
Sensing, Tracking,
and Reasoning
with Relations

Suppose we have a set of sensor nodes spread over
a geographical area. Assume that these nodes are
able to perform processing as well as sensing and
are additionally capable of communicating with

each other by means of a wireless network. The sensors
may include small video or still cameras, acoustic micro-
phone arrays, passive infrared intru-
sion (PIR), seismic, or magnetic
sensing devices. Examples of such inte-
grated devices include the UCLA/
Sensoria WINS nodes [33] or the Berkeley motes [27].
The sensors may be controllable in limited ways: they can
activated, possibly aimed, commanded to sense and trans-
mit data to their neighbors, etc. Some may be even
mounted on mobile ground or air platforms and directed
to move to specific locations. Though each node is an in-
dependent hardware device, they need to coordinate their
sensing, computation, and communication to acquire rel-
evant information about their environment so as to ac-

complish some high-level task. The integration of process-
ing makes such nodes more autonomous and the entire
system, which we call a sensor net, becomes a novel type of
sensing, processing, and communication engine.

Such sensor nets can be deployed in a variety of civilian
and military contexts, including factory automation, envi-

ronmental monitoring, health-care de-
livery, security and surveillance, and
battlefield awareness. Their advantages
over alternate architectures have been

argued, for example, in [33]. Briefly, these include:
� Deployment can be rapid, as no cabling infrastructure is
needed;
� Sensor placement close to signal sources results in
better signal-to-noise (SNR) ratio;
� On-board processing allows the sensors to communi-
cate compressed signal data;
� The system can be made robust against the failure of a
small number of its sensor nodes;
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� A distributed implementation allows the system to
scale gracefully—unlike sensor systems with centralized
processing.

Unique to such sensor nets is the ability to cover wide
areas that no single sensor could possibly observe and to
provide dense spatial sampling with multiple aspect and
sensing modalities. Most of all, the integration of process-
ing with sensing allows dimensionality reduction on the
acquired signals and the communication of information
in a form that is far more compressed and symbolic.

Nevertheless, the distribution of sensing and process-
ing comes with certain limitations on the processing and
communication capabilities of such a device. Power con-
sumption will clearly be an issue, as such integrated sen-
sors will typically be untethered or mounted on mobile
platforms. There will also be communication range,
bandwidth, and susceptibility to noise limitations due to
the wireless technologies (such as radio links) commonly
used with such devices. These limitations make it impor-
tant that the software controlling the sensor net be built
so as to optimally use the net’s resources towards the task
at hand. The goal of this article is to present a methodol-
ogy for planning and controlling the sensing, processing,
and communication actions needed to accomplish a cer-
tain mission, while respecting the system resource con-
straints described above.

To be concrete, consider two settings. Set1 is people
moving around a building; we are interested in security
and surveillance applications, such as the detection of un-
usual activities and the monitoring of particular suspi-
cious individuals. Set2 is a military engagement in an
open terrain with a few buildings and ground enemy (e)
and friendly ( f ) vehicles moving in it; a commander must
make key decisions that depend on the world state. In
both settings, the sensor net needs to provide useful
high-level information to its clients.

In Set1 we may be interested in answering
spatio-temporal queries such as:
� Are there groups of people moving coherently?
� For the next t minutes, what is the location of the leader
of group g?

In Set2 we may have queries of the following type:
� Is friendly vehicle f13 surrounded by enemy vehicles?
� Which enemy vehicle is likely to be able to get close to
building b2 first?

Such queries may also be a tool for organizing the sen-
sor net itself. Indeed, suppose the sensors are actually mo-
bile and each can talk to all its neighbors within a range.
We may want to:
� Organize the sensors into clusters and maintain these
clusters as the sensors move around.

Such a clustering can be used to define a hierarchical
structure on the nodes that conforms and adapts to the
nodes’ changing topology.

