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Abstract

Wireless sensor networks typically consist of small, very
simple network nodes without any positioning device
like GPS. After an initialization phase, the nodes know
with whom they can talk directly, but have no idea
about their relative geographic locations. We examine
how much geometry information is nevertheless hidden
in the communication graph of the network: Assuming
that the connectivity is determined by the well-known
unit-disk graph model, we show that using a very
simple distributed algorithm we can identify a large,
provably planar subgraph of the communication graph
that faithfully reflects the topology of the network. This
planar subgraph can then be embedded using a simple
distributed rubber-banding procedure, finally obtaining
virtual coordinates for the nodes of the subgraph which
can be instrumented for various protocols based on
geographic location information. That is, there is
enough geometry information hidden in the connectivity
structure not only to identify topological features like
network holes (as it was also exhibited in the predecessor
paper [7]) but even enough information to compute a
sketch of the network layout. Our simulation results
indicate that the algorithm works very well even for
very sparse network deployments and produces network
sketches that come close to the original layout.

1 Introduction

Imagine the following scenario: during a long summer
drought, forest fires have started in a large region of
a remote nature preserve that is hardly accessible by
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ground transportation. To be able to continuously as-
sess the situation and plan appropriate countermea-
sures, airplanes are sent out to deploy thousands of
wireless sensor nodes. Due to cost restrictions and to
achieve the maximum life-time by energy savings, these
sensor nodes are rather low-capability devices equipped
just with temperature and humidity sensors, a simple
processing unit, and a small radio device that allows for
communication between nearby sensor nodes. One of
the first goals is now to have this network organize it-
self such that messages are routed within the network,
regions of interest (e.g. the current fire-front) can be
identified, and gathered data can be efficiently queried.

Achieving this goal becomes quite challenging since
the only information a node has about the global
network topology are its immediate neighbors with
whom it can communicate. Lacking an energy-hungry
GPS unit and being deployed from an airplane in a
rather uncontrolled fashion, none of the sensor nodes
is aware of its geographic location.

Assume the area of interest is some region R. The
airplanes have deployed sufficiently many sensors such
that – if all of the sensors were in operation after
reaching the ground – the area of interest is completely
monitored by the sensors. Formally we have that for
every point p ∈ R there would be at least one sensor s
within Euclidean distance |ps| ≤ rsense. Where rsense is
the sensing radius of the sensor nodes, i.e. the radius
within which they can monitor or estimate temperature
or humidity. Unfortunately, not all sensors will be
operational upon reaching the ground. Some of them
might fall right into the flames and be destroyed, others
might plunge into a lake or pond and be unable to
perform their monitoring task. Paradoxically, we are
particularly interested in those areas where there’s an
ongoing fire (and maybe also where there is a lake or
pond), but sensor nodes that fell into these areas are
unable to report this fact.

We are interested in detecting the presence and
relative locations of such holes in the monitored space
created by fire or other phenomena and aim for a a
rough sketch of how the network nodes are laid out
in the area of interest. The only information that is



Figure 1: Based just on the connectivity of the network
our algorithm exhibits a provably planar subgraph within
the network and computes an embedding thereof. The
numbers denote corresponding nodes in the embedding
and the original node distribution (which is unknown to
our algorithm). Notice that although the two layouts are
different in terms of absolute node coordinates (due to the
degrees of freedom involved with embedding the perimeter
nodes on the square boundary), the network sketch is
topologically correct, and the relative node positions are well
preserved. In this case, actually, the node positions differ
(roughly) by a global 90-degree rotation and a horizontal
flip. Observe that node 20 and 44 are mapped on the same
position since node 44 is only connected to node 20.

available to us for this task is the the communication
graph of the wireless nodes. The communication graph
of a wireless network has a node for each wireless
station and an (unweighted) edge between two nodes
if the respective stations can communicate with each
other. For simplicity let us assume that two nodes
can communicate with each other if they are within
distance of at most 1 (communication radius). So the
communication graph is a unit disk graph (UDG).

