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50.1 INTRODUCTION

Motion is ubiquitous in the physical world, yet its study is much less developed
than that of another common physical modality, namely shape. While we have
several standardized mathematical shape descriptions, and even entire disciplines
devoted to that area–such as Computer-Aided Geometric Design (CAGD)—the
state of formal motion descriptions is still in flux. This in part because motion
descriptions span many levels of detail; they also tend to be intimately coupled to an
underlying physical process generating the motion (dynamics). Thus, until recently,
proper abstractions were lacking and there was only limited work on algorithmic
descriptions of motion and their associated complexity measures. This chapter
aims to show how an algorithmic study of motion is intimately tied to discrete
and computational geometry. After a quick survey of earlier work (Sections 50.2
and 50.3), we devote the bulk of this chapter to discussing the framework of Kinetic
Data Structures (Section 50.4) [Gui98, BGH99]. We also briefly discuss methods
for querying moving objects (Section 50.5).

50.2 MOTION IN COMPUTATIONAL GEOMETRY

Dynamic computational geometry refers to the study of combinatorial changes in
a geometric structure, as its defining objects undergo prescribed motions. For
example, we may have n points moving linearly with constant velocities in R

2, and
may want to know the time intervals during which a particular point appears on
their convex hull, the steady-state form of the hull (after all changes have occurred),
or get an upper bound on how many times the convex hull changes during this
motion. Such problems were introduced and studied in [Ata85].

A number of other authors have dealt with geometric problems arising from
motion, such as collision detection (Chapter 35) or minimum separation determina-
tion [GJS96, ST95, ST96]. For instance, [ST96] shows how to check in subquadratic
time whether two collections of simple geometric objects (spheres, triangles) collide
with each other under specified polynomial motions.

50.3 MOTION MODELS

An issue in the above research is that object motion(s) are assumed to be known in
advance, sometimes in explicit form (e.g., points moving as polynomial functions
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of time). Indeed, the proposed methods reduce questions about moving objects to
other questions about derived static objects.

While most evolving physical systems follow known physical laws, it is also
frequently the case that discrete events occur (such as collisions) that alter the
motion law of one or more of the objects. Thus motion may be predictable in the
short term, but becomes less so further into the future. Because of such discrete
events, algorithms for modeling motion must be able to adapt in a dynamic way to
motion model modifications. Furthermore, the occurrence of these events must be
either predicted or detected, incurring further computational costs. Nevertheless,
any truly useful model of motion must accommodate this on-line aspect of the tem-
poral dimension, differentiating it from spatial dimensions, where all information is
typically given at once.

In real-world settings, the motion of objects may be imperfectly known and
better information may only be obtainable at considerable expense. The model
of data in motion of [Kah91] assumes that upper bounds on the rates of change
are known, and focuses on being selective in using sensing to obtain additional
information about the objects, in order to answer a series of queries.

50.4 KINETIC DATA STRUCTURES

Suppose we are interested in tracking high-level attributes of a geometric system
of objects in motion such as, for example, the convex hull of a set on n points
moving in R

2. Note that as the points move continuously, their convex hull will
be a continuously evolving convex polygon. At certain discrete moments, however,
the combinatorial structure of the convex hull will change (that is, the circular
sequence of a subset of the points that appear on the hull will change). In between
such moments, tracking the hull is straightforward: its geometry is determined
by the positions of the sequence of points forming the hull. How can we know
when the combinatorial structure of the hull changes? The idea is that we can
focus on certain elementary geometric relations among the n points, a set of cached
assertions, which altogether certify the correctness of the current combinatorial
structure of the hull. Furthermore, we can hope to choose these relations in such
a way so that when one of them fails because of point motion, both the hull and
its set of certifying relations can be updated locally and incrementally, so that the
whole process can continue.

GLOSSARY

Kinetic data structure: A kinetic data structure (KDS) for a geometric at-
tribute is a collection of simple geometric relations that certifies the combinato-
rial structure of the attribute, as well as a set of rules for repairing the attribute
and its certifying relations when one relation fails.

Certificate: A certificate is one of the elementary geometric relations used in a
KDS.

