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ABSTRACT 
The development of lightweight sensing and communication 
protocols is a key requirement for designing resource constrained 
sensor networks. This paper introduces a set of efficient protocols 
and algorithms, DAM, EBAM, and EMLAM, for constructing 
and maintaining sensor aggregates that collectively monitor target 
activity in the environment. A sensor aggregate comprises those 
nodes in a network that satisfy a grouping predicate for a 
collaborative processing task. The parameters of the predicate 
depend on the task and its resource requirements.  Since the 
foremost purpose of a sensor network is to selectively gather 
information about the environment, the formation of appropriate 
sensor aggregates is crucial for optimally allocating resources to 
sensing and communication tasks. 

This paper makes minimal assumptions about node onboard 
processing and communication capabilities so as to allow possible 
implementations on resource-constrained hardware.  Factors 
affecting protocol performance are discussed. The paper presents 
simulation results showing how the protocol performance varies 
as key network and task parameters are varied. It also provides 
probabilistic analyses of network behavior consistent with the 
simulation results. The protocols have been experimentally 
validated on a sensor network testbed comprising 25 Berkeley 
MICA sensor motes.   

Categories and Subject Descriptors 
C.2.1, C.2.2 [Computer-Communication Networks]: Network 
Architecture and Design – Distributed Networks, Wireless 
Communications; Network Protocols – Application 

General Terms 
Algorithms, Experimentation 

Keywords 
Distributed algorithms for ad hoc networks, processing and fusion 
of data in sensor networks, self-configuration in ad hoc networks, 
applications for ad hoc networks 

 

1. INTRODUCTION 
Networked embedded sensing is a promising technology for 
applications ranging from environmental monitoring to industrial 
asset management. Wireless sensor networks are characterized by 
limited onboard energy supply, as well as resources such as 
storage, communication and processing capabilities. Thus, the 
power of a sensor network lies in the ability of sensor nodes to 
pool resources together, optimally direct the resources to tasks at 
hand, and cooperatively gather and process information while 
satisfying strict resource constraints. 
Riding on Moore’s Law, we can expect sensor nodes to become 
smaller and cheaper, and thus networks of such nodes can be 
deployed on a much larger scale than was possible up to now. A 
key challenge we will be facing then is the design of a set of 
lightweight, extremely efficient sensing and communication 
protocols that use simple communication and low-resolution 
computation, such as comparing detection amplitudes of nearby 
sensors, to recover qualitative information about the environment 
or physical phenomenon of interest. 
This paper addresses this challenge by developing a set of sensing 
and communication algorithms for a class of practically important 
problems for sensor networks: the detection and monitoring of 
activity intensity, for example, estimating the density or number 
of targets in a particular area, allocating and directing a 
corresponding amount of resources to the sensing problem. Our 
algorithms accomplish the recovery of qualitative information 
about the environment, such as the location of target signal peaks 
or the estimation of source power levels, without expensive signal 
processing. They also choreograph the efficient formation and 
maintenance of sensor groups, or aggregates, for collaborative 
processing tasks. 
Consider, for example, the problem of tracking a moving herd of 
zebras in wildlife habitat management. An instance of a 
collaboration region is defined as the set of seismic sensor nodes 
that can potentially sense the movement of the animals, i.e., those 
within the propagation range of vibrations from the animal 
footsteps.  We call such a group of sensors an aggregate, as they 
collaboratively perform a specific task.  For example, these 
sensors may collectively estimate the size of the herd from the 
intensity of the vibrations, or the speed at which the herd travels 
from the frequency of the signals.  As the herd moves to the next 
region, a new aggregate of sensors will have to be defined, wake  
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up, and start to track the animals, and so on. As one can see from 
this example, the definition of such collaboration regions depends 
dynamically on the task objectives and resource constraints. For 
example, some sensors may be on critical routing paths and their 
energy reserve is more likely to be quickly depleted than that of 
others; thus in forming an aggregate these sensors should 
participate only when the expected gain exceeds a threshold. 
Moreover, the collaboration regions are dynamically formed and 
updated, as the physical events of interest, environmental 
conditions, or network topology change. The definition and 
maintenance of collaboration regions adaptively is one of the key 
resource management tasks in sensor network operation. 

2. OVERVIEW 
This paper develops a number of scalable and efficient protocols 
and algorithms for low-cost, low-resolution wireless sensor nodes. 
The first is a lightweight protocol, Distributed Aggregate 
Management (DAM), for forming sensor aggregates for a target 
monitoring task. The protocol comprises a decision predicate P 
for each node to decide if it should participate in an aggregate and 
a message exchange scheme M about how the grouping predicate 
is applied to nodes. A node determines if it belongs to an 
aggregate based on the result of applying the predicate to the data 
of the node as well as information from other nodes. Aggregates 
are formed when the process eventually converges. The protocol 
is developed to support a representative collaborative signal 
processing task in sensor networks  monitoring distinct targets 
in a sensor field. Sensors are clustered around each target, or 
signal peak, using a “downhill” protocol. Sensor aggregates 
defined by multiple interfering targets are also considered.  
However, as targets or other physical phenomena, move and pass 
by each other in the sensor field, information about the target 
density may be lost because of the possible under-sampling of the 
signal field and the lack of target movement history in DAM. For 
example, three targets may come together, resulting in a single 
sensor cluster by DAM. When the three targets split into two 
groups and move apart, at some point two distinct sensor clusters 
will be formed. However, without possible use of history or signal 
source information, the sensor network will not be able to 
determine which sensor cluster corresponds to which target group 
(the one target or the two targets), and thus be unable to allocate 
an appropriate amount of resources to the monitoring tasks. 
The second algorithm, Energy-Based Activity Monitoring 
(EBAM), solves this problem by considering the energy level of 
target signal sources. The energy level is estimated by computing 
the signal impact area, combining a weighted form of the detected 
target energy at each “impacted” sensor. A nice property of this 
algorithm is its relative insensitivity to noise and disturbances or 
perturbation of node positions. However, to convert the energy 
level into the corresponding target density, we need to assume 
roughly constant source energy output for the targets. When 
arbitrary target source amplitudes are allowed there are 
intrinsically ambiguous situations for target counting. Without 
source separation, we cannot tell apart three targets of strength 2 
at one location, vs. two targets of strength 3 at the same location. 
Such ambiguities cannot be present when all targets strengths are 
roughly the same (the case we discuss in EBAM), but also when 
all target signal strengths are very different. 
The third algorithm, Expectation-Maximization Like Activity 
Monitoring (EMLAM), removes the constant and equal target 

energy level assumption. EMLAM estimates the target positions 
and signal energy using received signals, and uses the resulting 
estimates to predict how signals from the targets may be mixed at 
each sensor. This process is iterated, until the estimate is 
sufficiently good. 
This paper focuses on defining and maintaining sensor clusters for 
in-network collaborative processing tasks. While the paper does 
not explicitly address the query processing and associated routing 
issues, the basic cluster structure computed by our protocols can 
be used to efficiently route and optimize queries. For example, the 
tree structure rooted at the leader node of each sensor node cluster 
in the DAM protocol can be used to aggregate sensor information. 
By additional embedding of a space indexing tree (such as a quad 
tree) and aggregating target totals for each internal node of the 
tree, we can support efficient query of the network for 
information such as “how many targets are present in an X-Y 
geographical region?” By exploiting the hierarchical structure of 
the indexing tree, we can make the cost of such queries roughly 
proportional to the number of nodes near the perimeter of the 
region, rather than the number of nodes inside. Similar ideas for 
supporting half-space queries were discussed in [4].   
We have introduced noise in simulations to study the robustness 
of our algorithms. However, we have not systematically 
considered the effect of packet loss on the protocol performance, 
which remains a topic of future study. Our implementation of the 
DAM protocol on wireless sensor nodes, the Berkeley MICA 
motes, did experimentally validate the protocol and worked well 
under a moderate amount of packet loss.   