Related Work Recently there have been a number
of papers that aim at extracting structural information
of the network by analyzing its communication graph,
in particular the detection of holes has been a target

of several papers. The predecessor of this paper ([7])
aims solely at identifying nodes close to the boundary
of network holes, no embedding of the identified nodes is
computed, and no relative location information amongst
the wholes can be extracted. The proposed algorithm
is based on detecting the breakage of wave propaga-
tion contours. Correctness of the algorithm can proved
under very pessimistic assumptions on the node den-
sity and hole distribution, but even in practice the al-
gorithm requires a relatively high average node degree
of the communication graph of around 20. Fekete et
al. in [6] describe a method to identify boundaries in a
wireless network which also does not require the nodes
to be aware of their geographic position; their method
assumes a uniform distribution of the network nodes
in non-hole areas, though. In a more recent paper [5]
the same authors present a deterministic approach for
boundary recognition which does not rely on a uniform
node distribution. Their paper also proposes interest-
ing methods to aggregate the information gathered by
the boundary recognition step in a higher-level topology
sketch of the network. The topology sketch computed
by their algorithm is a “raw” graph without an embed-
ding, though. Their algorithm seems to require a sim-
ilarly high average node degree as the approach in [7].
Very recently, an interesting new algorithm for detect-
ing holes has been presented in [18] which is based on
analyzing the homotopy types of shortest paths within
the network. It appears to require the lowest node den-
sity of all the approaches presented so far. We want to
emphasize that for all approaches [7, 6, 5, 18] no real ge-
ometry information like relative positions of (some of)
the network nodes is computed. In some sense, the im-
ages of the computed topology sketches or determined
hole boundaries included in these papers are somewhat
misleading as they are drawn with the knowledge of the
real node locations. The information computed by these
algorithms does not suffice to produce such drawings.

Our method is based on embedding an appropriately
chosen graph in a geometric space – specifically, a pla-
nar subgraph of the communication graph into the Eu-
clidean plane. The graph embedding techniques have
been frequently used in wireless network research for
bridging the gap between geometry and connectivity.
This is often labeled as computing the virtual coordi-
nates of the nodes, instead of the real ones.

The method of Moscibroda et al. [12] attempts
to compute a low-distortion embedding of the whole
network into a single virtual space, using the theory
of metric embeddings and convex optimization. The
low-distortion requirement typically refers to the edge
lengths, the main purpose being the preservation of path
lengths. Indeed, this property is crucial for some appli-



cations (e.g. geographic point-to-point routing), where
the loss incurred by the absence of location informa-
tion directly relates to the embedding distortion. Un-
fortunately, this requires placing the graph in a very
high-dimensional space (dimension is roughly logarith-
mic in the network size). As a consequence, certain well-
established algorithms for wireless networks (e.g. face
routing) do not work on such graphs, since they are de-
signed for deployments in the plane. Moreover, the em-
bedding algorithms are expensive in terms of time and
energy, since they require non-local communication over
many rounds of optimization. Finally, the best known
distortion for unit-disk graphs [12] is far from practical
– it is given by a multiplicative factor which depends
polylogarithmically on the network size. The situation
is similar for planar graphs – the best known result (dis-

tortion O(log1/2 n) where n is the number of nodes) is
due to Rao [16] and is known to be the best possible [13],
even for series-parallel graphs and even if the dimension
of the Euclidean space in not restricted. Since we are
only interested in two-dimensional embeddings, we drop
the distance preservation requirement and instead seek
to preserve topology.

Techniques somewhat similar to ours are used in
ISOMAP [17] for non-linear dimensionality reduction,
that is embedding a high-dimensional point set into a
low-dimensional one while preserving as much as pos-
sible the intrinsic distances between the points – the
lengths of the shortest paths within a low-dimensional
manifold which is assumed to contain the input points.
ISOMAP builds a neighborhood-based graph on the
high-dimensional points, and applies a classical lin-
ear dimensionality reduction technique (multidimen-
sional scaling [11]) to compute the best (in the least-
squares sense) approximation of its shortest path met-
ric. Since we are more interested in preserving topology
than geometry, and do not have any (not even high-
dimensional) coordinates as part of input, the graph
that we build and the method that we use for embed-
ding are different.