In this article we propose a mathematical framework
on how high-level queries, such as those above, can be
transformed into low-level sensing, computation, and
communication operations designed to produce the de-
sired answers, while minimizing the power and other re-
sources expended in satisfying the queries. As we illus-
trate below, this is an algorithm design problem with
many new twists; additional work is needed to under-
stand and elaborate all its ramifications. Note that several
of the queries above refer to global, aggregate, and rela-
tional aspects of the environment. Indeed, though most
sensing acquires data in the continuous domain, the in-
formation most useful to the system’s clients is often of an
aggregated or discrete nature. Thus by its nature the sen-
sor net is a hierarchical hybrid system where sampled con-
tinuous signals transition to discrete symbolic informa-
tion as we go up the task hierarchy. We argue that the in-
terface between continuous and discrete data can be
pushed to a very low level in the system architecture, with
significant benefits in economy and speed.

Our focus will be on tracking spatial or temporal rela-
tions between objects and local or global attributes of the
environment, as opposed to the detailed estimation of po-
sitions and poses of individual objects. High-level behav-
iors of objects may be trackable more robustly than their
exact positions, relations between objects may be easier to
track than each object separately, and the large-scale be-
havior of an ensemble of objects may be easier to ascertain
than the motion of the individual objects. By focusing on
relations and the logical structure of the evidence with re-
spect to the task at hand, we will be able to allocate sensor
and computation resources where they are most needed.

Objects and Their Relations
The purpose of a sensor system is often viewed as obtain-
ing information that is as extensive and detailed as possi-
ble about the unknown parts of the world state. Any
targets present in the sensor field need to be identified and
localized. Their motion must be tracked and their com-
munications intercepted. All this data is to be centrally ag-
gregated and analyzed. This is a reasonable view when the
potential use of this information is not known in advance
and when the cost of the resources needed to acquire and
transmit the information is either fixed or of no concern.
Such a scheme, however, runs the danger of flooding the
network with useless data and depleting scarce resources
such as battery power and human attention, when that is a
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concern. There are obvious ways to be more selective in
choosing what sensor nodes to activate and what infor-
mation to communicate; protocols such as directed diffu-
sion address exactly this issue [25].

But there are a number of other, less obvious ways
that the sensor net may be effective yet economical at the
same time:
� If the goal of identifying and localizing a few targets
close to a sensor is to ultimately establish a spatial relation
between them, it may be less expensive for the sensor to
sense the relation directly, rather than attempt full target
localization.
� Partial information about the environment can be ag-
gregated and saved in certain nodes. If this is done in a
clever way, a variety of global queries can be answered just
be combining these prestored answers, without requiring
any additional sensing and without imposing a significant
storage load on the nodes.

Let us look at some examples to see what savings
might be possible.

LEADER_IN_THE_CORRIDOR: Consider the simple
one-dimensional (1-D) scenario in Fig. 1, which takes
place inside a building where two corridors meet near an
exit. Individuals a, b, c, d, and e are
running towards the exit, while try-
ing to avoid individual m. They are
being tracked by cameras 1, 2, and 3.
The tracking system is interested in
knowing who among these five indi-
viduals is leading the group, i.e., who
is ahead of everyone else and there-
fore most likely to exit first. The
building and camera geometry is as-
sumed to be known in advance. Al-
though the sensor system could try to
localize the individuals involved, the
cameras can also directly sense spatial
relationships among these individu-
als. In the configuration shown, camera 2 can sense that
a bf , while camera 1 can sense that b cf , c df , and d ef ,
where “f” indicates the “AHEAD_OF” relation. These rela-
tions allow the sensor system to logically conclude that a is
the current leader of the group.

Note that the cameras may be able to ascertain these
elementary spatial relationships with simple image pro-
cessing, based just on visual features allowing identifica-
tion of the individuals and without either full camera
calibration or target localization. Assuming that the
camera positions are known relative to each other, hand-
off of individuals from one camera to another can also
help establish such spatial relationships (say an individ-
ual enters from the left side of the viewing frustum and is
therefore known to be “to the left” of other individuals
in the scene).