3. RELATED WORK 
Directed diffusion [7] is an effective mechanism for coordinating 
information transport in sensor networks.  Diffusion uses a fine-
grain data-level publish and subscribe for data sources to 
advertise data attributes of signals they detect and for data sinks 
to express data attributes they are interested in.  The data source 
attributes and data sink interest are propagated and meet 
throughout the network.  Routing pathways between the sources 
and sinks are established as shortest paths in the network 
connectivity graph. 
The DAM protocol can be considered as an example of the next-
level up coordination mechanism that defines “coherent” regions 
of sensors in a network. Unlike directed diffusion where data 
attributes are first-class objects, DAM makes grouping predicates 
first-class entities. Directed diffusion forms data routing and 
aggregation paths, while DAM forms sensor aggregates defined 
by constraints from tasks, resources, or geometry of a space. 
Geographic routing [8, 12] is a mechanism for routing data to a 
geographic region instead of a destination node specified by an 
address. The destination region must be specified either as a 
rectangle or other regular geometric object for computational 
reasons. DAM can form arbitrarily complex regions as long as the 
network topology permits. The resulting aggregates can be 
abstracted as geometric objects for use by geographic routing. On 
the other hand, geo-routing could implement the information 
exchange within sensor groups DAM. Our work is also related to 
information storage mechanisms in sensor networks, such as  
DIMENSIONS [3] and geographic hash tables [10]. 
Our work is closest to that of Madden et al. [9] in spirit. Madden 
et al. discusses the challenges for supporting SQL-style queries 



3) Each sensor can communicate wirelessly with other sensors 
within a fixed radius larger than the mean inter-node distance. 

such as AVERAGE, MIN, MAX for distributed sensor networks. 
A SQL-style database system supports an aggregation function 
and a grouping predicate. For example, the query “SELECT 
TRUNC(temp/10), AVERAGE(light) FROM sensors, GROUP 
BY TRUNC(temp/10), HAVING AVERAGE(light)>50”, forms 
groups of sensors according to the temperature bins, computes 
average light for each group, and then excludes those groups with 
light values less than or equal to 50. However, many interesting 
collaborative signal processing applications must form aggregates 
specified not just by individual node data, but also by the relations 
between the data across nodes. In the target monitoring problem, 
for example, sensor nodes exchange and compare amplitude 
detection values in order to form groups belonging to each target. 
In other cases, relations between the data may be determined by 
the geometry of the sensor locations. As this example shows, the 
distinction between query processing and collaborative signal 
processing in sensor networks is not as clear as in centralized data 
warehousing applications. DAM supports this style of more 
general grouping by blending the generality of a query schema 
with problem-dependent in-network signal processing. 

4) Sensors are time synchronized to a global clock. 
5) Onboard battery power is the main limiting factor, as well as 
network bandwidth and latency, and onboard storage and 
processing. 
The task here is to determine the number of targets and the 
approximate locations of target clusters in the field, forming an 
initial count and re-computing the count when targets move, 
enter, or leave the field. Although there may be different ways to 
solve this problem, we have taken the following approach. For 
each distinct target, a sensor leader is elected corresponding to the 
target. When multiple targets stay very close to each other, it is 
possible that only one leader is elected for this small group of 
targets, in which case, total power emitted from this group of 
target may be used in identifying number of targets in this small 
group. As targets move, new leaders are elected to reflect network 
changes. Therefore, we can obtain target count by determining the 
number of leaders elected and the number of targets in each 
cluster that each leader is elected from. The locations of the 
leaders and their cluster boundaries also provide information of 
the approximate locations of the targets. This paper focuses on the 
leader election process, postponing query processing and 
information gathering aspects for another study. 

A number of approaches to collaborative signal processing have 
already started to address the formation and management of 
collaboration regions in several application contexts [6]. For 
example, to track moving vehicles on street, sensor groups are 
dynamically formed, with each group responsible for collecting 
and processing information about one vehicle [14]. By examining 
a number of such problems, our long-term aim is to abstract such 
collaboration patterns into a set of generic schemas to support a 
wide class of applications for sensor networks. 

5. ALGORITHMS AND PROTOCOLS 
Formally, a sensor network is represented as a graph G(V, E), 
where V are the vertices representing sensor nodes and E edges 
representing one-hop connectivity in the network. Then, the 
counting protocol has the structure (G, T, P, M), with T the 
targets, P the grouping predicate, and M messaging schema, as 
defined earlier. The schema M applies P to nodes in the network, 
in a pre-specified manner, to compute sensor aggregates A={V1, 
…, Vn}, where Vi  ⊂ V.  

4. MONITORING SCENARIO 
 
 

 

Property: The union of V1, …, Vn is not necessarily equal to V. 
Furthermore, Vi and Vj  are not necessarily disjoint. 

Examples: When targets are well separated, sensor aggregates for 
the targets become islands in the network. In other cases when the 
targets’ influence regions are overlapping and each sensor in a 
region is able to separate signal components for each target (not 
assumed by the target counting problem studied in this paper), 
then the network could maintain overlapping sensor aggregates, 
one for each target. 

Figure 1. Target monitoring 
scenario, showing three targets in a 
sensor field. 

Figure 2. The corresponding target 
signal amplitude profile over the 
sensor field. The target counting 
becomes a peak counting problem. 

The messaging schema M can apply P to nodes in several 
different ways, depending on the nature of the problem. When P 
is an equivalence relation on V, then A partitions V, and efficient 
algorithms for computing the partition already exist. M only needs 
to apply P to pairs of adjacent nodes in G in order to compute A. 
This may proceed in a relaxation style, propagating from node to 
node. Alternatively, one could first find those pairs of adjacent 
nodes that violate P, delete the corresponding edges in G, and 
return the graph components as the equivalence classes. For the 
target counting problem, when the targets’ influence regions are 
overlapping and their boundaries are completely defined by 
saddle connections in the signal landscape, identifying the 
boundary nodes first can sometimes partition the nodes more 
efficiently. However, the protocol we will describe next uses 
grouping predicate that is not an equivalence relation, for reasons 
that will be discussed in a later section. 