Our planar graph extraction technique (Section 2.1)
is similar to witness complexes of de Silva and Carls-
son [2], in which k ≥ 2 points in the input dataset de-
fine a (k−1)-simplex if they are the k nearest neighbors
of some other datapoint. However, our construction is
based on shortest path distances in an associated graph
rather than Euclidean distances, since the latter is not
a part of our algorithm’s input. Recent work of de Silva
and Ghrist [3] addresses similar problems of topology
discovery in location-free networks using methods of al-
gebraic topology, more precisely the homology of certain
simplicial complexes derived from the communication
graph. Because the approach is not based on planar

graphs, but on more complicated higher-dimensional
complexes, it does not seem to allow for an efficient em-
bedding procedure as a way of recovering the originally
unknown geometry of the deployment.

Most related to our approach of computing an em-
bedding of a communication graph is the work by Rao
et al. [15] who propose to compute a two-dimensional
embedding of the entire communication graph in a dis-
tributed way. Their algorithm has no upper bound on
the distortion, but the authors show experimental ev-
idence that it resembles the original layout reasonably
well. Our method uses the same embedding on a differ-
ent graph.

Our Contribution In this paper we present a very
simple algorithm for sketching the relative locations of
nodes and topological features in a wireless network that
is represented purely by its communication graph. If
the structure of the communication graph is a (quasi-
)unit-disk graph determined by the geographic locations
of the nodes, our algorithm extracts a provably planar
graph whose face structure when embedded at the
original positions faithfully represents the topology of
the network. Since our planar graph even in practice
is far from being a tree-like structure but rather dense,
the embedding of this graph via simple methods like
Tutte’s algorithm yields a reasonably good sketch of
the relative positions of nodes and topological features
like holes in the network. As a side effect, the fact
that we embed a planar graph allows the immediate
application of the constructed virtual coordinates in
greedy geographic routing schemes with guaranteed
delivery. Our simulation results show that the algorithm
works very well even in networks of very low density.

2 Planar Graph Extraction and Embedding

The core of our approach is to first compute a parti-
tion of the network into small tiles by choosing a set of
landmarks and assigning each node to its closest (in hop-
distance) landmark – like [14] we call the resulting de-
composition of the network landmark Voronoi complex
(LVC). Its respective dual is called the combinatorial
Delaunay graph (CDG) and captures the adjacencies of
the tiles: two tiles τ1, τ2 are called adjacent if there exist
two nodes p ∈ τ1 and q ∈ τ2 and (p, q) is an edge in the
communication graph. Unfortunately, even in practical
instances the CDG is not a planar graph, see Figure 2.

The core and main contribution of this paper is a
way of extracting a planar subgraph from the CDG –
we call it combinatorial Delaunay map (CDM) as well as
computing a planar geometric embedding of the latter1.

1A planar geometric embedding is an assignment of coordi-



Figure 2: A network topology with a set of landmarks, the induced graph Voronoi diagram, and its dual
combinatorial Delaunay graph (which is not planar!).

2.1 Planar Graph Extraction The idea for con-
struction and the main properties of our planar graph
construction are largely derived from the geometric in-
tuition. To be specific, the planarity follows from the
fact that our CDM is the dual graph of a suitably defined
partition of the plane into simply connected disjoint re-
gions. In the following we define such a planar partition
based on a landmark set, and propose a method for iden-
tifying a subset of edges of the combinatorial Delaunay
graph using only the information available in the graph
connectivity. The whole reasoning is based on the fact
that the original communication graph is not an arbi-
trary graph but in some way resembles the geometry
of the underlying domain by being either a unit-disk or
quasi-unit-disk graph.

