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Abstract. We present a distributed, localized and integrated approach for estab-
lishing both low-level (i.e. exploration of 1-hop neighbors, interference avoid-
ance) and high-level (a subgraph of the unit-disk graph) infrastructure in wireless
sensor networks. More concretely, our proposed scheme constructs a subgraph of
the unit-disk graph which is connected, planar and has power stretch factor of 1
(the well-known Gabriel graph intersected with the unit disk-graph) and — most
importantly — deals explicitly with the problem of interference between nearby
stations. Due to our interleaved approach of constructing low- and high-level in-
frastructure simultaneously, this results in considerable improvements in running
time when applied in dense wireless networks.

To substantiate the advantages of our approach, we introduce a novel distribution
model inspired by actual sensing applications and analyze our new approach in
that framework.

1 Introduction

Different from wired networks, wireless networks typically consist of a set of nodes
that initially have no information about how to communicate with each other. Hence
before running any application-specific algorithms and procedures on such a network, a
basic communication infrastructure must be established. Low-level communication in-
frastructure essentially comprises learning about which other stations are within direct
communication range and providing for interference-free communication between such
neighboring stations. The high-level communication infrastructure is typically built by
selecting a subset of the links identified during the low-level infrastructure establish-
ment such that only those links will be used for communication within the network.
Assuming disk radii correspond to transmission ranges of individual stations, the in-
formation about which stations can receive messages from which other stations is cap-
tured in the so-called disk graph DG, or unit-disk graph UDG in case of uniform trans-
mission ranges (the former a directed, the latter a bidirectional or undirected graph).
Common high-level structures on top of the UDG/DG are for example the Gabriel graph
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GG(UDQG), the relative neighborhood graph RNG(UDG), the Yao graph Y (UDG), or
the (localized) Delaunay graph LD(UDG). Regarding interference-free communication
there are basically two approaches. First, there is the possibility to resolve interference
on the MAC-layer on a per-communication basis. Secondly, there is the concept of a
so-called D2-coloring of the nodes of the disk graph. Here one color corresponds to
one time slot/frequency and makes sure that no nodes at hop-distance less than or equal
to 2 in the UDG transmit at the same time; hence no interference — not even at hidden
terminals — can occur.

Typically low-and high-level infrastructure are constructed sequentially, in a sense
that first the low-level infrastructure is built, and then the algorithms constructing the
high-level infrastructure build upon the existing low-level infrastructure. As we will
exhibit in Section 2, this inherently induces some inefficiencies, especially in scenarios
where inter-station distance is small compared to their transmission range.

Related Work

There is a plethora of proposed algorithms for identifying a high-level infrastructure
from a given unit-disk graph, such as [2], [9], [10], [14]. Common to all of these ap-
proaches is that they rely on a pre-existing low-level infrastructure, in particular they
assume knowledge of all 1—hop neighbors in the UDG and interference-free commu-
nication between adjacent stations in the UDG. [5] is an exception as it explicitly deals
with the problem of interference and solves it by constructing a D2-coloring of all
nodes in the UDG. Still, their algorithm assumes knowledge of all 1-hop neighbors in
the UDG.

Most related to our work are the very recent papers by Kuhn et al. [6],[8], where
the authors develop very interesting protocols for structuring a set of newly deployed
wireless nodes without any assumption about a preexisting infrastructure. In [1] and
[7] high-level infrastructures are examined with respect to their interference-inducing
properties. Both papers introduce formal definitions of interference and propose new
algorithms for which the resulting infrastructures exhibit low interference.

Our Results

In this paper we present an integrated approach for establishing both low- and high-
level infrastructure for a set of deployed wireless stations. Our distributed protocol
assumes no knowledge about 1-hop neighbors or interference-free communication be-
tween neighboring stations. It constructs the Gabriel graph GG(UDG)' consisting of
all Gabriel edges of UDG, respective transmission ranges for each node of the network
such that all nodes connected by an edge in GG(UDG) can communicate with each
other, as well as a valid coloring of the nodes such that interference-free communication
between nodes in GG(UDG) is ensured. Choosing GG(UDG) as high-level structure
guarantees that multi-hop communication between any two stations can be performed
using the minimal amount of energy.

!'In fact we chose the Gabriel graph as an example; other high-level structures should be con-
structible in a similar fashion.



Our scheme requires network nodes to have variable transmission power upper
bounded by 1, to be able to detect if one or more neighboring stations, including it-
self, are sending a signal (the message is actually received only if exactly one station is
transmitting), and to have access to a global clock and positioning device like GPS.