Event: An event is the failure of a KDS certificate during motion. Events are
classified as external when the combinatorial structure of the attribute changes,
and internal, when the structure of the attribute remains the same, but its
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certification needs to change.
Event queue: In a KDS, all certificates are placed in an event queue, according

to their earliest failure time.

The inner loop of a KDS consists of repeated certificate failures and certification
repairs, as depicted in Figure 50.4.1.

Proof of
correctness

Certificate
failure

Proof update
Attribute
 update

FIGURE 50.4.1
The inner loop of a kinetic data structure.

We remark that in the KDS framework, objects are allowed to change their
motions at will, with appropriate notification to the data structure. When this
happens all certificates involving the object whose motion has changed must re-
evaluate their failure times.

CONVEX HULL EXAMPLE

Suppose we have four points a, b, c, and d in R
2, and wish to track their convex hull.

For the convex hull problem, the most important geometric relation is the ccw
predicate: ccw(a, b, c) asserts that the triangle abc is oriented counterclockwise.
Figure 50.4.2 shows a configuration of four points and four ccw relations that hold
among them. It turns out that these four relations are sufficient to prove that
the convex hull of the four points is the triangle abc. Indeed the points can move
and form different configurations, but as long as the four certificates shown remain
valid, the convex hull must be abc.

Now suppose that points a, b, and c are stationary and only point d is moving,
as shown in Figure 50.4.3. At some time t1 the certificate ccw(d, b, c) will fail, and
at a later time t2 ccw(d, a, b) will also fail. Note that the certificate ccw(d, c, a) will
never fail in the configuration shown even though d is moving. So the certificates
ccw(d, b, c) and ccw(d, a, b) schedule events that go into the event queue. At time
t1, ccw(d, b, c) ceases to be true and its negation, ccw(c, b, d), becomes true. In
this simple case the three old certificates, plus the new certificate ccw(c, b, d) allow
us to conclude that convex hull has now changed to abdc.

If the certificate set is chosen judiciously, the KDS repair can be a local, incre-
mental process—a small number of certificates may leave the cache, a small number
may be added, and the new attribute certification will be closely related to the old
one. A good KDS exploits the continuity or coherence of motion and change in
the world to maintain certifications that themselves change only incrementally and
locally as assertions in the cache fail.
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FIGURE 50.4.2
Determining the convex hull of the points.
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FIGURE 50.4.3
Updating the convex hull of the points.

PERFORMANCE MEASURES FOR KDS

Because a KDS is not intended to facilitate a terminating computation but rather
an on-going process, we need to use somewhat different measures to assess its com-
plexity. In classical data structures there is usually a tradeoff between operations
that interrogate a set of data and operations that update the data. We commonly
seek a compromise by building indices that make queries fast, but such that up-
dates to the set of indexed data are not that costly as well. Similarly in the KDS
setting, we must at the same time have access to information that facilitates or
trivializes the computation of the attribute of interest, yet we want information
that is relatively stable and not so costly to maintain. Thus, in the same way that
classical data structures need to balance the efficiency of access to the data with
the ease of its update, kinetic data structures must tread a delicate path between
“knowing too little” and “knowing too much” about the world. A good KDS will
select a certificate set that is at once economical and stable, but also allows a quick
repair of itself and the attribute computation when one of its certificates fails.

GLOSSARY

responsiveness: A KDS is responsive if the cost, when a certificate fails, of
repairing the certificate set and updating the attribute computation is small. By
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“small” we mean polylogarithmic in the problem size—in general we consider
small quantities that are polylogarithmic or O(nε) in the problem size.

efficiency: A KDS is efficient if the number of certificate failures (total number
of events) it needs to process is comparable to the number of required changes
in the combinatorial attribute description (external events), over some class of
allowed motions. Technically, we require that the ratio of total events to external
events is small. The class of allowed motions is usually specified as the class of
pseudo-algebraic motions, in which each KDS certificate can flip between true
and false at most a bounded number of times.

compactness: A KDS is compact if the size of the certificate set it needs is close
to linear in the degrees of freedom of the moving system.

locality: A KDS is local if no object participates in too many certificates; this
condition makes it easier to re-estimate certificate failure times when an object
changes its motion law. (The existence of local KDSs is an intriguing theoretical
question for several geometric attribute functions.)