We consider a task of counting multiple targets in a two-
dimensional sensor field as shown in Figure 1. Targets can be 
stationary or moving at any time, independent of the states of the 
other targets. In addition, the following assumptions are made 
about this network: 
1) Targets are point sources of (say, acoustic) signals. Target 
signal amplitude attenuates, as a monotonically decreasing 
function of the distance from the source, according to an inverse 
distance squared law (e.g., acoustic signal propagation in free 
space) or exponentially.  
2) Each sensor has a finite sensing range. Sensors can only sense 
signal amplitude. Signals of multiple targets are summed at each 
sensor. This is a reasonable assumption for a mixture of acoustic 
signals from a set of non-coherent sources. 



For a protocol to be applicable to large-scale sensor networks 
with diverse target characteristics (velocity, moving patterns, etc.) 
and limited network resources, it should have the following 
properties. First, it should be distributed in nature for scalability. 
Second, the leader election process should converge quickly to 
allow fast leader reelection for fast moving objects. Third, the 
protocol should require a minimal amount of inter-sensor 
communication, while keeping application semantics intact. 
Fourth, a reasonable level of fault tolerance should be supported. 
As the sensors in this network can only sense amplitude, we need 
to examine the spatial characteristics of target signals when 
multiple targets are in close proximity of each other. In Figure 2, 
the 3-D surface represents target signal amplitude. Three targets 
are in the region, with two targets near each other and one target 
well separated from the rest of the group. 
The 3-D surface shown in figure 2 forms a signal field landscape, 
where the height of a point is determined by strength of signal at 
that point. We can expect that a geometric analysis of this 
landscape can provide us with information about the signal 
sources − in this case the targets. 
There are several interesting observations. 
1) When the targets' influence areas are well separated, the 
leader election can be considered as a clustering and cluster leader 
election problem. Otherwise, it approximates a peak counting 
problem. 
2) The target signal propagation model has a large impact on 
target "resolution". The faster the signal attenuates with distance 
from the source, the easier targets are to be differentiated from 
their neighbors based on signal amplitude they emit. 
3) Spacing of sensors is also critical in obtaining correct target 
count. Sensor density has to be high enough so that sampling of 
target signal amplitude provided by sensors can yield enough 
information for obtaining correct target counts. On the other hand, 
close proximity of sensors to each other makes for redundant 
measurements and wastes resources. 

5.1 DAM: Distributed aggregate management 
We develop DAM with target monitoring in mind, and with low 
cost amplitude sensing only sensors. For given signal field 
landscape such as that shown in figure 2, spatial sampling of this 
field by sensors at their locations only provides a sampled view of 
the surface. In this sampled view, we divide the sensors into 
clusters according to their sensed signal strength, so that there is 
only one peak per cluster. The purpose of the DAM protocol is to 
elect local cluster leaders. One peak may represent one target in 
case this target is well separated from the other targets. It can also 
represent multiple targets in case multiple targets are close 
together. Worst of all, it may represent no target in case the peak 
is generated by noise sources. A detailed description of DAM is 
given in this section. We will discuss ways to handle noise and 
target clustering issues in later sections. 
Peaks are identified by means of comparing heights of 
neighboring sensors. To do this in a distributed fashion, 
information exchanges between neighboring sensors are 
necessary. If a sensor, after exchanging packets with all its one-
hop neighbors, finds that it is higher than all its one-hop 
neighbors on the signal field landscape, it declares itself a leader. 
At start of each protocol period, each sensor broadcasts its 
"qualification" (sensed signal strength) for leader election to its 

one-hop neighbors. Its "qualification" will be compared with 
information the neighbor has had so far, after the packet reaches a 
neighbor. If its "qualification" warrants the possibility of its 
becoming a leader, this packet will be passed to neighboring 
sensors of this neighbor, otherwise, the packet will be dropped. 
Dropping packets of no value at the earliest possible stage, while 
maintaining subsequent protocol semantics, serves the purpose of 
fast convergence of the protocol and minimizes the amount of 
inter-sensor communication. 
Another important aspect of this protocol is enforcing locality. 
Locality is accomplished by enforcing the packet flow direction 
to be “downward only” on the signal field landscape. Figure 3 
illustrates this idea in 1-D space. There are two clusters, cluster 1 
and 2. In each of the clusters, packets can only be passed from 
sensor to sensor in a downward direction. 

1 1 111 1 2 2 2 2 2 2

x1

x2 

 
Figure 3. A sampled signal amplitude field. Neighboring nodes inform 
each other using a downward flooding algorithm to form equivalence 
classes of node groups corresponding to the support for each peak. Small 
disturbances can be handled using a δ–tolerance during amplitude 
comparison. 

Before proceeding to the description of the protocol, it is 
necessary to make some definitions: 
Definition 1: Neighbors of a sensor S refer to sensors that are 
within the transmitting radius of sensor S. i.e,. all the sensors that 
can "hear" sensor S directly. 
Definition 2: ThreshholdElection, refers to the minimum signal 
amplitude a sensor has to receive from target(s) for it to 
participate in the leader election process. This value is up to 
protocol designer to decide. It must be no smaller than the sensor 
receiving threshold determined by the noise floor. It can 
effectively be used to find sensor cluster boundaries for a given 
ThreshholdElection, which is determined by the sensing task. 
Definition 3: Protocol period, is the time duration of a leader 
election process. The leader election process runs every protocol 
period. 
Definition 4: A DAM packet, is the only packet generated by a 
participating sensor each protocol period to broadcast its 
"qualifications" for leader election. A DAM packet includes the 
following fields:  
MaxPr – Received signal power at packet originating sensor. 
MaxID - ID of the packet originating sensor. 
TransPr - Received signal power at sensor overlaying the packet. 
TransID - ID of the sensor overlaying the packet. 
In a sense, (maxPr, maxID) registers the "qualification" of the 
sensor that originates the packet, while (transPr, transID) 
registers the "qualification" of the sensor who passes on this 
packet to the sensor that examines these fields.  
Definition 5: Sensor state, is a set of parameters a sensor keeps 
during each protocol period in order to process packets from other 
sensors to elect leaders. Sensor states include the following fields: 



maxPrHeard – The highest MaxPr recorded in all the packets 
received by this sensor in current protocol period. 
leaderID – ID of the cluster leader that this sensor belongs to. 
myPr -  Received signal power at this sensor. 
myID -  ID of this sensor. 
myParent – ID of the parent node for this sensor. 
participating - a boolean indicating if this sensor node currently 
participates in the leader election process. It is true when sensed 
signal power level exceeds ThreshholdElection. Otherwise, false. 
Definition 6: The quantity δ is the threshold for the difference 
between myPr and transPr recorded in an incoming packet, 
beyond which the packet will be dropped. The aim for introducing 
this threshold is to overcome disturbances which may create lots 
of tiny spurious peaks on the signal landscape. Introduction of the 
δ threshold rule can overcome spurious noise with power up to δ 
above the threshholdElection level. More discussion on 
disturbance rejection can be found in section 6.3.1. 
The purpose of the DAM protocol is to elect local cluster leaders 
and maintain local information about the signal landscape. DAM 
does not handle information forwarding to nodes querying the 
network. A leader is the sensor with maximal sensed signal power 
in its cluster. In other words, a leader is the local peak in the 
sampled view of our signal landscape. In the process of leader 
election, a tree structure is also formed with each sensor pointing 
to one of its one-hop neighbors as its parent, which is the sensor 
that overlays the packet from the leader to this sensor. Each 
cluster is thus a tree rooted at its leader and all paths from other 
nodes to the root are strictly ascending in the signal landscape.  
1) At beginning of each protocol period  