Furthermore, upon deployment each node is provided with a value €, which can be
set as some lower bound for the minimum inter-node distance (e.g. as derived from the
physical size of the nodes), and a parameter A, which denotes the maximum number
of stations nearby a node, where nearby’ is defined for each node relative to the trans-
mission radius assigned after the construction of the high-level infrastructure, and not
relative to the maximum transmission radius. _

The running time of our distributed protocol is 0(A3/ Zlog é log? n) and all the above
properties are fulfilled with high probability of 1 — nlq, for any desired value ¢.

To substantiate the usefulness of our protocol we introduce a novel distribution
model for node deployment which is inspired by actual sensing applications. We show
that in this model the value A is a constant, hence making our algorithm extremely fast
in such scenarios. We emphasize though, that by choosing A = n, our algorithm works
for any node distribution.

In Section 2 we recap basic procedures of low- and high-level infrastructure estab-
lishment and give an intuitive derivation of the parameter A. Section 3 describes our
algorithm in detail and analyzes its performance. In Section 4 we present our new dis-
tribution model and prove that in this model the parameter A is a constant. Finally we
conclude with some remarks and open problems.

2 Disk Intersection Graphs, Interference, and Power Efficiency

In this section we will introduce the basic concepts necessary for understanding our pro-
tocol, presented in the next section. Throughout we assume the standard communication
model based on the disk graphs (DG), where the transmission ranges are represented by
disks (of possibly different radii), centered at node locations. A disk graph correspond-
ing to equal communication radii for all nodes is called a unit-disk graph (UDG). We
remark, as this will be important later, that DGs are in general directed graphs, while
UDGs are bidirectional (equivalently, undirected).

2.1 Interference

We assume that all station use the same frequency, so due to interference, not all com-
munication suggested by the unit-disk graph is guaranteed to succeed. Suppose two
stations transmit at the same time. If they are within each other’s communication range,
they both experience direct interference. Also, any station in the intersection of their
communication ranges experiences indirect interference. The latter is also called hid-
den terminal problem.

The problem of interference can be dealt with on per-communication basis in the
MAC-layer, typically using a handshake mechanism. Clearly, if #» nodes are distributed
densely enough so that the communication graph is complete, it might take Q(n) time
for a handshake to succeed. Thus in the following we focus on a different approach.



Resolution by D2-coloring. A natural way to avoid collisions or interference in case
of uniform transmission ranges is to make sure that stations within 2-hop distance in
UDG never transmit at the same time. Abstractly this corresponds to a coloring of the
vertices of UDG such that two vertices with graph distance less or equal to 2 always
have different colors.

Computing a D2-coloring with the minimum number of colors is NP-hard, but sev-
eral approximation algorithms are known, both centralized and distributed. See [11],
[12], [13]. The distributed algorithm in [5] computes with high probability (w.h.p.) a
valid D2-coloring of a given UDG, in time O(8,log® 1), where 8, is an upper bound on
the size of any 2-hop neighborhood 2. A variant of this algorithm will be used in our
approach as a subroutine.

The concept of D2-coloring also extends to directed disk graphs DG derived from
stations with non-uniform transmission radii. A necessary and sufficient condition for
interference-free communication between nodes in DG is the following: for any node
u, and incoming edges (vi,u), (v2,u),..., each pair of nodes v; and v;, i # j must be as-
signed different colors/time slots (also different from u). Otherwise they might transmit
at the same time to u, resulting in a collision. Hence, if we denote by 8 the maximum
indegree of a node in DG, 8+ 1 is a lower bound on the number of colors/time slots
required for interference-free communication. Still, to our knowledge there is no result
stating that O(J) colors are enough to color this directed graph such that the above
condition is satisfied.

2.2 Power Efficiency — the Gabriel Graph [4]

Wireless sensor networks typically employ indirect, multi-hop communication, so hav-
ing a good routing algorithm is crucial. Among other properties, power efficiency is
often required: total energy needed to transmit a message along a route produced by the
algorithm has to be close to the minimum over all possible routes for given source and
destination. If we assume that required energy grows at least quadratically with distance
to be spanned, and that total energy of a path is the sum of the energies of the individ-
ual links traversed, then a simple argument shows that power-optimal paths within UDG
only contain Gabriel edges, i.e. edges whose diametral balls are empty of other stations.
Hence restricting to the Gabriel edges in UDG (we will call this graph GG(UDG)) en-
sures that power-optimal routing is still possible. Schemes for computing the Gabriel
graph and variations of it have been proposed in the literature, but all of them assume
knowledge of the 1-hop neighborhood as well as a solution to the interference problem.