AM_I_SURROUNDED?: In this two-dimensional
(2-D) scenario, we have friendly and enemy vehicles pres-
ent in a relatively flat terrain. Suppose that we want to

know if friendly vehicle f is surrounded by enemy vehi-
cles e1 , e2 , and e3 . For the sake of this exercise, let us use
the following geometric definition of being surrounded:
f is surrounded if there is no line in the plane that can sep-
arate f from all of e1 , e2 , and e3 . Such a configuration is
shown in Fig. 2. Suppose there exist three PIR sensors s1 ,
s 2 , and s 3 , located, respectively, inside the triangles
fe e2 3 , fe e3 1 , and fe e1 2 . These sensors (perhaps using also
some additional information available to the sensor net)
sense that the vehicles are inside the cones shown in Fig.
2. In each case not all of the cones emanating from the
same sensor can be contained inside a single half-space
supported by the sensor; this implies that the sensors can
assert the geometric relations CCW( )fe e2 3 , CCW( )fe e3 1 ,
and CCW( )fe e1 2 , where CCW( )abc is the relation that
points a, b, and c in the plane form a counter-clockwise
oriented triangle. From these three mathematical rela-
tions we can conclude that we also haveCCW( )e e e1 2 3 and
that in fact friendly vehicle f is surrounded, in the sense
given above.

Note that in this example the enemy vehicles need not
be precisely localized; a scaled version of this configura-
tion can make the regions in which the enemy vehicles
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have been determined to lie arbitrarily large. Further-
more, the sensor net need only distinguish the friendly ve-
hicle from the enemy vehicles, but not the latter among
themselves. Finally observe that the well-placed PIR sen-
sors that can resolve the AM_I_SURROUNDED query need
not not be physically close to any of the vehicles involved.

The CCW spatial relations used above can be useful for
answering a variety of other geometric queries. For in-
stance, we may be interested in knowing what are the
extremal members in a group of targets, such as the north-
ernmost or westernmost targets. Overall all directions, the
set of extremal targets corresponds to the convex hull of the
target group, which is the smallest convex region guaran-
teed to contain all the targets. In Fig. 3, the fourCCW rela-
tions shown allow us to conclude that the convex hull of
these four targets is abc. This is an artificially small example
and in general, when many targets are present, only a small
fraction of the targets will be on the convex hull. The con-
vex hull can always be determined by an appropriate set of
CCW relations of size linear in the number of targets [14].
In fact, the “surrounded” condition above is equivalent to
the friendly vehicle being in the convex hull of the enemy
vehicles.

TARGET_COUNTING: Suppose we have n sensors
fairly evenly spread over a 2-D area. Suppose further that

these sensors are able to detect, localize, and count the
number of targets in a small region around themselves, ei-
ther in isolation or in a light-weight collaboration with
their neighbors. This local region diameter is assumed to
be comparable to the sensor spacing. Our global goal is to
count the total number of targets present in certain types
of simple geometric areas, and for the sake of this example
assume that these areas must be half-spaces. The target
count can easily be obtained inO n( )time by interrogating
and aggregating data from each of the sensors.

However, if we are willing to precompute and store
some partial results, then we can do significantly better.
Suppose we put a n n× grid over the sensor net so that
in each of its cells there is at least one sensor whose sens-
ing region contains the cell, as in Fig. 4. We now activate
the sensors and count the number of targets within each
of the grid cells; furthermore, we propagate these counts
along rows of the grid, so that in the end in each cell we
know the total target count not only in the cell itself, but
also the aggregate count for the cells to its left in its row,
and to its right in its row.