CONVEX HULL, REVISITED

We now briefly describe a KDS for maintaining the convex hull of n points moving
around in the plane [BGH99].

The key goal in designing a KDS is to produce a repairable certification of the
geometric object we want to track. In the convex hull case it turns out that it is a
bit more intuitive to look at the dual problem, that of maintaining the upper (and
lower) envelope of a set of moving lines in the plane, instead of the convex hull of
the primal points. For simplicity we focus only on the upper envelope part from
now on; the lower envelope case is entirely symmetric. Using a standard divide-
and-conquer approach, we partition our lines into two groups of size roughly n/2
each, and assume that recursive invocations of the algorithm maintain the upper
envelopes of these groups. For convenience call the groups red and blue.

In order to produce the upper envelope of all the lines, we have to merge the
upper envelopes of the red and blue groups and also certify this merge, so we can
detect when it ceases to be valid as the lines move; see Figure 50.4.4.

Conceptually, we can approach this problem by sweeping the envelopes with
a vertical line from left to right. We advance to the next red (blue) vertex and
determine if it is above or below the corresponding blue (red) edge, and so on. In
this process we determine when red is above blue or vice versa, as well as when
the two envelopes cross. By stitching together all the upper pieces, whether red or
blue, we get a representation of the upper envelope of all the lines.

The certificates used in certifying the above merge are of three flavors:

• x-certificates (<x) are used to certify to x-ordering among the red and blue
vertices; these involve four original lines.

• y-certificates (<y) are used to certify that a vertex is above or below an edge
of the opposite color; these involve three original lines and are exactly the
duals of the ccwcetificates discussed earlier.

• s-certificates (<s) are slope comparisons between pairs of original lines; though
these did not arise in our sweep description above, they are needed to make
the KDS local [BGH99].
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FIGURE 50.4.4
Merging the red and blue upper envelopes. In this example, the red envelope (solid
line) is above the blue (dotted line), except at the extreme left and right areas. Vertical
double-ended arrows represent y-certificates and horizontal double-ended arrows represent
x-certificates, as described below.

Figure 50.4.5 shows examples of how these types of certificates can be used to
specify x-ordering constraints and to establish intersection or non-intersection of
the envelopes.
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FIGURE 50.4.5
Using the different types of certificates to certify the red-blue envelope merge.

A total of O(n) such certificates suffices to verify the correctness of the upper
envelope merge.

Whenever the motion of the lines causes one of these certificates to fail, a local,
constant-time process suffices to update the envelope and repair the certification.
Figure 50.4.6 shows an example where an y-certicate fails, allowing the blue enve-
lope to poke up above the red.

It is straightforward to prove that this kinetic upper envelope algorithm is
responsive, local, and compact, using the logarithmic depth of the hierarchical
structure of the certification. In order to bound the number of events processed,
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FIGURE 50.4.6
Envelope repair after a certificate failure.In the event shown lines b, d, and e become
concurrent, producing a red-blue envelope intersection

however, we must assume that the line motions are polynomial or at least pseudo-
algebraic. A proof of efficiency can be developed by extruding the moving lines
into space-time surfaces. Using certain well-known theorems about the complexity
of upper envelopes of surfaces [Sha94] and the overlays of such envelopes [ASS96]
(cf. Chapter 47), it can be shown that in the worst case the number of events
processed by this algorithm is near quadratic (O(n2+ε)). Since the convex hull of
even linearly moving points can change Ω(n2) times [AGHV01], the efficiency result
follows.

No comparable structure is known for the convex hull of points in dimensions
d ≥ 3.

EXTENT PROBLEMS

A number of the original problems for which kinetic data structures were developed
are aimed at different measures of how “spread out” a moving set of points in
R

2 is—one example is the convex hull, whose maintenance was discussed in the
previous subsection. Other measures of interest include the diameter, width, and
smallest area or perimeter bounding rectangle for a moving set S of n points. All
these problems can be solved using the kinetic convex hull algorithm above; the
efficiency of the algorithms is O(n2+ε), for any ε > 0. There are also corresponding
Ω(n2) lower bounds for the number of combinatorial changes in these measures.
Surprisingly, the best known upper bound for maintaining the smallest enclosing
disk containing S is still near-cubic. Extensions of these results to dimensions
higher than two are also lacking.