2.3 A Typical Scenario in Sensor Networks

Suppose that many wireless sensors are dispersed over an area for the purpose of moni-
toring physical quantities such as temperature, humidity, exposure to light etc. The sen-
sors have to self-organize into a network, in order to efficiently answer queries injected
from the outside world. One way to achieve such an organization is as follows:

2 In fact, they state the algorithm in terms of the maximum degree (maximum number &; of
1-hop neighbors). But in the proof they derive 8,, which is O(8;) for unit-disk graphs.



1. establish a low-level infrastructure, i.e.
— Let every node discover its 1-hop neighborhood in the communication graph
w.r.t. its maximal transmission radius.
— Compute a D2-coloring of this communication graph to provide for conflict-
free communication.
2. establish the high-level infrastructure and adjust the low-level infrastructure
— Construct a suitable routing substructure, e.g. the Gabriel graph GG(UDG),
using the existing low-level infrastructure.
— Adjust low-level infrastructure to the new adjacency relationships by decreas-
ing the transmission radii where possible, and and reducing the number of col-
ors in the D2-coloring.

See Figure 1 for a graphical illustration of the process. Observe that in the initial
low-level infrastructure as many as n colors are necessary, since the nodes are densely
placed. Next, the Gabriel edges are identified, and each node adjusts its transmission
range to just be able to reach its furthest neighbor in GG(UDG). The last phase is
D2-coloring of the resulting disk graph DG, corresponding to the reduced radii.

We expect the number of required colors/time
slots to drop considerably due to the decreased
transmission radii. In particular, for dense node
distributions, after construction of the high-level
infrastructure, nodes communicate only with sta-
tions at a very short distance. The amount of in-
terference that the coloring has to cope with is
drastically reduced. Still, to construct the high-
level infrastructure, most known algorithms re-
quire collision-free communication between sta-
tions within distance 1, and hence a coloring w.r.t.
the maximum transmission ranges has to be com-
puted before, even though it will not be needed in
the final version of the communication graph.

The goal of this paper is to avoid this poten-
tially wasteful procedure and use time slots only
up to an amount as roughly required by the final
Fig. 1. The communication graph assignment of transmission powers anyway.
for a dense node distribution (top)
and the adjusted transmission radii
after computing a high-level in-

2.4 The Local Vicinity Size A;

frastructure (bottom). Before we can present our remedy for the problem

sketched above, we need to have a closer look at

some properties of the resulting communication graph DG after adjustment of the trans-

mission powers. In particular, we are interested in a parameter that estimates how many
colors are necessary in a D2-coloring of the final structure.

As mentioned above, if § is the maximum indegree of a node in a DG, then &+

1 is a lower bound on the number of colors/time slots required for interference-free

communication. For the analysis of our algorithm we need to get a handle on a simple



and geometric parameter that relates the node distribution and this quantity 8. Hence let
us introduce a parameter A;, which provides us with an upper bound on J (and later it
will also be an upper bound on the number colors needed for a valid coloring).

Definition 1. For a node v, let Ai(v) be the number of nodes contained in a disk of
radius k- |vu|, where (v,u) is the longest edge in GG(UDG) adjacent to v. The quantity
Ax = max, Ay (v) is called the local vicinity size.

For not too contrived node distributions we expect Ay, = O(3), but again, showing a
tight bound seems hard. See Figure 2 for an example of the local vicinity size. It is now
easy to see that for large enough k, Ay yields an upper bound on 9.

Lemma 1. Fork > 2 we have 6+ 1 < Ay.

Proof. Consider the node v which maximizes the indegree in DG. Let (u,v) be the
longest incoming edge of v. Clearly u has a Gabriel edge adjacent with length at least
|uv|. Considering the ball B of radius 2|uv| centered at u, B must contain all w with
(w,v) € DG. Hence Ay > 8+ 1.

Our algorithm in the next section will use
the local node density A = A for some con-
stant k > 2 as an estimate for the number of
time slots necessary to achieve interference-
free communication. The intuition behind this o
parameter is that the number of colors re-
quired should be somewhat proportional to

o o ©
the maximum number of nearby stations of . °
some node. Here 'nearby’ has to be seen rel- ° , © ©
ative to the longest Gabriel edge adjacent to o o

that node. In non-contrived node distributions o o °
we expect A to be quite small or even con-
stant, but certainly smaller than the maximum Fig-2. Local vicinity sizes A, (s) =
degree of the original unit-disk graph cor- J,42(s) =12,A3(s) =20 (only Gabriel
responding to the assignment of maximum edges of § and its 1-hop neighbors are
transmission ranges. drawn).