Consider now a half-space query, as shown in Fig. 4.
Note that, except for the at most2 n grid cells intersected
by the half-space edge, all other cells are either fully con-
tained in the range or are fully outside the range. We can
easily compute the total number of targets in the half-space
by aggregating target counts from the partially covered
cells, plus the relevant prestored totals for each row from
their left or right neighbors, as appropriate. Thus, by using
storage only for local targets and two counts in each node,
we are able to answer the half-space target counting query
in O n( ) time. Note that this applies to any half-space
query: our preprocessing has exploited knowledge of the
general shape of the query (half-space) but not of its exact
parameters. By using more sophisticated geometric meth-
ods, the same can be done for target counting in areas that
have other simple geometric shapes; furthermore the as-
sumption about even distribution of the sensors can be
dropped, as long as the union of the sensed regions cover
the domain of interest. This falls under an area studied in
computational geometry known as range searching [30],
[3]. Little has been done on this in this direction in the sen-
sor setting; the closest is work motivated by the data-base
view [10], [11].

CLUSTER_MAINTENANCE: In this scenario we have
n friendly vehicles carrying sensors. These vehicles wish
to organize themselves into clusters, based on their cur-
rent locations and a certain desired cluster radius (perhaps
corresponding to a radio link range); see Fig. 5. The clus-
ter organization will allow for simpler communication
protocols among vehicles in the same cluster and avoid
duplicate sensor measurements by nearby vehicles. In
[17] we gave a distributed randomized algorithm that
performs this type of cluster formation and yields a num-
ber of clusters that is a constant-fraction approximation
of the optimum possible, with high probability. The algo-
rithm is based on a “cluster-head-nomination” protocol.
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We assume that initially each vehicle has a unique ID
(UID); these can be assigned by standard protocols (e.g.,
use the serial number of the vehicle) or by a random pro-
cess. Each vehicle nominates as a cluster head the vehicle
of highest UID that is within its radius (this might be it-
self). All nominated vehicles become cluster-heads and
form a cluster with all their nominators (except for those
that they themselves became cluster heads). This ex-
tremely simple protocol does not quite work, but as
shown in [17], a very simple hierarchical variant of the
same algorithm does. In the hierarchical version we use
repeatedly the cluster nomination procedure with geo-
metrically increasing radii, up to the final desired radius.
At each round only the leaders already elected in the pre-
vious round participate.

An interesting aspect of this algorithm is that it can be
implemented without knowledge of the actual geo-
graphic positions of the vehicles. The protocol only needs
for each node to be able to know what other nodes are
within certain distance ranges from it. This could be done
by broadcasting at different strengths and asking “who is
there?” While not so important for vehicles that typically
will have GPS devices, this observation means that the
same algorithm, implemented using directly sensed dis-
tance relationships, could be made to run on much lower
power mobile sensor devices.

Since motion and vehicles are inherent in all the above
examples, the reader may wish to ask what happens when
we wish to answer such queries not just once, but during a
certain period in which motion occurs. This will be the
topic of a later section, where we will see how relational
attributes can be updated incrementally.

Reasoning with Relations
If we knew the relevant manifest variables defining the
world state (say the position and identity of each target),
then computing the answers to queries such as those dis-
cussed above is a standard algorithm design problem. An
algorithm typically proceeds by doing both numerical
and relational (e.g., test) manipulations on these data to
compute the desired answer. The quality of the algorithm
is judged via certain performance measures on resources
used (time, space, etc.).

This classical algorithm/complexity view needs to be
modified in the sensor net context. Many differences exist:
� The values of the relevant manifest variables are not
known; they have to be sensed;
� Elementary relations between such variables may be
easier to determine than the values of the variables them-
selves;
� The cost of sensing different variables or relations of
the same type can be vastly different, depending on the
relative locations of targets and sensors, the sensing mo-
dalities available, and the communication costs;
� Frequently the value of a variable, or a relationship be-
tween variables, may be impossible to determine using

the resources available in the sensor net; however, alter-
nate variable values or relations may serve our purposes
equally well.

Thus we need a new mathematical theory of algorithm
design that includes the cost of accessing the manifest
variables of the problem or of determining useful atomic
relationships among them. Furthermore, these costs can-
not be precisely known in advance and may only be esti-
mated. In addition, there may be values and relations that
have been independently determined by the sensor net
(say, while processing other tasks or during a preprocess-
ing step) and can be made available to the algorithm at
relatively low cost (communication), as in our target
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counting example. Thus the model needs to include both
“push” and “pull” types of information flow.