In a first step we choose a set of landmarks from
the set of nodes in the communication graph. To this
end, we fix a small constant k, like k = 5, and select the
set of landmarks to be a maximal k-hop independent
set Ik in the communication graph, that is, for all
p, q ∈ Ik, the hop-distance in the graph is more than
k and ∀s ∈ V −Ik :, Ik ∪{s} is not a k-hop independent
set. This can easily be computed in linear time via a
greedy algorithm, which iteratively selects a node into
Ik and removes its k-hop neighborhood from the graph.
A very simple distributed implementation is also rather
straightforward.

We then compute the graph Voronoi diagram [4]
of the communication graph with respect to the set of
landmarks selected as above. Graph Voronoi diagram is
a graph analogue of the corresponding object defined in
geometry. Informally, the Voronoi diagram of a graph
with respect to a subset of its vertices (the landmarks)
is a partition of the vertex set into disjoint subsets

nates to the node of the graph such that edges in the graph do
not intersect when drawn as straight line segments.

(Voronoi regions) according to which landmark is closest
to the vertices of a given subset. The distances are
defined in a standard graph-theoretic sense, as shortest
path lengths. Note that Voronoi regions and landmarks
are in one to one correspondence, as in the geometric
case. The Voronoi regions determined in this fashion
are now the tiles.

First we introduce a labeling of the communication
graph for a given set of landmarks.

Definition 2.1.

(i) Consider a landmark a and a vertex v. We say that
v is an a-vertex if a is one of the landmarks which
are closest to v, and it has the smallest ID among
all such landmarks.

(ii) Consider arbitrary landmarks a, b and an edge
e = (u, v). We say that e is an a-edge if both u
and v are a-vertices. We say that e is an ab-edge if
u is an a-vertex and v is a b-vertex or vice versa.

Clearly, this rule assigns unique label to each vertex
and edge, due to the uniqueness of nodes’ IDs. Also
note that any landmark a is an a-vertex.

Next we present a criterion for making two land-
marks adjacent in the CDM that we construct as a sub-
graph of the CDG.

Definition 2.2. Landmarks a and b are adjacent in
the CDM if there exists a path from a to b whose 1-hop
neighborhood (including the path itself) consists only of
a and b vertices, and such that in the ordering of the
nodes on the path (starting with a and ending with b)
all a-nodes precede all b-nodes.

Note that the CDG is actually defined in a very
similar way with the only difference that the 1-hop
neighborhood of the path is not cared about.



Now we prove that the landmark graph defined as
above is indeed planar, for any unit-disk or quasi-unit-
disk2 (with α ≤

√
2) embedding. The basic idea is

to show that the adjacencies of Definition 2.2 are in
fact adjacencies between planar regions in a suitably
defined planar partition. Then planarity follows from
the well known property that the dual graph of a planar
partition is planar.

To define the partition, we use a labeling of an em-
bedding, which of course can be only conceptually de-
fined, and not explicitly computed, since the geometric
realization is unknown and in general not unique, given
only the connectivity information. However, for us it is
enough that such a construction exists, because we will
use only properties that hold regardless of the actual
embedding.

Definition 2.3. Consider a point x in the plane, which
lies on the geometric realization of an edge e in a unit-
disk realization of the communication graph. We say
that e labels x as an a-point if the endpoint of e closest to
x is an a-vertex. By convention, the midpoint is closest
to the endpoint that has higher ID.

Notice that in this way the same point may be labeled
differently by several edges that cross in that point.
Here is an important property of this labeling scheme.

Lemma 2.1. If two edges e1 and e2 cross in the geomet-
ric realization, and label a shared point x as an a-point
and b-point, respectively, then e1 and e2 are both adja-
cent to the same ab-edge for any quasi-unit-disk graph
with α ≤

√
2.

Proof. Let y and z be the endpoints of e1 and e2,
respectively, which are closer to x. The point-labeling
rule (Definition 2.3) implies that y is an a-vertex and
z is a b-vertex. If y and z were not adjacent, then
the two opposite endpoints would not be adjacent
either (because their distance is at least as big). This
configuration cannot happen in either unit-disk graphs,
or quasi-unit-disk graphs with parameter α ≤

√
2 (this

directly follows from the Theorem 3.5 of [1]), so this
Lemma and our results theoretically hold for exactly
these classes of graphs. Therefore, (y, z) is an ab-edge
adjacent to both e1 and e2. Note that the proof is valid
even in the degenerate cases: if the edges intersect along
a line segment, or at a point that represents a vertex of
one or both edges.