3 An Integrated Approach to Infrastructure Establishment

As we have seen, in case of very dense sensor distributions, sequential infrastructure
establishment introduces an inherent overhead. In the following we will remedy this
problem by providing an integrated approach for constructing both low- and high-level
infrastructure.

The basic idea of our approach is very straightforward: locally, at every node, we
start exploring its neighborhood gradually by increasing its transmission range. For
each transmission radius, one then constructs a local D2-coloring using a variation of
the algorithm in [5]. As we will then see, one can guarantee that w.h.p. this approach
actually finds exactly the edges of GG(UDG).



Provided with two parameters, € and Z, every node s locally executes the proto-
col in Figure 3. Here € is a parameter essentially capturing the minimum distance
between any two nodes, that can be
for example derived just from the
physical dimensions of the wireless
nodes. So each node executes for
logé rounds the exploration and an-

® r« ¢
e while (r < 1) _
1. ExploreDirectNeighborhood (s, r,A)

2. LocalD2Color(s, 7. A) nouncement protocol to learn about
3. AnnounceNApproveEdges(s) its neighborhood and construct the
4. rer.2 B high-level substructure GG(UDG).
e FinalD2Color (s, ||, A) At the end, a valid D2-coloring of the

final communication graph is com-
puted. Let us now describe the sub-

Fig. 3. Infrastructure-establishment protocol L .
routines in more detail.

3.1 Exploration of the r-neighborhood — ExploreDirectNeighborhood(s, r, Z)

This routine makes sure that a node s w.h.p. announces its presence to all nearby nodes
that need to know about it. More precisely, we will show that for r < g - 2/leg2(s/2)]
where I; denotes the length of the longest edge adjacent to s in GG(UDG), w.h.p. all
nodes 'nearby’ s in the unit-disk graph of disks of radius r get to know about their 1-hop
neighborhood. Note: We do not guarantee this property for larger values of r, since it
turns out that this information is not necessary for constructing all edges of GG(UDG).

This exploration/announcement procedure consists of k-logn rounds, each of which
lasts for 2A time steps. In each round a node chooses a random number 1 <7 < 2A and
transmits its ID together with its position at time step ¢ in this round within radius r. Let
us first convince ourselves that all neighbors of s get to know about s’s presence w.h.p.

Lemma 2. After ZKZlogn time steps, with high probability of 1 — nK%l all neighboring

nodes (w.r.t. transmission radius r) of a node s with r < € - 2M022(s/8)] kpow about s’s
presence if A = Ay for k > 4.

Proof. For a given node, the probability that its announcement was overheard by its
neighbors is at most 1/2, since there are at most A other nodes which could interfere
with its announcement (since we have r < 2[; and A; for k > 4 counts the number of
all 2-hop neighbors of s w.r.t. transmission radius r). The probability that in none of the
k -logn rounds its announcement was successful is bounded by (%)K'l"g” = HLK Hence
the probability that all nodes with r < €- 2Mloga(Is/8)] haye successfully announced their
presence to their neighbors is at least 1 — nK%l

In the same setting, we can also show that all ~2-hop neighbors of s get to know about
their 1-hop neighbors w.h.p. This will be needed later in the proofs.

Lemma 3. After ZKglogn time steps, with high probability of 1 — n%z all nodes within
h-hop distance from some station s get to know about their neighborhood (w.r.t. trans-
mission radius r) if r < €-211°20/E1 gnd A = Ay for k > 2(h+1).



Proof. Consider some node ¢t within A-hop distance of s. For ¢ to get to know about
the set N; of its 1-hop neighbors, each of the nodes in N; should in some round have
announced its presence without interfering with another node in Ni. Hence if we have
A > |Ny|, the probability for one announcement to get through is > 1/2 in each round.
Using the same argumentation as in Lemma 2, it follows that the probability of each
node getting at least one announcement through in xlog#n rounds is at least 1 — ‘n‘%
Furthermore, all nodes within the h-hop neighborhood then get to know about their
neighbors with probability > 1 — ‘n‘% We now need to relate that to |I|, i.e. the longest

adjacent edge of s in GG(UDG). This can be easily achieved by requiring that A bounds
the number of nodes contained within distance (2 + 1) - r. Hence the Lemma holds for
A=A fork>2(h+1).