To design an overall strategy, several key questions
need to be addressed.
� What are the important objects in the environment to
be sensed?
� What parameters of these objects are most relevant?
� What relations among these objects are critical to what-
ever high-level information we need to know?
� Which is the best sensor to acquire a particular pa-
rameter?
� Can relations between the objects be sensed directly?
� How many sensing and communication operations
will be needed to accomplish the task?
� How coordinated do the world-models of the different
vehicles need to be?
� At what level what do we communicate information, in
the spectrum from signal to symbol?

Addressing these questions presents several chal-
lenges. Indeed, while the computational and communica-
tion complexity of different algorithms for the same
problem can be assessed with standard techniques, the
on-line nature of sensing will require the use of methods
such as competitive analysis [35], or the value of informa-
tion [24], or other sensor utility measures [34], [12] to
account for the fact that the value of sensor readings can-
not be known before they are made.

Sensing Nonlocal Relations
In our LEADER_IN_THE_CORRIDOR example, the ele-
mentary f (AHEAD_OF) relations relevant to the problem
are all between pairs of objects both visible from the same
camera. Such local relations are often all that we need to
reason about a situation. However, local relations are not
always sufficient. In the AM_I_SURROUNDED scenario,
for example, each of the three CCW relations used are in-
deed sensed by a single PIR sensor. In general, though,
the sensor net may be tasked to try to ascertain if a CCW
relation holds between three targets, without knowing
that there is a PIR sensor that can see all three in the fash-
ion shown; indeed, such a sensor may not exist. Yet by
sufficiently localizing the targets using combinations of
other sensors, the truth of theCCW predicate may still be
determined with high confidence.

Suppose the sensor net has three probability distribu-
tions describing its belief about the locations of the three
targets t1 , t 2 , and t 3 . Using this information we can ask:
“what is the probability thatCCW( , , )t t t1 2 3 is true?” Un-
less this probability comes out to be very close to one or to
zero, the sensor net does not have adequate information
about the targets to determine the validity of
CCW( , , )t t t1 2 3 with high confidence. Note that theCCW
relation may be uncertain because of extrinsic reasons, say
by reason of the poor localization of the targets, or because
of intrinsic reasons, when in fact the three targets are al-
most collinear. The sensor net may choose to expend addi-
tional sensing and communication resources so as to
localize some of the three targets better, thus hopefully in-
creasing the confidence that CCW is true or false. Or the
sensor net may simply report that the (truth or falsity of
the) relation cannot be determined with sufficient confi-
dence, and thus the overall task manager should seek to es-
tablish the eventual goal by alternate means. The decision
between the two options is delicate: the sensor net has to
weight the potential benefit of the new information against
the resources needed to acquire it.

The sequence of four images in Fig. 6 shows a simula-
tion of the belief state of the system on the locations of the
three targets after successive sensor readings. A fairly
dense and uniformly distributed sensor field of acoustic
sensors has been assumed. For simplicity we use only am-
plitude sensors and therefore each sensor reading helps
localize a target to within an annulus centered at the sen-
sor. In the initial state two readings have been taken on
each target. In each subsequent frame a sensor was chosen
to reduce the location uncertainty of the most uncertain
target. In each case the “X” indicates the target location,
the shaded boxes the system belief state distribution for a
target, and the highlighted “+” the location of the next
sensor to be used.

By frame (5) the targets have been localized suffi-
ciently for resolving the CCW relation. This is shown in
Fig. 7 that displays the amount of probability mass in the
product space shifting from the uncertain bin (gray) to
the counterclockwise bin (white) with each additional
sensor reading.

A further discussion of the fundamental issues in in-
corporating probabilistic reasoning in our sensing and
tracking algorithms is given later on in this article.