2The quasi-unit-disk graph ([10]) with parameter α for a set of

points in the plane certainly has an edge between all nodes that
have distance at most 1/α and certainly no edge between pairs
of nodes at distance more than 1. For nodes at distance between
1/α and 1 the the presence of an edge is uncertain.

Now let us look at the implications of the adjacency
criterion (Definition 2.2) in this geometric labeling.

Lemma 2.2. If landmarks a and b are adjacent accord-
ing to Definition 2.2, then there exists a labeling of
points in the plane and a path in the plane from (the
geometric realization of) a to (the geometric realization
of) b, which is a concatenation of a subpath of a-points
and a subpath of b-points.

Proof. Consider the path from a to b referred to in
Definition 2.2 and the labels of the point in the plane
assigned by the edges of this path.

First modify this labeling to eliminate conflicting
assignments due to the self-intersections of the path.
Start following the path, say from a, and whenever an
intersection is encountered, un-label the points corre-
sponding to the section of the path between the inter-
secting points. For the intersecting point itself, remove
the label corresponding to the landmark with smaller
ID. Obviously, the points now have unique labels from
the point of view of the path from a to b.

Also, it can be easily shown (by induction on the
number of un-labeling operations) that this operation
preserves the pattern of point labels, i.e. the resulting
path from the embedding of a to the embedding of b
is always a subpath of a-points concatenated with a
subpath of b-points.

It may still be that a single point in the plane
is assigned multiple labels by multiple paths, that is
the paths that correspond to two or more distinct
adjacencies in the landmark graph. Next we show that
this cannot happen, i.e. when the labels that correspond
to different adjacencies are overlaid in the plane, the
number of different labels received by any point is at
most one. Suppose without loss of generality that an
a-point on the path from a to b (a 6= b) is the same
as a c-point on a path from c to d ({a, b} 6= {c, d}).
Consider the two edges in the original paths (before
the un-labeling) that this point lies on (if there are
more than two, choose arbitrarily one edge from each
path). By Lemma 2.1 there is an ac-edge in the 1-
hop neighborhood of both paths. It must be c = b, by
construction of the path from a to b. Also, it must be
d = a, by construction of the path from c to d. But this
violates the initial assumption {a, b} 6= {c, d}, and the
proof is complete.

Now we can state the main planarity result.

Theorem 2.1. The combinatorial Delaunay map
(CDM) built using the rule of Definition 2.2 is planar
for any quasi-unit disk graph with α ≤

√
2.

Proof. We show that the landmark graph is in fact a
subgraph of the dual graph corresponding to a partition



of the plane. Lemma 2.2 implies that the points with
the same label form a connected region (any two points
of this region have a path to the embedding of the
corresponding landmark). The regions that correspond
to different labels are disjoint, since every point gets at
most one label. Consider a partition of the plane into
the labeled regions described above, and the remaining
un-labeled regions. Obviously, every adjacency in the
landmark graph can be matched to one adjacency
between the regions and vice versa. Hence the landmark
graph is planar, as it is a subgraph of the dual graph of
a planar partition.

2.2 Properties of the CDM To illustrate why we
believe that the CDM faithfully reflects the topology of
the network let us consider the setting where infinitely
many network nodes are distributed over some region
in the plane at infinite density. A finite set of those
nodes is then extracted by selecting nodes greedily and
always removing all other nodes within distance k. The
property of the resulting set L of nodes is that for any
point p in the plane there is some l ∈ L with d(l, p) ≤ k
(covering property) and, of course ∀l1, l2 ∈ L we have
d(l1, l2) > k (packing property). Now consider the
Voronoi diagram of the set L of points in the plane
and a subgraph of the respective dual graph which is
defined as follows: two nodes l1, l2 ∈ L are adjacent
in the conservative Delaunay graph CD if the Voronoi
edge between l1 and l2 has length at least 3 + ǫ. We
now want to argue that CD is well connected, in the
sense that each face of the the plane decomposition
that it determines, although not necessarily a triangle,
is bounded by only a few edges.

