement. IEEE Transactions on Systems,
Man, and Cybernetics 25(5) (1995)

Chu, M., Haussecker, H., Zhao, F.: Scalable information-driven sensor querying and routing
for ad hoc heterogeneous sensor networks. The International Journal of High Performance
Computing Applications 16(3) (2002) 293-313

Ertin, E., Fisher III, J.W., Potter, L.C.: Maximum mutual information principle for dynamic
sensor query problems. In: Proceedings of IPSN *03. (2003)

Wang, H., Yao, K., Pottie, G., Estrin, D.: Entropy-based sensor selection heuristic for local-
ization. In: Proceedings of IPSN ’04. (2004)

Vazquez, P.P., Feixas, M., Sbert, M., Heidrich, W.: Viewpoint selection using viewpoint
entropy. In: Proceedings of the Vision Modeling and Visualization’01. (2001)

Wong, L., Dumont, C., Abidi, M.: Next best view system in a 3d object modeling task. In:
Proceedings of Computational Intelligence in Robotics and Automation. (1999)

Roberts, D., Marshall, A.: Viewpoint selection for complete surface coverage of three di-
mensional objects. In: Proceedings of the British Machine Vision Conference. (1998)
Welman, C.: Inverse kinematics and geometric constraints for articulated figuremanipulation.
Master’s Thesis, Simon Fraser University (1993)

Poljak, S., Rendl, F., Wolkowicz, H.: A recipe for semidefinite relaxation for (0,1)-quadratic
programming. Journal of Global Optimization 7 (1995) 51-73

Goldenberg, A.A., Benhabib, B., Fenton, R.G.: A complete generalized solution to the in-
verse kinematics of robots. IEEE Journal of Robotics and Automation RA-1(1) (1985) 14-20