It is interesting to investigate algorithms for optimal
sensor selection to reduce uncertainty in the relations we
are trying to establish. In our CCW example, this can arise
because the distributions for t1 , t 2 , and t 3 allow a suffi-
cient mass of triplets of possible target locations, one each
for t1 , t 2 , and t 3 , that are collinear or possibly clockwise
oriented. Consider now the situation in Fig. 8. Note that
PIR sensor s1 may look at one of the tails of the distribu-
tion for target t1 and, upon seeing nothing there, lop off a
large chunk of this distribution and reduce its spread. Yet
that reduction is almost useless as far as eliminating
wrongly oriented triplets of possible target locations. An-
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other PIR sensor s 2 may lop off a smaller part of the t 2 dis-
tribution, yet have a much more significant benefit
towards certifying CCW( , , )t t t1 2 3 . This example shows
that the choice of which sensors to activate to obtain qual-
ity information about an uncertain relation is subtle. Fur-
thermore, the sensor net has to take into account both the
expected information gain from the sensor reading, as well
as the cost of conveying the information from that sensor
to the location where the CCW predicate is to be certified.
Such tradeoffs between information quality and commu-
nication costs arise even when only a single target needs to

be localized and have been studied in the informa-
tion-driven sensor querying (IDSQ) framework of [13].

Incrementally Updating Information
In many contexts we may be interested not just in answer-
ing a question about the state of the world once, but in
continuously monitoring the answer to the query over a
period of time. Let us refer to the quantity we seek to
track over time as the attribute of interest. In such situa-
tions it behooves us to try to maintain the value of this at-
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tribute incrementally, rather than recomputing it from
scratch at each step. One advantage of the relation-based
attribute computations we propose is that the defining
objects can move, but as long as the relations of interest
among them stay valid, our attribute computation also re-
mains valid. Of course, at some point, one of the support-
ing relations between objects may either become invalid
or it may still be valid but the information available to the
sensor net may be insufficient to certify its validity. When
such events happen, we can hope that either a different
support set for the value of the attribute can be easily es-
tablished or that the value of the attribute itself can be up-
dated incrementally.

Consider again out LEADER_IN_THE_CORRIDOR ex-
ample. Suppose that individual dmoves ahead to overtake
c, as in Fig. 9. Camera 1 can no longer support the rela-
tions b cf and c df ; however, camera 1 can support the re-
lation b df and camera 2 can support the relation b cf . It
follows that the conclusion that a is the leader is still valid:
all the other nodes can be reached from a by following
chains of “f” relations.

In general we can think of such situations as follows. A
computation (or frequently just the value) of the attribute
we are interested in is certified by a number of elementary
relations among the objects involved. We call these ele-
mentary relations certificates and think of them as a cache
of assertions about the world whose job is to simplify the

computation of our attribute. As objects move and rela-
tions fail (or become unsupportable by the sensors), we
must update our assertion cache so that at all times we
have a valid computation of the attribute of interest. Ex-
actly how the cache should be updated by seeking new re-
lations supportable by the sensors is problem dependent.
This assertion cache design problem is addressed by the
framework of kinetic data structures [22], [8] (or KDSs
for short), which are data structures aimed for problems
dealing with objects in motion. When the sensors can no
longer support one or more of the certificates in the asser-
tion cache, a KDS algorithm is invoked to try find an al-
ternate certification of the attribute computation, or to
repair the computation incrementally and certify the new
computation as well; see Fig. 10.

Look again at the simple convex hull example we
showed earlier. Suppose that targets a, b, and care station-
ary and only target d is moving as shown in Fig. 11. At
some point the certificate CCW( , , )d b c will no longer be
supported by the sensors and soon afterwards its nega-
tion, CCW( , , )c b d will be supported (the CCW predicate
flips its value whenever two of its arguments are trans-
posed). In this case the KDS repair mechanism will dis-
cover that the convex hull has actually changed and is now
abdc, a conclusion supported by the certificates shown.