Lemma 2.3. If k ≥ 290 and sufficiently small ǫ the
conservative Delaunay graph as defined above consists
of convex faces which have at most 8 edges on their
boundary.

Proof. Clearly, due to the packing and covering proper-
ties, the Voronoi cell of l ∈ L properly contains a ball
B− of radius k/2 centered at l, and is contained in a
ball B+ of radius k centered at l. Hence the bound-
ary of l’s Voronoi cell must be contained in the annulus
B+ \ B−. Consider two lines s and s′ that are tangent
to the Voronoi cell at points p and p′, and intersect at
a point from which the Voronoi cell is seen at an angle
of 45◦. Let t and t′ be the tangents to B− with the
same slopes as s and s′, and as close as possible to p
and p′, respectively. Clearly, p and l are on opposite
sides of t (and likewise p′ and t′). But any two points
of t and t′ inside B+ \ B− have distance at least k/4,
thus the Voronoi cell boundary between p and p′ has
to have length at least ∆ ≥ k/4. Since due to a sim-

ple packing argument the number of Voronoi neighbors
of l is bounded by 24, one of the Voronoi edges along
the Voronoi cell boundary from p to p′ has to be at
least ∆/24 ≥ k/96 ≥ 3 + ǫ long, for sufficiently small ǫ.
The turn angle between two adjacent edges that bound
some face of CD is equal to the angle between the sup-
porting lines of their dual Voronoi edges. The Lemma
follows from the fact that the angle between the sup-
porting line of a long Voronoi edge and the supporting
line of the next long Voronoi edge can be at most 45◦

by the above analysis, and the total turn angle for all
pairs of consecutive edges that bound a single face of
CD is exactly 360◦.

The above Lemma gives an intuition why we can
hope to extract sufficiently many dual edges in the
CDM. Essentially, if k is sufficiently large, there are
many Voronoi edges which allow a “safe corridor” for
a witnessing path between two landmarks l1 and l2.
This is, of course, an overly pessimistic analysis, and
in practice, k can be set much smaller (less than 10),
still our simulation results show that many dual edges
can be witnessed.

The following Observation suggests a heuristic for
bootstrapping the embedding process:

Observation 2.1. Let l1, l2, l3 ∈ L be three points
which are all pairwise adjacent in the conservative De-
launay graph with |lilj | ≤ k

√
3 for i 6= j. Then l1, l2, l3

form a triangular face in the plane decomposition in-
duced by the conservative Delaunay graph.

That is, after exhibiting the CDM, we will be looking
for three landmarks that are interconnected by short
paths. They will give us the first face of our embedding
of the CDM.

2.3 Embedding the Combinatorial Delaunay

Map The embedding phase of the CDM is relatively
simple. We first identify a small triangle in the CDM
as suggested in Observation 2.1 and fix the position of
the respective landmarks on the vertices of an equilat-
eral triangle. We call these three landmarks temporary
perimeter nodes. We then follow the exposition in [15]
and determine the coordinates of the remaining “inte-
rior nodes” by an iterative procedure where each non-
perimeter node v periodically updates its coordinates
(xv, yv) as follows:

(2.1)

[

xv

yv

]

=

∑

w adjacent to v

[

xw

yw

]

|{w : w adjacent to v}|
The fixed point of this process can also determined via
solving a system of equations. However, the above it-



erative process allows for a distributed implementation.
When the system has reached a stable state we examine
the resulting embedding of the graph, and in particu-
lar, look for the largest face cycle in this embedding (in
terms of the number of bounding edges), which typi-
cally corresponds to the face cycle of the outer face. We
fix the nodes of this largest face cycle – which we now
call final perimeter nodes – on the boundary of a square
or unit circle and repeat the above procedure until all
nodes have stabilized their position. These positions
then define our final geometric embedding of the CDM.