Correctness of our whole algorithm will later be established by focusing on one par-
ticular node s and show that when r = €-2[1°22(5/9)] a]] edges adjacent to s in GG(UDG)
are found w.h.p. and that wrong edges are never created. Towards this goal, Lemma 3
states that for the appropriate choice of A, ExploreDirectNeighborhood(s,r,A) with
high probability ensures that all #-hop neighbors of s get to know about their immedi-
ate neighbors in the unit-disk graph induced by transmission radius r.

3.2 Local D2-coloring — LocalD2Color(s, r, A)

This subroutine ensures that for a node s and transmission radius » with r <g-2 [og, (I5/¢)]
all 1- and 2-hop neighbors and s have distinct colors with high probability. Again, we do
not guarantee anything for larger values of r, since this is not necessary for constructing
all edges of GG(UDG). Our procedure is a slight variation of the one proposed in [5].
Next, we sketch the latter and briefly discuss the changes needed for our algorithm.

The algorithm by Parthasarathy/Gandhi for D2-coloring. Parathasarathy/Gandhi in
[5] have presented an algorithm for D2-coloring of a unit-disk graph. Their algorithm
assumes that each node knows its 1-hop neighbors and a bound on the number of 2-hop
neighbors.

Each node maintains a list of ¢ potential colors it can choose from. The algorithm
proceeds in rounds, in each of which typically some so-far-uncolored nodes choose a
color from their list, and if this color has not been chosen by any 1- or 2-hop neighbors,
these color assignments become permanent, and all 1- and 2-hop neighbors remove the
respective colors from their color lists. The algorithm terminates after ¢ rounds after
which with high probability all nodes have been assigned colors which are a valid D2-
coloring provided a suitable choice of the parameters ¢ and ¢.

One round consists of the following 4 phases: TRIAL, TRIAL-REPORT, SUCCESS,
and SUCCESS-REPORT.

The TRIAL phase consists of ¢ time slots. An uncolored node u decides with prob-
ability 1/2 to wake up, choose a random color from its list, and transmit a TRIAL
message {ID(u),color(u)} at the time slot corresponding to the chosen color.

The TRIAL-REPORT phase consists of b blocks of ¢ time slots each. At the be-
ginning of this phase each node composes a TRIAL-REPORT containing all TRIAL



messages that node received in the previous phase. Then in every block it chooses a
random time slot among the c slots available in a block, and sends its TRIAL-REPORT.

The SUCCESS phase consists of ¢ time slots. At the beginning of this phase, every
awake node u determines if the color it had chosen in the first phase is safe, i.e. if
TRIAL-REPORTS have been received from all neighbors, each contains u, and none
contains the same color chosen by another node. If all these conditions are met, u sends
a SUCCESS message {ID(u),color(u)} in the time slot corresponding to color(u). u
will not participate in future TRIAL and SUCCESS phases.

The SUCCESS-REPORT phase is similar to the TRIAL-REPORT phase. Nodes
prepare SUCCESS-REPORTS and send them in random time slots over » rounds. But
additionally, at the end of this phase, all uncolored nodes remove the colors used in
SUCCESS-REPORTS that they have received.

Parthasarathy and Gandhi prove that for c = O(max# D2-neighbors)?, t = O(logn),
and b = O(logn), their algorithm computes a valid D2-coloring of the unit-disk graph
with high probability > 1 — nix for arbitrary , > O (the constant factors for ¢, ¢,b depend
on the desired success probability). Clearly, the overall running time is 0(clog2 n). They
establish correctness of their algorithm by proving the following key facts (we refer to
[5] for a detailed exposition of the proofs):

1. the probability that after completion of the procedure a node is still uncolored can
be bounded by ni“, for arbitrary y > 1

2. the probability that any two nodes u, v at 1- or 2-hop distance end up with the same
color can be bounded by ,%w for arbitrary y > 1

Can we apply their algorithm directly in our setting, where for a fixed transmission
range r we want to compute a valid D2-coloring of the induced disk graph? — Unfor-
tunately not! In fact, in this graph we do not have a bound on the number of 1- or 2-hop
neighbors that is valid for all nodes. For a choice of A = Ay with k > 4 we can only
bound the number of D2-neighbors of nodes s with r < g - 2/1022(s/2)1,

What we actually want is that each node s with r < g-21°22(5/8)] w h.p. gets colored
differently from its arbitrary 1- or 2-hop neighbor ¢. The details of the proofs in [5]
reveal that the probability of 7 not being colored at all depends on the number of 2-hop
neighbors of ¢, and not of s (essentially, if # has too many 2-hop neighbors, chances are
that each trial of ¢ is doomed as there is some 2-hop neighbor of ¢+ which has chosen
the same color). Similarly, if both s and 7 have been colored, they only might have
the same color if a SUCCESS-REPORT of their common neighbor was lost due to
interference. This probability can be kept low if the number of D2-neighbors of this
common neighbor is bounded. _

But D2-neighborhoods of all these nodes can be easily bounded by requiring A = A
with k > 8, that is by bounding the number of points in a larger disk around s which
also contains all 2-hop neighbors of 2-hop neighbors of s for the current choice r.