If (myPr > threshholdElection) { 
participating = true; 
maxPrHeard = myPr; 
leaderID = myID; 
p = createMyPacket(); 
p.maxPr = p.transPr = myPr; 
p.maxID = p.transID = myID; 
broadcast(p);} 

2) When a packet p is received from a neighbor 

If (p.maxPr > maxPrHeard && p.transPr+δ > myPr) { 
maxPrHeard = p.maxPr; 
leaderID = p.maxID;           //leader at this stage 
myParent = p.transID;           //parent at this stage 
p.transPr = myPr; 
p.transID = myID; 
broadcast(p);} 

else 
  drop(p); 

The  “downward only” semantics is expressed by logic: 
If ( p.transPr +δ ≤ myPr) 
       drop(p); 
This protocol is synchronous. Because locality is enforced, 
packets from different clusters will be dropped before traveling 
far into another cluster. Meanwhile, because of the use of 
ThreshholdElection, only sensors with readings exceeding this 
value can participate in leader election process, thus limits packet 

exchange to the geographical area around targets. This protocol 
scales well with size of the sensor network. 
DAM provides a way to cluster sensors according to their sensed 
signal strength: each sensor joins the cluster defined by the 
highest peak that can reach that sensor through a strictly 
descending path in the landscape. Depending on inter-target 
distance, sensor spacing and signal propagation model, one leader 
may correspond to more than one target, i.e., there may be more 
than one target in each cluster formed at the end of each protocol 
period of DAM. Figure 4 shows a snapshot of a simulation run. 
There are 9 targets in the sensor field. There are 6 sensor clusters 
formed according to DAM. Some of the clusters indeed have 
more than one target. 

 
 Figure 4. A snap shot of the sensor network we simulated. For the 
scenario shown above, there are 9 moving targets and 100 sensors in an 
area of 100m×100m. The 9 solid squares represent moving targets. Circles 
represent sensors. Solid circles signify that the sensors are elected leaders 
for the current protocol period. 6 leaders were elected, each with its cluster 
of sensors. Each cluster is a tree rooted at its elected leader. 

5.2 EBAM: Energy-based activity monitoring 
To address the under-counting problem, this section presents 
algorithms to estimate the number of targets within each cluster. 
After briefly explaining problems with signal energy 
measurement in a sensor network, we review the concept of 
Voronoi diagrams from geometric computing and then introduce 
algorithms and protocols for energy based activity monitoring. 
Impact of choices of system parameters on protocol performance 
is also discussed.   
EBAM provides a solution to counting targets within each sensor 
cluster formed as a result of DAM protocol, with the assumption 
that all targets emit approximately equal amount of power, to be 
relaxed in Sec. 5.3, and this amount is known to the DAM 
protocol. The latter assumption could be removed by a network 
calibration protocol which we do not discuss in this paper. 

5.2.1 The Energy Measurement Problem 
The intuition of our approach is that, since the height of each 
point on our signal field landscape represents the signal power 
level sensed by a sensor at that location, the "volume" of each 
cluster over this landscape is associated with the total signal 
power in the cluster region. If we can estimate this "volume" in a 
meaningful way, we can relate sensor data to the total signal 
power in the region. Since the single target signal power is 
known, we can derive bounds on the number of targets from the 
total signal power sensed in the cluster.  
Our sensors, however, can be placed in arbitrary and non-uniform 
patterns. What the sensed data represent is scattered 



measurements of the true signal field landscape. No matter which 
signal propagation model fits the application in question, all 
propagation models share a common characteristics, which is that 
signal power attenuates quickly (attenuation factor 2~5) with 
distance from the source, especially at points within short distance 
from the source. This presents a major difficulty in estimating 
total signal power from scattered sampled data obtained by 
sensors. Figure 5 shows two signal power profiles for free space 
propagation model. We can see that attenuation rate is rather high 
within one meter from the source. Therefore, a little displacement 
of the sensor location relative to the source can cause the sensed 
signal power to vary drastically. 

c c’ 

 
Figure 5. Two signal sources 
collocated at one point. Lower 
curve shows signal profile for a 
single source. Upper curve shows 
the profile of the superposed 
signal. CC’ is  the “ceiling”. 
 

Figure 6. Voronoi cells for 200 
sensors in a 100m×100m field. 
Sensors locations are chosen 
uniformly at random.  
 

To solve this problem, we introduce a "ceiling" (CC’ in figure 5) 
on the amount of power a sensor can contribute to the total signal 
power of the cluster, thus "desensitizing" the total cluster power 
value to slight changes of target locations. Therefore, the total 
power, Pt, calculated this way is an indicator related to the true 
"volume" under the signal landscape over the cluster region. The 
desired effect is that, when a single target moves across the 
network, Pt remains roughly invariant. It is immediately clear that 
the ceiling level cannot be too low, in which case Pt would 
become a constant factor away from the measurement of the 
impact area size. On the other hand, Pt cannot be too high, for 
otherwise, the location invariance property will be lost. 
However, there is another difficulty in obtaining invariant Pt due 
to uneven sensor density. For example, given two identical signal 
sources, the first in an area with dense sensor distribution, the 
second in an area with sparse sensor distribution, it is almost 
certain that higher Pt will be obtained for the first signal source. 
This discrepancy arises from the fact that more sensors contribute 
to Pt in the first case. To take sensor density into consideration, 
we use the area of Voronoi cells associated with each sensor as 
weight in computing total Pt for each cluster. 

5.2.2 Algorithms 

5.2.2.1 Voronoi Cell 
Given a set of points P = {p0, p1, p2, …} in the plane, one can 
partition the plane into Voronoi Cells (convex polygons) so that 
the Voronoi Cell about a point p in P consists of all points in the 
plane which are closer to p than any other point in P. What is of 

interest to us is that Voronoi Cell area can be used to capture local 
point density. 
Figure 6 shows Voronoi cells for sensors in a sensor field with 
200 sensors placed at locations picked uniformly at random. 