Why do we believe that this procedure yields good
results? On one hand, there is a theoretical guarantee;
for 3-connected planar graphs, the combinatorial em-
bedding is unique up to deciding which face to use as
the outer face, that is the largest face determined after
the first iterative procedure is really the outer face (if
the latter has the longest face cycle of all faces in the
embedding which is almost always the case in practice).
The result of the second iterative procedure then com-
putes the desired embedding with the correct face cycle
being the outer boundary. Of course, in practice, the
encountered CDMs are rarely 3-connected. So what we
do in practice is the following: starting with a triangular
face as perimeter we compute an embedding as above.
In case of not 3-connected CDMs, the resulting embed-
ding might exhibit many degeneracies (faces of area 0),
but no crossings. We look for a face cycle of a non-
degenerate face in the embedding, which is longer than
the longest one found so far. Then we fix this cycle on
the perimeter and repeat until the longest face cycle in
the embedding is the outer cycle. Our simulations show
that this simple heuristic solution delivers always very
good results after few iterations, resembling faithfully
the original network topology.

A few informal remarks about the distributed im-
plementation. Even though the basic rubber-banding
technique is decentralized, detecting a stable state and
determining the longest face cycle are global operations.
Even at the exact fixed point of (2.1), if faces of nearly
zero area are present, global reasoning seems necessary
to compute consistent face cycles. We leave these ques-
tions to future research.

Heuristically, one can make use of the Section 2.2,
i.e. the fact that the ”interior” faces (those that do
not correspond to the holes or the surrounding area not
covered by the deployment) are small. The boundaries
of such faces can therefore be traced out by propagating
”short-lived” messages (”time to live” parameter set to
20k, say) using the ”right hand rule” in the current
embedding and detecting their return to the origin.
These probes are rather quick and can be performed
periodically. If a node is able to discover most of its

Figure 3: The three main steps of the construction of
virtual coordinates: first the graph Voronoi diagram is
computed; then paths are exhibited that witness adja-
cencies between tiles/landmarks maintaining planarity.
Finally, after deriving part of the combinatorial embed-
ding of the the resulting dual graph, we embed it using
a simple “rubber-banding” scheme.

adjacent faces in this manner, it can take this as a sign
of near-optimal convergence and proceed to discover the
remaining adjacent faces (some of which are potentially
long) similarly, only using the ”longer-range” messages;
upon the first successful such long-range probe an
announcement is broadcast to the network.

2.4 Summary In this section we have exhibited the
main contribution of our paper. While computing a
geometric realization of a complete unit-disk communi-
cation graph seems a very challenging problem in par-
ticular in a distributed scenario ([1, 9, 15]), taking a
macroscopic view and concentrating on a subgraph of
the combinatorial Delaunay graph, it turns out that a
relatively simple, distributed algorithm can be used to
extract a provably planar subgraph which we call com-
binatorial Delaunay map. Using a heuristic algorithm
we can also compute a planar geometric embedding of
the latter. Apart from nicely resembling the original
network topology, this geometric planar embedding of
the CDM allows the application of networking proto-
cols that rely on the availability of geographic coordi-
nates and a planar subgraph respecting these coordi-



nates. See Figure 3 for an illustration of the main steps
of our approach.

3 Application: Geographic Routing with

Guaranteed Delivery in Location-unaware

Sensor Networks

In geographic routing protocols the location of a node
becomes its name or address, each node only needs
to know the locations of its neighbors and the final
destination in order to decide how to forward a packet.
To guarantee delivery of messages within the network
if the greedy forwarding phase gets stuck in a local
minimum, geographic routing protocols like GPSR [8]
not only rely on location information in the nodes but
also on the identification of a planar subgraph to recover
from such local minima. The appeal of these geographic
forwarding methods is that they tend to produce routing
paths close to best possible and the scalability even
for very large networks. Virtual coordinates have
been proposed to allow location-unaware networks the
benefits of geographic routing; known constructions
of such coordinates are rather demanding, and the
identification of a suitable planar subgraph non-trivial,
though.