So we can prove the two key facts under this new condition. We emphasize again,
though, that our Lemmas hold only for nodes s with r <€ 2Mlo22(ls/8)] and not for larger
values of r.

3 In fact they show ¢ = O(max 1-hop-neighbors), but in case of unit-disk graphs, this is the same
quantity up to a constant factor.



Lemma 4. Let s be a node with r < &-2[1020s/91 Then with high probability of 1 — ,%w

s and all its 1- and 2-hop neighbors are colored after completion of LocalD2Color (s, r, A)
for A=Ay and k > 8.

Proof. All 2-hop neighbors of 2-hop neighbors of s in the unit-disk graph w.r.t. trans-
mission radius r are contained in a ball of radius 4r around s. Since r < 2|/;| we obtain
a bound on the number of 2-hop neighbors of all 2-hop neighbors of s and can apply
the proofs from [5].

By similar arguments, one can show that the coloring is valid w.h.p.

Lemma 5. Let s be a node with r < £ -2/°%2Us/8)1 and let u be its fixed 1- or 2-hop
neighbor, and assume both have been assigned a color during the procedure. Then with
high probability of 1 — ni\v s and u have been assigned distinct colors for A = &, and
k>8.

Using these Lemmas and Lemma 3 with & = 3 it is easy to conclude the following.

Lemma 6. LocalD2Color(s, r, Z) computes in time O(Zlog2 n) a coloring of the nodes
such that for each node s withr < €- 2Mlog2(s/8)] s and its D2-neighbors in UDG(r) are
assigned different colors with probability 1 — niw for arbitrary y > 1 if A= Ay, k > 8.

3.3 AnnounceNApproveEdges(s)

In this procedure each node first locally computes a list of adjacent Gabriel edges based
upon its knowledge of the 1-hop neighbors, and then announces them one by one. An-
nouncements take O(A!/?) rounds of 2A time steps each. In each round, a node s an-
nounces in time slot 2 - color(s) a Gabriel edge ¢ = (s,) from its list that has not been
announced by the other end-node ¢ of e. If no neighbor of s transmits at the same time
slot and no VETOs or collisions are encountered in time slot 2 - color(s) + 1, s and ¢
regard the edge e as an edge of the final graph GG(UDG). Furthermore, s listens to all
announcements of other nodes and sends a VETO message in the following time slot
if it either experiences collision (two or more neighboring nodes announce at the same
time slot) or its own position contradicts the creation of the announced edge (i.e. s lies
in the diametral circle of the announced edge).
Let us first show that non-Gabriel edges always get vetoed.

Lemma 7. AnnounceNApproveEdges(s) never creates an edge that is not a Gabriel
edge (for arbitrary transmission radius r).

Proof. Assume otherwise, i.e. a node v created an edge e whose diametral circle con-
tains a 1-hop neighbor u of v. Then e must have been announced at some point, and
no VETO message, in particular none from u, was received and no collision was ex-
perienced at v. But u should have sent a VETO regardless of whether it received the
announcement or experienced a collision. Thus we have a contradiction.

Next we show that w.h.p. all Gabriel edges of a fixed node s are constructed in
p g

the round where r = ¢ -2/°€2(5/8)] With Lemma 7, this implies that the computed

GG(UDQG) is correct.



Lemma 8. Let s be a node with € -2110220s/8)] < p < ¢. 2“3g2<lf/8ﬂ. Then with high
probability all Gabriel edges adjacent to s are constructed if A = Ay, k > 8.

Proof. By Lemma 3, only correct edges are announced by s or its 1-hop neighbors. By
Lemma 6, no collisions appear during the execution of AnnounceNApproveEdges(s).
It remains to prove that O(Zl/ 2) rounds suffice to have all Gabriel edges of s announced
(Note that there could be @(Z) many, and without the help of the other endnodes of
these edges it would take ®(A) rounds or ®(A?) time slots for s to announce them all!).