These costs can be dramatically reduced if we consider approximate extent
measures. If we are content with (1 + ε) approximations to the measures, then
an approximate smallest orthogonal rectangle, diameter, and smallest enclosing
disk can be maintained with a number of events that is a function ε only and not
of n [AHP01]. For example, the bound of the number of approximate diameter
updates in R

2 under linear motion of the points is O(1/ε).

PROXIMITY PROBLEMS

The fundamental proximity structures in computational geometry are the Voronoi
Diagram and the Delaunay triangulation (Chapter 23). The edges of the Delaunay
triangulation contain the closest pair of points, the closest neighbor to each point,
as well as a wealth of other proximity information among the points. From the
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kinetic point of view, these are nice structures, because they admit completely
local certifications. Delaunay’s 1934 theorem [Del34] states that if a local empty
sphere condition is valid for each (d−1)-simplex in a triangulation of points in
R

d, then that triangulation must be Delaunay. This makes it simple to maintain
a Delaunay triangulation under point motion: an update is necessary only when
one of these empty sphere conditions fails. Furthermore, whenever that happens,
a local retiling of space (of which the classic “edge-flip” in R2 is a special case;
cf. Section 25.3) easily restores Delaunayhood. Thus the KDS for Delaunay (and
Voronoi) that follows from this theorem is both responsive and efficient—in fact,
each KDS event is an external event in which the structure changes. Though no
redundant events happen, an exact upper bound for the total number of such events
in the worst-case is still elusive even in R2, where the best known upper bound is
nearly cubic, while the best lower bound only quadratic [AGMR98].

This principle of a set of easily checked local conditions that implies a global
property has been used in kinetizing other proximity structures as well. For in-
stance, in the power diagram [Aur87] of a set of disjoint balls, the two closest balls
must be neighbors [GZ98]—and this diagram can be kinetized by a similar ap-
proach. Voronoi diagrams of more general objects, such as convex polytopes, have
also been investigated. For example, in R2 [GSZ00] shows how to maintain a com-
pact Voronoi-like diagram among moving disjoint convex polygons; again, a set of
local conditions is derived which implies the global correctness of this diagram. As
the polygons move, the structure of this diagram allows one to know the nearest
pair of polygons at all times.

In many applications the exact L2-distance between objects is not needed and
more relaxed notions of proximity suffice. Polyhedral metrics (such as L1 or L∞)
are widely used, and the normal unit ball in L2 can be approximated arbitrarily
closely by polyhedral approximants. It is more surprising, however, that if we
partition the space around each point into a set of polyhedral cones and maintain
a number of directional nearest neighbors to each point in each cone, then we can
still capture the globally closest pair of points in the L2 metric. By directional
neighbors here we mean that we measure distance only along a given direction in
that cone. This geometric fact follows from a packing argument and is exploited
in [BGZ97] to give a different method for maintaining the closest pair of points in
R

d. The advantage of this method is that the kinetic events are changes of the
sorted order of the points along a set of directions fixed a priori, and therefore the
total number of events is provably quadratic.

TRIANGULATIONS AND TILINGS

Many areas in scientific computation and physical modeling require the mainte-
nance of a triangulation (or more generally a simplicial complex) that approximates
a manifold undergoing deformation. The problem of maintaining the Delaunay tri-
angulation of moving points in the plane mentioned above is a special case. More
generally, local re-triangulations are necessitated by collapsing triangles, and some-
times required in order to avoid undesirably “thin” triangles. In certain cases the
number of nodes (points) may also have to change in order to stay sufficiently
faithful to the underlying physical process; see, for example, [CDES01]. Because
in general a triangulation meeting certain criteria is not unique or canonical, it
becomes more difficult to assess the efficiency of kinetic algorithms for solving such
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problems. The lower-bound results in [ABdB+99] indicate that one cannot hope
for a subquadratic bound on the number of events in the worst case in the mainte-
nance an any triangulation, even if a linear number of additional Steiner points is
allowed.