One possible application of the embedding of the
CDM that we have constructed is a macroscopic geo-
graphic routing protocol where geographic routing (like
GPSR) is performed to determine the sequence of tiles
to be traversed. As we have explicitly exhibited an em-
bedding of a planar subgraph of the connectivity graph
between the tiles, we can recover in case of local minima.
Between the tiles, messages can be forwarded using lo-
cal gradient fields, where each node in a tile knows the
distances to all landmarks of adjacent tiles. We expect
this method to perform very reliably and in particu-
lar efficiently on sparse network deployments due to the
macroscopic view on the geometry. We are currently
investigating the performance of this scheme in terms
of load-balancing and quality of the produced routing
paths.

4 Experimental Results

We first consider a large-scale deployment of reasonably
densely connected nodes. Figure 4 shows that irregular
(non-rectangular) outer boundary does not present a
problem for our boundary detection method. It might
only introduce additional distortion in the final embed-
ding.

Figure 6 shows three stages of the process of finding
the (approximate) outer face cycle. In this case it took
only three invocations of the rubber-banding subroutine
to arrive at the final solution. The network size is about
30000 and the average degree is 14. In all the examples

that we tried the heuristic was successful in recovering a
cycle which is very close to the true outer cycle in only
a few (up to 5) iterations.

Our next experiment shows that having denser
landmarks is not necessarily better. If the landmarks
are too dense (Figure 7 top-right), very few CDM edges
will be witnessed, since there will be a lot of “inter-
ference” between Voronoi cells. As a consequence, the
CDM will be almost a forest (i.e. very weakly connected
or even disconnected) and thus provide almost no use-
ful information for the rubber-band embedding phase.
The result will be a nearly trivial embedding, with a lot
of overlapping landmarks. On the other hand, if land-
marks are too sparse, the boundaries of smaller holes do
not appear as long cycles in the embedding (Figure 7
bottom), so we lose sensitivity to small-scale features.

Finally, we test our algorithm on a very sparse
deployment (Figure 5 top-left). One can see that the
final embedding (Figure 5 bottom) is still a reasonably
faithful representation in terms of topology. Note that
since the faces produced by rubber-band embedding are
always convex, our method tends to “convexify” the
holes, as can be seen in the this example.

Figure 4: Performance on a large-scale deployment of
100000 nodes with average degree 12. Top-left: Node
distribution (notice the irregular shape of the outer
boundary). Top-right: The outer boundary cycle is
correctly detected using k = 3. Bottom: The holes
appear as large cycles in the final embedded CDM, with
their relative sizes well preserved.



Figure 5: Performance on a sparse network. Top-
left: A sparse communication graph, 9000 nodes with
average degree 7; one can notice numerous small holes
as a consequence of weak connectivity. Top-right: The
CDM constructed with parameter k = 4. Bottom: The
resulting embedded CDM.

5 Discussion

The tight connection between geographic location and
connectivity of wireless networks gives rise to many
interesting problems. While the connectivity graph of a
wireless network does not explicitly hold any geometric
information, the fact that its connectivity is determined
by geographic proximity relations allows for techniques
to extract (part) of the underlying geometry. This paper
and few papers before have explored that direction
but we believe that there are still many challenging
problems to be solved. Ultimately, of course, one
would like to recover the exact relative positions of the
network nodes; unfortunately this problem is NP-hard
for general unit-disk graphs as was shown by Kuhn et
al. in [9], but a constant approximation has not been
ruled out yet.
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Figure 7: Effect of varying landmark density. Top-left:
Communication graph with about 8400 nodes of average
degree 10. Top-right: Too dense a set of landmarks
(k = 2) may lead to poor results: the CDM has very few
cycles that can be used for the embedding. Middle: An
appropriate choice of landmark density (k = 4), both
the larger and the two smaller holes show up in the
embedding. Bottom: If the landmarks are too sparse
(k = 7), the smaller holes become indistinguishable.