5.2.2.2 Height of the “Ceiling” 
We proceed now to examine the criteria for the choice of the 
height of the ceiling or, in other words, the upper bound for 
individual sensor contribution to Pt. A free space signal 
propagation model is used here. The signal profile generated by a 
single source looks like an elongated bell, as shown in figure 5. 
With the bell top removed at line cc', we get an elevated plateau 
with area πR2, where R=CC'/2. 
As discussed previously, the goal for having the ceiling is to 
construct an index Pt, which remains nearly invariant as a single 
target moves across different regions of the sensor field. Let us 
consider a scenario in which all sensors are placed at cross points 
of a grid with side length d. Figure 7 shows a bird’s eye view of 
such a grid. Circles in this figure represent plateau areas formed 
by removing the top of the bell shaped signal surface generated 
by a single target. 
Varying locations of the target, we obtain different values for Pt. 
We plot Pt against different R values for different target locations 
using MATLAB. The segment where all the lines intersect one 
another is the acceptable region of R for the given network 
configuration. Using this method, we obtained the relationship 
between R and d as ddR 45.0~38.0=
Or in terms of area, SSR 45.0~38.0=
where S is the constant Voronoi Cell size for all sensors. This 
result is also verified by simulation results. When sensors are not 
arranged on a grid, the first relation is no longer applicable. 
Experiments have shown that the second relation, however, still 
holds. In this case, R can be chosen first based on the known 
target signal power level. The above relation then gives the upper 
bound for the required cell size. The lower bound is no longer of 
concern with the use of Voronoi Cell size as weighting factors in 
obtaining Pt. 

5.2.2.3 Sensor Density 
As discussed above, Voronoi Cell size is closely related to the 
height of the ceiling. Average Voronoi Cell size is related to 
sensor density when sensors are arranged in an arbitrary fashion, 
which is the most likely case for real world applications. Average 
sensor density is an important parameter for the system designer. 
The total number of sensors and the field area determines average 
sensor density.  
It is easy to understand that a denser sensor distribution provides 
higher resolution in sensing; however, it also increases system 
cost. In this section, we relate sensor density to Voronoi Cell size 
in a sensor field where sensors are dropped uniform at random 
onto this field. We give a performance bound through a 
mathematical analysis. Average performance is studied through 
simulations. 
Consider a large sensor field with an area A, in which N sensors 
are uniform randomly dropped in this field, such that any sensor 
is equally likely to be at any point in the field independent of 
other sensors’ locations. The sensor density in this area is,  



A
N

=λ  

When λ is small and A is large, the number of targets in a sub-
region with area s, has a Poisson(λs) distribution, where s << A. 
For any sensor in A, on average, its Voronoi Cell will be a six-
sided convex polygon. This is so because the Voronoi Diagram is 
dual to the Delaunay triangulation, and in any planar triangulation 
the average degree of a vertex is six or less [2]. Pick an arbitrary 
sensor Q in the field. Let r1, r2, …r6 be the distance from Q to the 
nearest sensor, second nearest sensor, and so on. If we assume 
that all the Voronoi cells in the field have at most 6 sides, which 
can easily be verified by inspecting figure 6, then  
Voronoi cell size ≤ πr6

2.   
Let n = number of points within distance r from Q. Then, 
 P
 
=
 
The exponential component is the dominating factor in this 
probability measure as long as the number of terms in the 
summation is finite. It shows that the lower bound probability 
increases exponentially with increasing sensor density. We 
performed some experiments to find out how sensor density 
relates to cell size requirement in a real system. A 100m×100m 
sensor field is used. Sensor density is varied with changing total 
number of sensors.  

R 

d 

R 

d       

0

0.2

0.4

0.6

0.8

1

1.2

0 0.01 0.02 0.03 0.04
sensor density

P
ro

ba
bi

lit
y

 
Figure 7. Illustration of 
geometrical relations between 
ceiling area, grid spacing and target 
locations 

Figure 8. Probability of Voronoi 
cell size not exceeding 100m2 as 
average sensor density varies 
 

 
Based on target signal power level and the chosen ceiling, 100m2 

is determined to be the upper bound for cell sizes.  Figure 8 shows 
how the probability of each cell size not exceeding 100m2 changes 
with different sensor density. 
Apparently, to have all cell sizes not exceeding 100m2, only 100 
sensors are needed when they are arranged on square grid, while 
at least about 250 sensors are needed if we were drop them 
randomly in the field. We need many more sensors to provide a 
comparable level of protocol performance when sensors are 
randomly dropped in the field compared to the case in which 
sensors are placed on uniform grid.  

5.2.3 Protocol 
Our work on EBAM up to now has been focused on its 
computational correctness, which will be discussed in the 
simulation section. We intentionally ignored networking issues to 
experiment with the algorithm more efficiently. As for 

networking behavior, all EBAM requires is a way for obtaining 
Pt. It can be implemented in many different ways. We here give 
one possible solution.  
First, let us define ceiling as a system parameter, which upper 
bounds the amount of contribution a sensor can make to the 
summation of all the sensor readings within the same cluster, 
namely Pt. It is the height of the ceiling as referred previously. 
This protocol is built upon DAM protocol described earlier. A 
report packet is originated by each leaf sensor (that is a leaf on the 
tree representing the cluster) to report its reading (up to ceiling) to 
its parent. Its parent will merge the packets from its children 
(calculate subtotal of the reported readings from all its children) 
and send one report packet further up to its parent. This repeats 
until the packet reaches the root (leader). Each leader is 
responsible for calculating Pt and estimating number of target 
within its cluster. 
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Disturbance rejection in EBAM will be discussed in Sec. 6.3.2. 

5.3 EMLAM: Expectation-maximization like 
activity monitoring 
In the spirit of lightweight sensing, one of our principles in 
designing both DAM and EBAM is to keep the protocol as simple 
as possible. The protocols have been designed as simple periodic 
repetitions of set of operations based on data acquired in the 
current protocol period. Targets are counted in each period, 
independent of information from the previous period. However, 
given the spatial-temporal continuity of targets’ movement, it is a 
logical next step to explore the possibility of exploiting this 
coherence in target movement. In this section, we introduce new 
algorithms for intra-cluster target counting using an expectation-
maximization (EM) like technique, and analyze the validity of 
such an approach.  
Assume that targets are not clustered together when they enter the 
sensor field. In other words, each leader node has one target 
associated with it as result of the DMA protocol sometime in the 
past. As targets move close to one another, by exchanging 
information among these sensor leaders, the number of targets can 
be tracked. However, a problem arises when targets move away 
from each other, i.e. clusters split. It is difficult to determine how 
many targets go into one part of a split cluster and how many go 
into another. We have tried to solve this problem using the 
algorithm introduced below. 