There is large gap between the desired quadratic upper bound and the cur-
rent state of art. Even for maintaining an arbitrary triangulation of a set of n
points moving linearly in the plane, the best-known algorithm processes O(n7/3)
events [ABG+00] in the worst case. The algorithm actually maintains a pseudo-
triangulation of the convex hull of the point set and then a triangulation of each
pseudotriangle. Although there are only O(n2) events in the pseudotriangulation,
some of the events change too many triangles because of high-degree vertices. Un-
less additional Steiner points are allowed, there are point configurations for which
high-degree vertices are inevitable and therefore some of the events will be expen-
sive. A more clever, global argument is needed to prove a near-quadratic upper
bound on the total number of events in the above algorithm. Methods that choose
to add additional points, on the other hand, have the burden of defining appropri-
ate trajectories for these Steiner points as well. Finally, today no triangulation that
guarantees certain quality on the shapes of triangles as well as a subcubic bound
on the number of retiling events is known.

COLLISION DETECTION

Kinetic methods are naturally applicable to the problem of collision detection be-
tween moving geometric objects. Typically collisions occur at irregular intervals, so
that fixed-time stepping methods have difficulty selecting an appropriate sampling
rate to fit both the numerical requirements of the integrator as well as thos of colli-
sion detection. A kinetic method based on the discrete events that are the failures
of relevant geometric conditions can avoid the pitfalls of both oversampling and
undersampling the system. For two moving convex polygons in the plane, a kinetic
algorithm where the number of events is a function of the relative separation of the
two polygons is given in [EGSZ99]. The algorithm is based on constructing certain
outer hierarchies on the two polygons. Analogous methods for 3D polytopes were
presented in [GXZ01], together with implementation data.

A tiling of the free space around objects can serve as a proof of non-intersection
of the objects. If such a tiling can be efficiently maintained under object motion,
then it can be the basis of a kinetic algorithm for collision detection. Several papers
have developed techniques along these lines, including the case of two moving simple
polygons in the plane [BEG+99], or multiple moving polygons [ABG+00, KSS00].
These developments all exploit deformable pseudotriangulations of the free space—
tilings which undergo fewer combinatorial changes than, for example, triangula-
tions. An example from [ABG+00] is shown in Figure 50.4.7. The figure shows
how the pseudotriangulation adjusts by local retiling to the motion of the inner
qudrilateral. The approach of [ABG+00] maintains a canonical pseudotriangula-
tion, while others are based on letting a pseudotriangulation evolve according to the
history of the motion. It is unclear at this point which is best. An advantage of all
these methods is that the number of certificates needed is close to size of the min-
link separating subdivision of the objects, and thus sensitive to how intertwined
the objects are.

Deformable objects are more challenging to handle. Classical methods, such as
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(i) (ii)

(iii) (iv)
FIGURE 50.4.7
Snapshots of the mixed pseudotriangulation of [ABG+00]. As the center trapezoid-like
polygon moves to the right, the edges corresponding to the next about-to-fail certificate are
highlighted.

bounding volume hierarchies [GLM96], become expensive, as the fixed object hier-
archies have to be rebuilt frequently. One possibility for mitigating this cost is to
let the hierarchies themselves deform continuously, by having the bounding volumes
defined implicitly in terms of object features. Such an approach was developed for
flexible linear objects (such as rope or macromolecules), using combinatorially de-
fined sphere hierarchies in [GNRZ02]. In that work a bounding sphere is defined not
in the usual way, via its center and radius, but in an implicit combinatorial way, in
terms of four feature points of the enclosed object geometry. As the object deforms
these implicitly defined spheres automatically track their assigned features, and
therefore the deformation. Of ourse the validity of the hierarchy has to be checked
at each time step and repaired if necessary. What helps here is that the implicitly
defined spheres change their combinatorial description rather infrequently, even un-
der extrem deformation. An example is shown in Figure 50.4.8 where the rod shown
is bent substantially, yet only the top-level sphere needs to update its description.

The pseudotriangulation-based methods above can also be adapted to deal with
object deformation.