Let us call a node active if not all of its adjacent Gabriel edges have been announced.
Let a; be the number of active neighbors of s in the beginning of round i. Then at ev-
ery round, at least a;/2 edges in the 2-hop neighborhood of s get announced, since
each such announcement can deactivate at most two neighbors of s. The 2-hop neigh-
borhood initially contains O(A) unannounced edges, so there are O(A!/?) rounds with
a; = Q(A'/?). Once it becomes a; = O(A!/2), it is clear that all the remaining Gabriel
edges adjacent to s will be announced by s itself in additional O(Zl/ 2) rounds.

3.4 FinalD2Color(s, ||, A)

At this point, each node s w.h.p. knows about the topology of the directed disk graph
DG, that is about the nodes that lie within its own transmission range, as well as the
nodes in whose transmission range it lies. These correspond to the outgoing and in-
coming edges of s in DG, respectively. Indeed, s can learn about its outgoing edges at
the time when its longest Gabriel edge is created, and about its incoming edges after
running another ’announcement phase’ in the spirit of ExploreDirectNeighborhood,
with the only difference that each node actually transmits within the range determined
by its longest adjacent Gabriel edge. Then with high probability all nodes get to know
about their incoming edges (since again, interference is limited by the parameter A).

It remains to make the final assignment of time slots that will be used during the
lifetime of the network. As explained previously, the purpose of this step is to save
on the number of colors required by taking into account the nodes’ effective radii of
communication.

However, the algorithm of [5] cannot be directly applied to construct the final col-
oring. It may happen that nodes u and v propose the same color in TRIAL phase, and
their messages collide only at node w, but w is unable to communicate that fact to # and
v because its communication radius is too small. More precisely, the problem is that the
DG induced by GG(UDG) is directed, because the communication radii are different in
general. The D2-coloring scheme requires that the DG be undirected, so that the nodes
can communicate in “propose-respond” fashion.

Fortunately, there is a simple modification that gets around this problem without af-
fecting the asymptotic performance. The TRIAL and SUCCESS phases do not change,
while in the TRIAL-REPORT and SUCCESS-REPORT phase each node transmits
within the radius equal to the length of its longest incoming edge. By keeping the
TRIAL and SUCCESS unchanged, we make sure that the collisions generated dur-
ing rounds of coloring are exactly those that would occur in the final communication
scheme. On the other hand, modification to the REPORT phases makes sure that the



coloring is correct, but may hurt the running time; increasing the radii for reporting
purpose may create a large number of new D2-neighbors, and therefore many collisions
among the REPORT messages. However, we show that the new neighborhood size has
already been accounted for in the preceding analysis. The actions for fixing a color after
reception the TRIAL-REPORT as well as for removal of colors from the list after re-
ception of a SUCCESS-REPORT of course then restrict to reports received from nodes
within the transmission range of a node.

Lemma 9. Let G be the DG induced by GG(UDG), and let H be the undirected version
of G obtained by setting the radius of each node to the length of its longest incoming
edge in G. Then any node in H has a D2-neighborhood of size at most Ay, for any k > 5.

Proof. Consider a fixed node u and its D2-neighborhood N, in H. Clearly, the edges
in G that connect nodes in N,, are also present in H. Let (v,w) be the longest incoming
edge of the nodes in N, (w is in N,). Then the whole N, at most 5|vw| away from v.
Also, (v,w) emanates from v in G, therefore |vw| < I,,. Thus, B(v,5l,) contains all nodes
in N, which implies N, < As(v) < As < Ay, for any k < 5. This completes the proof.

In other words, the increased transmission radii (to the length of the longest incom-
ing edge) create only limited potential interferences, so w.h.p. the TRIAL-REPORT and
TRIAL-SUCCESS phases succeed.

Lemma 10. In time O(Alog?n), FinalD2Color(s, |ls|,A) w.h.p. computes a valid D2-
coloring of the final communication graph DG.

3.5 Summary and Further Remarks
We summarize the statements of Lemmas 3, 6, 7,and 8, 10 and give our main theorem.

Theorem 1. Our algorithm runs in time 0(33/ Zlog é log? n) and w.h.p. computes the
GG(UDG), as well as a coloring of its nodes which ensures interference-free commu-
nication between nodes adjacent in GG(UDG).