5.3.1 Algorithm 
The basic idea is that, if target location and amplitude can be 
estimated, then we have nearly complete knowledge of the signal 
field landscape instead of a sampled view of it. In the case where 
the free space propagation model applies, the set of estimation 
equations for determining location and target signal power can be 
solved by the Minimum Mean Square Estimation (MMSE) 
method [11]. However, when there are other targets nearby, 
signals emitted from these targets interfere with the estimation 
results. Consequently, MMSE can render unreliable estimation 
values. To fend off these interference effects, we apply the 
principle of expectation maximization in the estimation process. 
The algorithm is as follows: 
• Assume at the beginning, targets are well separated. 



Two new protocol agents (target and sensor) were added at the 
transport layer. There are several issues related to the simulation 
setup. We chose TDMA as our MAC protocol for two reasons. 
First, TDMA is more energy efficient than CSMA based 802.11 
MAC. Power consumption is not considered in our study at this 
stage. Should it be considered as a performance metric in the 
future, TDMA will certainly be more appropriate for power 
consumption estimation. Second, in our simulation, target signals 
are simulated by packet broadcast from each target. Sensing is 
simulated by sensors receiving these packets. To simulate signal 
superposition, we have each sensor add up receiving signal power 
(assuming target signal powers are independent) from all such 
packets. With the current preamble based TDMA (in NS-2), 
collision will never occur. This is exactly what we need because 
we want target signals to be summed up at a sensor instead of 
being dropped due to collision. We separate each protocol period 
into sensing and communication phases to avoid the simulation of 
sensing interfering with communications among sensors. 

• Use a prediction model to estimate new target position at 
each time step. The simplest prediction model is to let new 
positions equal to old positions. 

• Using the old positions, calculate the percentages of the 
signal at each sensor node due to each target. Allocate the 
sensed signals to each target using these percentages.  

• Use the separated signals for each target to perform MMSE 
for that target location. 

• Repeat the above till convergence 
In our implementation of the algorithm, each cluster leader 
performs MMSE based on sensed signal power at itself and at its 
neighbors. When two targets move close enough to each other 
such that they share one cluster leader, by passing information 
from the two previous leaders, the new leader is able to know that 
two clusters are merging into one, therefore two targets are in the 
region of its cluster. The new leader is then responsible for the 
joint estimation of the two targets. 

Free space propagation model is used in our simulation. The 
target movement pattern is generated with the mobility generator 
in ns-2. Sensor locations are generated with adding random 
perturbations in both x and y coordinates to a uniform grid. The 
random perturbation has a zero mean Gaussian distribution. 

5.3.2 Pros and Cons of This Method 
This algorithm works very well when targets are reasonably 
separated. It yields rather accurate location and amplitude 
estimations for each moving target. The exact lower bound of 
distance between targets depends on target signal power levels 
and sensor density. However, when targets are within very close 
proximity of one another (in our simulation, half the sensor 
spacing distance), the interference effect derails the MMSE 
results. This is because the prediction model, as mentioned 
earlier, cannot be perfect. When interfering sources are very 
close, slight imperfections in the prediction of the current 
locations of targets can lead to wrong input data (to MMSE) and 
in turn to significant deviation from the true sensor readings for 
the target of interest. The consequence of these imperfect inputs 
and the fact that MMSE is quite sensitive to disturbances is that 
our estimation results will be inaccurate. Since the current target 
locations are used to predict target locations in the future, wrong 
estimation at current stage can throw the future estimation into 
doubt. This error propagation effect can eventually be very 
severe. 

6.1.2 DAM Simulation Analysis 
DAM is developed with a target monitoring task in mind. DAM 
provides us with information about target clustering and 
approximate locations of these clusters. The finer resolution the 
system can obtain in identifying each target, the more detailed 
information it provides on targets. In a perfect scenario, DAM can 
identify one sensor leader for each target in its closest proximity. 
To find the most important factors affecting system resolution in 
target monitoring, we first consider a simplified scenario in which 
sensors are arranged on a grid. We call this type of network non-
jittered network. The second type is the jittered layout as 
described earlier. We first provide an analysis of the non-jittered 
network. We then present the simulation results of both types of 
networks and compare them with the mathematical results 
obtained. The comparison shows that the simulation results are 
qualitatively consistent with the mathematical analysis. The 
capability of the protocol to discern distinct targets decreases as 
the number of targets or average sensor spacing increases. 

6. SIMULATIONS 
In this section, we first evaluate the performance of the DAM 
protocol in NS-2 simulations. These simulations include detailed 
models of a wireless network MAC and physical layers. After 
verifying the correctness of DAM and measuring its performance, 
we then confirmed the viability of our design of EBAM with 
randomly distributed sensors and significant environment noise. 
In the interest of computational tractability, we do not model 
radio details in simulating the behavior of EBAM. 

6.1.2.1 An Case Study for Non-jittered Network with 
Stationary Targets 
We conducted an analysis on the performance of the protocol for 
the following scenario: Consider a large sensor field with an area 
A, in which sensors are arranged on a uniform square grid with 
distance between neighboring nodes being r. Sensors can 
communicate with their closest neighbors (4 such neighbors for 
each sensor, except for those on the border of the field). Consider 
randomly placing N targets in this field, so that any target is 
equally likely to be at any point in the area. There are N targets in 
the region. Target density is thus AN/=λ . When λ is small, the 
number of targets in a sub-region with area s, where s<<A, has a 
Poisson(λs) distribution. 

6.1 DAM Simulations 
6.1.1 DAM Simulation Setup 
By modeling the full MAC layer and physical layer, NS-2 allows 
evaluation of a system's performance on a bandwidth-limited, 
contention-prone wireless medium. Our simulations use a 
preamble based TDMA MAC and a 20-m radio range. We do not 
consider environmental noise in this part of the simulations, and 
leave it to section 6.3.  

Let T be any target, and d be the distance between T and its 
closest neighbor (another target). Following the property of 
Poisson distribution, we know that d has cumulative distribution 
function, 2
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For two target signal peaks to be differentiated, any 
communication pathway between the two leader nodes must 
contain a node whose sensed signal amplitude is lower than those 
of both leaders. Assuming a free space propagation model, from a 
geometric analysis, we know that if d > 2.5r, the two neighboring 
targets are discernible as shown in Figure 9. In others words, this 
is a sufficient condition and the bound is reasonably tight. 
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Figure 9. Inter-target distance has to be greater than a few multiples of r in 
order for the target peaks to be differentiated. 
 
Based on this, the lower bound probability for a target being 
discernible from its nearest neighbor can be calculated as follows. 
 
This shows that the lower bound detection probability decreases 
exponentially with increasing number of targets for a given 
region. Likewise, the probability decreases rapidly as inter-sensor 
spacing increases. This reinforces our intuition that dense sensor 
distribution or sparse targets make targets much easier to be 
differentiated on the average.  
When target mobility is considered, target distribution at any 
instant of time is no longer Poisson. We study relationships 
between protocol performance and target density, as well as 
sensor spacing through simulations.  