CONNECTIVITY AND CLUSTERING

Closely related to proximity problems is the issue of maintaining structures en-
coding connectivity among moving geometric objects. Connectivity problems arise
frequently in ad hoc mobile communication and sensor networks, where the viability
of links may depend on proximity or direct line-of-sight visibility among the sta-
tions desiring to communicate. With some assumptions, the communication range
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FIGURE 50.4.8
A thin rod bending from a straight configuration, and a portion of its associated bounding
sphere hierarchy. The combinatorially defined sphere hierarchy is stable under deforma-
tion. Only the top level sphere differs between the two conformations.

of each station can be modeled by a geometric region, so that two stations can es-
tablish a link if and only if their respective regions overlap. (See also Section 58.4.3.)
There has been work on kinetically maintaining the connected components of the
union of a set of moving geometric regions for the case of rectangles [HS99] and
unit disks [GHSZ00].

Clustering mobile nodes is an essential step in many algorithms for establishing
communication hierarchies, or otherwise structuring ad hoc networks. Nodes in
close proximity can communicate directly, using simpler protocols; correspondingly,
well-separated clusters can reuse scarce resources, such the same frequency or time-
division multiplexing communication scheme, without interference. Maintaining
clusters of mobile nodes requires a tradeoff between the tightness, or optimality
of the clustering, and its stability under motion. In [GGH+01b] a randomized
clustering scheme is discussed based on an iterated leader-election algorithm that
produces a number of clusters within a constant factor of the optimum, and in
which the number of cluster changes is also asymptotically optimal. This scheme
was used in [GGH+01a] to maintain a routing graph on mobile nodes that is always
sparse and in which communication paths exist that are nearly as good as those in
the full communication graph.

Another fundamental kinetic question is the maintenance of a minimum span-
ning tree (MST) among n mobile points in the plane, closely related to earlier work
on parametric spanning trees [FBSE96] in a graph whose edge weights are functions
of a parameter λ (λ is time in the kinetic setting). Since the MST is determined
by the sorted order of the edge weights in the graph, a simple algorithm can be ob-
tained by maintaining the sorted list of weights and some auxiliary data structures
(such an algorithm is quadratic in the graph size, or O(n4) in our case). This was
improved when the weights are linear functions of time to nearly O(n11/6) (sub-
quadratic) for planar graphs or other minor-closed families [AEGH98]. When the
weights are the Euclidean distances between moving points, only approximation
algorithms are known and the best event bounds are nearly cubic [BGZ97]. For
many other optimization problems on geometric graphs, such as shortest paths for
example, the corresponding kinetic questions are wide open.
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VISIBILITY

The problem of maintaining the visible parts of the environment when an observer
is moving is one of the classic questions in computer graphics and has motivated
significant developments, such as binary space partition trees, the hardware depth
buffer, etc. The difficulty of the question increases significantly when the environ-
ment itself includes moving objects; whatever visibility structures accelerate occlu-
sion culling for the moving observer, must now themselves be maintained under
object motion.

Binary space partitions (BSP) are hierarchical partitions of space into convex
tiles obtained by performing planar cuts (Chapter 28.8.2). Tiles are refined by
further cuts until the interior of each tile is free of objects or contains geometry of
limited complexity. Once a BSP tree is available, a correct visibility ordering for all
geometry fragments in the tiles can be easily determined and incrementally main-
tained as the observer moves. A kinetic algorithm for visibility can be devised by
maintaining a BSP tree as the objects move. The key insight is to certify the correct-
ness of the BSP tree through certain combinatorial conditions, whose failure triggers
localized tree rearrangements — most of the classical BSP construction algorithms
do not have this property. In R

2, a randomized algorithm for maintaining a BSP
of moving disjoint line segments is given in [AGMV00]. The algorithm processes
O(n2) events, the expected cost per tree update is O(log n), and the expected tree
size is O(n log n). The maintenance cost increases to O(nλs+2(n) log2 n) [AEG98]
for disjoint moving triangles in R

3 (s is a constant depending on the triangle mo-
tion). Both of these algorithms are based on variants on vertical decompositions
(many of the cuts are parallel to a given direction). It turns out that in practice
these generate “sliver-like” BSP tiles that lead to robustness issues [Com99].