Here A = Ag denotes the maximum number of points within the distance of 8 - |I]
from s, where || is the length of the longest Gabriel edge adjacent to s. Thus, we
can relate the running time of the algorithm to the number of 'nearby’ stations relative
to its final assigned transmission range, instead of the number of stations within its
maximum transmission range. € can be set to the minimum inter-node distance (as e.g.
derived from the physical size of the nodes) or even larger, as long as the number of
nodes contained in any disk of radius 8¢ is bounded by A.

We want to remark that £ can be decreased from 8 to a value arbitrarily close to 4,
by instead of doubling the radius r, multiplying it by factor smaller than 2.

4 Lipschitz-type Node Distributions

Consider an application of monitoring physical quantities (such as temperature, humid-
ity, exposure to light etc.) over an area A of a nature preserve. Suppose that the area



contains a set H of interesting "hotspots’ (e.g. breeding areas of a bird species) which
should be monitored more accurately. Scientists want to deploy more wireless sensors
close to the hotspots, and fewer sensors further away.

Formally, they might assume that there is an ’interest function’ f : A — R which
is small in regions of high interest and vice versa. An example is f(x) = d(x,H), the
distance to the closest hotspot. Then, if the deployment of the set of sensors S satisfies
the condition Vx € A: 3s € S : d(x,s) < &- f(x) for some small € € (0, 1), enough data is
gathered. On the other hand, sensor nodes are expensive, so only the necessary number
should be used; in terms of the interest function f, the required condition is Vx € A :
[{s € S:d(x,s) <e-f(x)} <P for some constant p.

If the distribution of the deployed sensors adheres to the above conditions, our algo-
rithm performs very well, since the value A, which has to be provided to every node
upon deployment, is a reasonably small constant. Roughly speaking, our algorithm
performs well if the node density has bounded variation as a function of the spatial
coordinates. Below we give a more formal statement of this fact.

We want to remark that this property of gradually changing node-densities naturally
also arises in other settings. For example, consider the application of tracking a set of
point-sized slowly moving objects. If we are interested in minimizing the effort needed
to adapt the sensor distribution to possible movement of objects, it is reasonable to have
a gradually increasing sensor density as the distance to an object (in its current position)
becomes smaller. Let us formalize the situation described above.

Definition 2. Let S be a set of wireless nodes placed within some area of interest A. We
call S a Lipschitz-type node distribution, if there exists an a-Lipschitz function @ : A — R
with o. > 0 and constants € > 0, B > 1 such that for all x € A, 1 < [SNB(x,e0(x))| < B.

In our example above we had @(x) = f(x) with e =1 (as f was defined to be
the distance to a set of points, it is 1-Lipschitz). Observe though that this definition
of Lipschitz-type node distributions also allows for ’oversampling’ of the domain of
interest, as long as the oversampling happens in a smooth manner.

Lemma 11. Let S be a Lipschitz-type node distribution,with parameters a.,f,€, and
£< m, then we have A, = O(1).

Proof. Consider a fixed node u, and let (u,v) be its longest adjacent edge in GG(UDG),
|uv| = 1,,. Let x € A be the midpoint of (u,v). Clearly, 1,/2 < €@(x). Let us define R =
(k+ 1)1, and hence Ax < |[B(x,R)NS|. So in the following we will concentrate on
bounding the number of nodes within B(x,R).

Using the inequalities above we get R < (k+1)-2-ep(x). As ¢ is a-Lipschitz, we
have for any y € B(x,R) that @(y) > ¢(x) — R > ¢@(x)(1 —2(k+ 1)oe), that is, any ball
of radius at most r = e@(x)(1 —2(k+ 1)oe) centered within B(x,R) contains less than
B nodes. It remair}{s to bound the number of balls of radius r to cover B(x,R). But that
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number is O(( m)z), which for constant values of k, € with & < 5575 remains

a constant. That is, at Ay < |B(x,R)NS|=0(B) = 0(1).

It follows that for the above example with o = 1, the condition of Definition 2 is
satisfied with € < 1/18 in order to guarantee A < Ag = O(1), so the algorithm runs in



O(log é log? n). We emphasize, however, that this theoretical analysis is very pessimistic
and we expect the algorithm to perform very well for many practical node distributions.

5 Conclusions

In this paper we have presented a distributed protocol for constructing both the low-
and the high-level infrastructure for a set of newly deployed wireless stations. Our in-
tegrated approach remedies some of the inherent problems incurred by a sequential
construction of first low- and then high-level infrastructure, which is particularly ap-
parent for dense and varying node distributions. We believe that other high-level in-
frastructures can be similarly constructed in this manner. It might be interesting to see
whether our approach can also be adapted to work under the less restrictive model of
node capabilities as used in [6] and [8].
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