6.1.2.2 Simulations Results 
1) Simulations of Non-jittered Networks with Moving Targets  
We are interested in the probability of obtaining correct count of 
targets by DAM alone from an empirical point of view. It would 
also be interesting to compare our protocol performance in non-
jittered networks vs. that in jittered networks. To reduce the 
variations due to finite sample size, we ran a large number of 
experiments. The simulation results are shown in Table 1. Each 
data entry shown is the average of results from about 10 
simulation runs, each of 1000 seconds duration (translating to a 
few 100s protocol periods and count estimate). 
As expected, the performance of the protocol, as measured in 
terms of percentage of correct counts, decreases very rapidly as 
sensor spacing increases, and decrease quickly as the number of 
targets increases.  
2)  Simulations of Jittered Networks with Moving Targets  
In this experiment, the sensor locations are generated by jittering 
the grid locations with a Gaussian noise, i.e., perturbing both x 
and y coordinates of a grid position with a zero-mean Gaussian, 
with a standard deviation of 0.1. 
The simulation results are shown in Table 1. Note that a few 
entries near the lower-right corner of the table are not filled in, as 

they are practically close to zero. The performances for non-
jittered and jittered networks are comparable. 

Table 1. Performance data 
Simulation I - percentage of correct counts for type I network 

Simulation II - percentage of correct counts for type II network 
λ - number of targets per sq. km 

λ 24.5 51 102 204
r =10 I 0.9312 0.8815 0.7525 0.4531

II 0.9127 0.8775 0.7243 0.5060
r = 20 I 0.7575 0.6573 0.1302 0.02

II 0.7190 0.6112 0.1488 0.03
r = 40 I 0.1311 0.01 - -

II 0.0991 0 - -
 

It is also useful to analyze the effect of radio communication 
radius, relative to the mean inter-sensor distances, on the 
correctness of counting. Fixing the communication radius, as 
inter-sensor distance increases, neighboring sensor nodes may 
become unable to communicate directly with each other, resulting 
in possible over-count of targets. When inter-sensor distance 
decreases, more sensors can radio with each other, leading to 
possible under-count of close-by targets. The cause of this is the 
loss of "locality", and hence the resolution of the peak detection. 
Neither scenario would occur if the radio range could be adjusted 
so that only closest neighbors can communicate with each other. 
In general, over-count can be remedied with increasing sensor 
density or increasing radio range. Under-count can be remedied 
with decreasing radio range or use of EBAM. 
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6.2 EBAM Simulations 
The detailed NS-2 simulations verify the correctness and 
robustness of DAM in a more realistic wireless environment. 
However, they were limited to system sizes on the order of 100 
nodes. We now use less detailed simulations to verify our energy 
based activity monitoring algorithm in much larger systems. We 
built a special-purpose simulator that assumes packet delivery to 
neighboring nodes is instantaneous and error-free. This simulator 
is sufficient because our focus now is first on correctness of our 
method to obtain power invariant Pt with randomly placed 
sensors, and second on validity of introducing cell areas to factor 
sensor density into considerations. 

6.2.1 EBAM Simulation Setup 
We simulated networks with 100, 225, 400 sensors in a 
100m×100m area. Sensors within 15m, 15m, 8m ranges are 
considered one-hop neighbors for each of the three network 
configurations respectively. EBAM is implemented on top of 
DAM. The following are system parameters used in our 
simulation: target signal power = 0.8mW, ceiling = 28µW, 
threshholdElection = 0.3652µW, and antenna gains = 1. 
In our experiments, 9, 12, 20 moving targets in the sensor field 
are simulated.  Target movement patterns are generated with the 
mobility generator in NS-2. We experimented with network 
configured such as all sensors are placed on uniform grid, as well 
as network configured such as each sensor is place at a spot 
picked uniformly at random and independent of the placement of 
all the other sensors. Figure 10 shows a sensor network with 
randomly placed sensors and clusters formed by DAM protocol. 
Performance metrics are percentage of time obtaining correct 



count of target and percentage of time missing the correct count 
by 10% and 20%.   

 
Figure 10. 200 sensors placed uniformly at random in a 100m×100m 
field. Clusters are formed according to the DAM protocol. 

6.2.2 EBAM Simulation Results 
In this section, we analyze simulation results for EBAM 
algorithm and compare performance of EBAM in network with 
sensors on grid and network with sensors placed uniformly at 
random. Results are presented in Table 2. 
Table 2 Comparison of system with sensor distributed on grid and 
system with sensor distributed uniform randomly. First column shows 
percentage of time obtaining correct count (0% error). Second column 
shows percentage of time obtaining count with 10% error. Third column 
shows percentage of time obtaining count with 20% error. 

  Grid   Random  
Error rate 0% 10% 20% 0% 10% 20% 
100 sensor 57% 35% 8% 25.3% 30.1% 13% 
225 sensor 61% 37% 2% 48.8% 35.1% 10% 
400 sensor 74% 25% 1% 54% 40.2% 5.5% 

From the above comparison, it is apparent that EBAM is robust in 
a network with total randomly distributed sensors. However, it 
does require many more sensors in this case to provide same level 
of count accuracy compared to networks with sensors placed on 
uniform grid. These results are expected because, as discussed in 
the algorithm section, what matters here is Voronoi Cell size. 
Smaller cell size leads to finer sampling of the 2-D signal surface 
as shown in figure 2, therefore, better system performance. When 
sensors are dropped into the field uniformly at random, it is likely 
that in some region sensor density will be low, consequently leads 
to inaccurate count when targets are in these regions. 

6.3 Robustness to Disturbances 
We’ve delayed detailed discussions of protocol robustness to 
environment noise and disturbance until this section because the 
major mechanism to counter external disturbance is inherent in 
EBAM. We will give a brief introduction to ways of handling 
minor disturbances in DAM and EBAM before presenting our 
simulation results and discussions on dealing with imperfect 
terrain conditions. 

6.3.1 Noise Rejection in DAM 
When random noise exceeds the known noise floor level whose 
impact is minimized with the use of ThreshholdElection discussed 
in DAM protocol, it will have an adverse effect on the protocol 
performance. The worst type of noise effect due to random 
environment noise is generating false peaks, which are treated as 
local leaders in DAM. Our strategy is to use a disturbance 

rejection threshold δ to test if a candidate is indeed a peak. For 
example, when a node’s amplitude detection is less than δ above 
transPr it just received, instead of dropping the packet it received, 
the node will continue to pass along the packet, thus effectively 
smoothing out the local spike due to disturbance or noise. The 
choice of the threshold δ depends on the noisiness of the 
environment and accuracy requirement of the task, and can be 
adjusted to reflect changing requirements or resource constraints. 

6.3.2 Noise Rejection in EBAM 
In EBAM, target count is derived from cluster summation Pt, with 
ceiling limiting contribution from each sensor. In signal 
processing terms, the summation process acts as a smoothing 
filter. White noise will have minimal impact after this smoothing 
operation. It is harder to handle non-white noise since smoothing 
operation is not as effective as it with white noise. However, the 
ceiling level at least can limit the degree of noise impact. 