As the pioneering work on the visibility complex has shown [PV96], another
structure that is well suited to visibility queries in R

2 is an appropriate pseudo-
triangulation. Given a moving observer and convex moving obstacles, a full radial
decomposition of the free space around the observer is quite expensive to maintain.
One can build pseudotriangulations of the free space that become more and more
like the radial decomposition as we get closer to the observer. Thus one can have
a structure that compactly encodes the changing visibility polygon around the ob-
server, while being quite stable in regions of the free space well-occluded from the
observer [OH02].

RESULT SUMMARY

We summarize in Table 50.4.1 the efficiency bounds on the main KDSs discussed
above.

OPEN PROBLEMS

As mentioned above, we still lack efficient kinetic data structures for many funda-
mental geometric questions. Here is a short list of such open problems:

1. Find an efficient (and responsive, local, and compact) KDS for maintaining
the convex hull of points moving in dimensions d ≥ 3.

2. Find an efficient KDS for maintaining the smallest enclosing disk in d ≥ 2.
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TABLE 50.4.1 Bounds on the number of combinatorial

changes.

STRUCTURE BOUNDS ON EVENTS SOURCE

Convex hull Ω(n2+ε) [BGH99]

Pseudotriangulation O(n2) [ABG+00]

Triangulation (arb.) Ω(n7/3) [ABG+00]

MST O(n11/6 log3/2 n) [AEGH98]

BSP Õ(n2) [AGMV00, AEG98]

For d = 2, a goal would be an O(n2+ε) algorithm.

3. Establish tighter bounds on the number of Voronoi diagram events, narrowing
the gap between quadratic and near-cubic.

4. Obtain a near-quadratic bound on the number of events maintaining an ar-
bitrary triangulation of linearly moving points.

5. Maintain a kinetic triangulation with a guarantee on the shape of the trian-
gles, in subcubic time.

6. Find a KDS to maintain the MST of moving points under the Euclidean
metric achieving subquadratic bounds.

Beyond specific problems, there are also several important structural issues
that require further research in the KDS framework. These include:

Recovery after multiple certificate failures. We have assumed up to now
that the KDS assertion cache is repaired after each certificate failure. In many
realistic scenarios, however, it is impossible to predict exactly when certificates will
fail because explicit motion descriptions may not be available. In such settings we
may need to sample the system and thus we must be prepared to deal with multiple
(but hopefully few) certificate failures at each time step. A general area of research
that this suggests is the study of how to efficiently update common geometric
structures, such as convex hulls, Voronoi and Delaunay diagrams, arrangements,
etc., after “small motions” of the defining geometric objects.

There is also a related subtlety in the way that a KDS assertion cache can certify
the value, or a computation yielding the value, of the attribute of interest. Suppose
our goal is to certify that a set of moving points in the plane, in a given circular
order, always form a convex polygon. A plausible certificate set for convexity is
that all interior angles of the polygon are convex. See Figure 50.4.9. In the normal
KDS setting where we can always predict accurately the next certificate failure,
it turns out that the above certificate set is sufficient, as long as at the beginning
of the motion the polygon was convex. One can draw, however, nonconvex self-
intersecting polygons all of whose interior angles are convex, as also shown in the
same figure. The point here is that a standard KDS can offer a historical proof of
the convexity of the polygon by relying on the fact that the certificate set is valid
and that the polygon was convex during the prior history of the motion. Indeed
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the counterexample shown cannot arise under continuous motion without one of
the angle certificates failing first. On the other hand, if an oracle can move the
points when ‘we are not looking,’ we can wake up and find all the angle certificates
to be valid, yet our polygon need not be convex. Thus in this oracle setting, since
we cannot be sure that no certificates failed during the time step, we must insist
on absolute proofs — certificate sets that in any state of the world fully validate
the attribute computation or value.

FIGURE 50.4.9
Certifying the convexity of a polygon.