6.3.3 Simulation Results on Noise Rejection 
We now demonstrate that EBAM is robust in the presence of 
white noise and DMA has certain resistance to disturbances with 
reasonably chosen threshold δ.  
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Figure 11.  EBAM performance vs. standard deviation of white 
Guassian noise 
We simulated 225 sensors arranged on a grid in a 100m×100m 
area. Other system parameters remained the same. White 
Guassian noise N(0, σ) is used in this experiment. Maximal σ 
value is chosen to be twice as large as sensor ThreshholdElection 
. Recall that if random variable x has zero mean Guassian 
distribution, probability of x exceeds σ is about 15.9% 
(Q(1)=0.159, where Q(.) is the Q-function for normal 
distributions). This means that the noise we add to each sensor 
reading has 15.9% chance of larger than 2×ThreshholdElection, 
which is determined by the level of noise floor. We consider this 
reasonably models common environment noise. 
It is evident in figure 11, that protocol performance degrades with 
increasing noise power, however in an acceptably moderate way. 
It is our belief that as long as only amplitude sensing sensors are 
used, noise will have a significant impact on system performance 
although good design may reduce this impact to some extent. 

6.3.4 Handling Disturbances Due to Imperfect 
Terrain Conditions  
Our study has focused on a 2-D signal propagation model, which 
also assumes that a sensor can “talk” to any sensor within its 
communication radius. In real world, it is likely that we are going 
to encounter situations that do not completely fit such a model.  



For example, a scenario in which sensors are placed on an uneven 
surface may result in non-monotonic decrease in signal strength 
due to shadowing. This type of disturbances can be treated in a 
similar way as that for noise rejection in DAM (section 6.3.1). 
Undulation of terrain surface results in weaker signal strength at 
lower points on the surface. This is equivalent to superposing 
noise of negative amplitudes on the 2-D propagation model at 
each point on the surface. An absolute lower threshold for elected 
leaders will also help to eliminate false peaks detected because of 
false valleys due to shadowing effect.  
There may also be blocking objects which can interfere with 
communication between sensors. In this scenario, two sensors 
near one target would become two leaders because they could not 
communicate directly with each other. Dealing with this type of 
disturbances requires more involved techniques. One solution 
could be to discover obstacles by finding “communication holes” 
in the sensor network topology. Once these “communication 
holes” are identified, some virtual neighbors in terms of 
Euclidean distance can be identified. Running the proposed 
protocols taking into consideration of these virtual neighbors 
(instead of graph neighbors only) could then avoid over counting 
in this type of scenario. Finding such “communication holes” is 
part of our ongoing research. 

7. EXPERIMENTAL VALIDATION 
The DAM protocol has been implemented on a network of 
Berkeley MICA motes [5]. In our testbed, 25 wireless sensor 
nodes are laid out on a two-dimensional, jittered grid of 25×25 
with a 10’’ spacing (Fig.12). Each node in the network 
communicates wirelessly with 8 nearest neighbors. A base station, 
at the bottom of the sensor grid, retrieves the cluster/leader 
information from the nodes in the network through the multi-hop 
BLESS protocol, and displays it on the GUI of a PC (Fig. 13). 

              
Figure12. A wireless sensor 
network testbed, built from Berkeley 
MICA motes, for experiments with 
the DAM protocol  

Figure13. Sensing field (top) and 
GUI display (bottom) showing 
status of DAM leader election. 
 

Light sensors were used for the experiment since the chosen target 
was a light source.  The light sensors were chosen over the sound 
sensors due to their greater robustness to ambient noise (which in 
our case was harder to control for sound).  The light source is 
produced with using a projector to image a MATLAB-generated 
movie of two moving spots onto the sensor board. The light 
intensity attenuation of each spot follows a 2-D Gaussian 
distribution, with the peak at the center of the spot. 
Figure 14 shows two snapshots of the DAM output. One the left, 
the two targets are well-separated, with a distinct leader node 

elected for each target. On the right, the two targets are 
overlapping and result in under sampling of the signal field, with 
only one leader node elected for the targets. The results 
experimentally validated the basic structure of the DAM protocol. 
Additional performance analysis of the protocol, through both 
simulation and testbed experiments, is a topic of future research. 
 

 
Figure 14. DAM protocol results. Left: leader node election for well-
separated targets. Right: Leader election for overlapping targets. 

8. DISCUSSION 
We have intentionally kept our approach to the target counting 
problem as generic as possible, in order to bring out the central 
issue of aggregate management. For example, if two targets with 
overlapping influence regions have significant differences in 
signal signatures that the sensors can exploit, then the target 
counting problems can be simplified by using a classifier to 
determine the source of the signal components. However, this 
would require additional processing capabilities on the sensor 
node. By making minimal assumptions on the sensor node 
processing and communication capabilities, our protocols are 
more amendable to implementations on resource-limited hardware 
such as Berkeley motes [5]. 
An alternative to the counting protocol we discussed is for each 
node to locally determine if it is near a peak, using perhaps 
derivatives of the amplitude information. However, this local 
approach would be more sensitive to noise. The communication 
radius in DAM defines the minimal amplitude features the 
network can distinguish, and hence somewhat smoothes out small 
disturbances. Moreover, DAM computes sensor aggregates that 
can support additional collaborative processing tasks. 
The target count information needs to be aggregated and extracted 
to answer a query [1]. Assume the user query originates from a 
node on the edge of the network. Our protocol needs to be 
extended to set up the query routing path(s) to appropriate 
regions, aggregate the results from each region, and route the 
query results to the node originating the query, all optimized with 
respect to constraints from tasks and resources. In our leader 



based protocol, the query aggregation is simply to aggregate the 
cluster leaders in the network. As pointed out in Sec. 2, the data 
we compute can be used to answer target counting queries for 
geometric regions and not just for the entire domain, using a 
spatial indexing tree and pre-computing partial results. There is 
obviously a trade-off here that may be interesting to develop, 
where less preprocessing can be traded off against more sensing 
and communication at the time of the query. The optimal balance 
will depend on the cost of the preprocessing against the rate at 
which the queries come in. 
For the moving target case, the correctness of the query 
aggregation would be more difficult to guarantee because of 
communication delays. If the communication is slower relative to 
the motion of the targets, stale peak detection might be 
aggregated, resulting in incorrect count. This remains as a future 
topic for us to address. 
Computation and communication in terms of aggregates are not 
new. Spatial Aggregation Language (SAL), for example, 
explicitly treats aggregates as first class objects, and provides a 
set of operators to transform the aggregates [13]. The challenge 
for ad hoc wireless sensor networks is to develop a set of scalable, 
lightweight, resource-aware sensing and communication protocols 
that can efficiently form and maintain aggregates for collaborative 
processing tasks. The algorithms developed in this paper represent 
interesting instances of this class of new protocols and solve the 
nontrivial collaborative processing task of monitoring target 
activities. Our analysis and implementation results have already 
demonstrated the effectiveness of these algorithms. 
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