Hierarchical motion descriptions. Objects in the world are often organized
into groups and hierarchies and the motions of objects in the same group are highly
correlated. For example, though not all points in an elastic bouncing ball follow
exactly the same rigid motion, the trajectories of nearby points are very similar and
the overall motion is best described as the superposition of a global rigid motion
with a small local deformation. Similarly, the motion of an articulated figure, such
as a man walking, is most succinctly described as a set of relative motions, say that
of the upper right arm relative to the torso, rather than by giving the trajectory of
each body part in world coordinates.

What both of these examples suggest is that there can be economies in motion
description, if the motion of objects in the environment can be described as a
superposition of terms, some of which can be shared among several objects. Such
hierarchical motion descriptions can simplify certificate evaluations, as certificates
are often local assertions concerning nearby objects, and nearby objects tend to
share motion components. For example, in a simple articulated figure, we may
wish to assert ccw(A, B, C) to indicate that an arm is not fully extended, where
AB and BC are the upper and lower parts of the arm respectively. Evaluating
this certificate is clearly better done in the local coordinate frame of the upper arm
than in a world frame—the redundant motions of the legs and torso have already
been factored out.

Motion sensitivity. As already mentioned, the motions of objects in the world
are often highly correlated and it behooves us to find representations and data
structures that exploit such motion coherence. It is also important to find math-
ematical measures that capture the degree of coherence of a motion and then use
this as a parameter to quantify the performance of motion algorithms. If we do
not do this, our algorithm design may be aimed at unrealistic worst-case behav-
ior, without capturing solutions that exploit the special structure of the motion
data that actually arise in practice — as already discussed in a related setting
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in [dBK+97]. Thus it is important to develop a class of kinetic motion-sensitive
algorithms, whose performance can be expressed a function of how coherent the
motions of the underlying objects are.

Non-canonical structures. The complexity measures for KDSs mentioned ear-
lier are more suitable for maintaining canonical geometric structures, which are
uniquely defined by the position of the data, e.g., convex hull, closest pair, and
Delaunay triangulation. In these cases the notion of external events is well defined
and is independent of the algorithm used to maintain the structure. On the other
hand, as we already discussed, suppose we want to maintain a triangulation of a
moving point set. Since the triangulation of a point set is not unique, the external
events depend on the triangulation being maintained, and thus depend on the al-
gorithm. This makes it difficult to analyze the efficiency of a kinetic triangulation
algorithm. Most of the current approaches for maintaining noncanonical structures
artificially impose canonicality and maintain the resulting canonical structure. But
this typically increases the number of events. So it is entirely possible that methods
in which the current form of the structure may depend on its past history can be
more efficient. Unfortunately, we lack mathematical techniques for analyzing such
history-dependent structures.

50.5 QUERYING MOVING OBJECTS

Continuous tracking of a geometric attribute may be more than is needed for some
applications. There may be time intervals during which the value of the attribute
is of no interest; in other scenarios we may be just interested to know the attribute
value at certain discrete query times. For example, given n moving points in R

2,
we may want to pose queries asking for all points inside a rectangle R at time t, for
various values of R and t, or for an interval of time ∆t, etc. Such problems can be
handled by a mixture of kinetic and static techniques, including standard range-
searching tools such as partition trees and range trees [dBvK+00]. They typically
involve tradeoffs between evolving indices kinetically, or prebuilding indices for
static snapshots. An especially interesting special case is when we want to be able
answer queries about the near future faster than those about the distant future—a
natural desideratum in many real-time applications.

A number of other classical range-searching structures, such as k-d-trees and
R-trees have recently been investigated for moving objects [AHPP02, AGG02].

50.6 SOURCES AND RELATED MATERIALS

SURVEYS

Results not given an explicit reference above may be traced in these surveys.

[Gui98]: An early, and by now somewhat dated, survey of KDS work.
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[AG+ar]: A report based on an NSF-ARO workshop, addressing several issues on
modeling motion from the perspective of a variety of disciplines.

[Gui02]: A “popular-science” type article containing material related to the costs
of sensing and communication for tracking motion in the real world.

RELATED CHAPTERS

Chapter 22: Convex hull computations
Chapter 23: Voronoi diagrams and Delaunay triangulations
Chapter 25: Triangulations and mesh generation
Chapter 35: Collision detection
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