If the certificate set is chosen judiciously, the KDS re-
pair can be a local, incremental process—a small number
of certificates may leave the cache, a small number may be
added, and the new attribute certification will be closely
related to the old one. A good KDS exploits the continu-
ity or coherence of motion and change in the world to
maintain certifications that themselves change only
incrementally and locally as assertions in the cache fail.
The design of a good certificate set to maintain presents
an interesting tradeoff. On the one hand we must keep
enough information about the state of the world to allow
a quick, incremental recomputation of the attribute. One
the other hand, too much information can be costly, as it
will force the algorithm to process many certificate fail-
ures that are possibly irrelevant to the attribute of interest.
Thus, in the same way that classical data structures need
to balance the efficiency of access to the data with the ease
of its update, KDSs must tread a delicate path between
knowing too little and knowing too much about the
world. A good KDS will select a certificate set that is at
once economical and stable, but also allows a quick repair
of itself and the attribute computation, when one of its
certificates fails.

A KDS may also exploit knowledge about the motions
of the objects involved, their so-called motion plans, to
avoid continuously checking some certificate conditions.
Information about the motions, either known a priori or
estimated from the observed data, can be used to generate
conservative approximations as to when certificates
might fail and therefore eliminate needless continuous
sensing and the power consumption associated with that.
Thus, typically associated with a KDS is an event-queue
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mechanism in which certificates are placed that cannot
fail until sometime in the future.

A number of measures have been proposed by which
to evaluate the quality of a KDS for a specific problem.
These include:
� Responsiveness: A KDS is called responsive if the cost,
when a certificate fails, of repairing the certificate set and
updating the attribute computation is small;
� Efficiency: A KDS is called efficient if the number of cer-
tificate failures it needs to process is comparable to the
number of required changes in the attribute description,
over some class of allowed motions;
� Compactness: A KDS is called compact if the size of the
certificate set it needs is close to linear in the degrees of
freedom of the moving system;
� Locality: A KDS is called local if no object participates
in too many certificates; this condition makes it easier to
reestimate certificate failure times when an object
changes it motion law.

KDSs have been primarily studied in the context of
geometric problems that arise in virtual reality simula-
tions. Good KDSs have been developed for a variety of
spatial proximity [9], [1], [21], [17] (e.g., collision de-
tection, closest pair, clustering), extent [4], [8] (e.g., di-
ameter, convex hull), visibility [6], [5] (binary space
partitions, occlusion), and connectivity [2], [23] (e.g.,
minimum spanning trees, sparse span-
ners) problems. For example, the
three frames below from a kinetic con-
vex hull simulation (Fig. 12) illustrate
a combinatorial change to the hull in a
larger example, based on the algo-
rithm described in [8]. On the bottom
is a time window showing a moving
ticker tape of certificate failure times.
The long bars represent real changes
to the convex hull, while the short bars
show failures in the certification, even
though the convex hull has not
changed. The relative frequency of the
two types of bars captures the effi-
ciency of the KDS.

Unlike the sensor context consid-
ered here, the virtual reality setting is
significantly simpler as the instanta-
neous motion plans of all the objects
are known and therefore reliable pre-
diction of certificate failure times is
possible. This classical KDS model
needs to be augmented with consider-
ations for the cost of sensing and com-
munication of information, as well for
dealing with uncertainty.

In the context of sensor nets ki-
netic data structures can be used to
support a variety of infrastructure
tasks, including:

� Maintenance of optimal sensor groups for tracking a
particular moving target;
� Maintenance of clusters among a set of moving vehicles;
indeed the distributed clustering algorithm briefly men-
tioned earlier can also maintain the clustering as the vehi-
cles move, while guaranteeing nearly optimal optimality
and stability for the clusters [17];
� Maintenance of communication paths between
friendly vehicles using the sensor net as a relay, or com-
munication paths between nodes producing and consum-
ing information on the net; for related work see [18].

Generally, KDSs can be used to aid in motion predic-
tion, which is essential for successful tracking of moving
targets; a good tracker always incorporates a motion pre-
dictor for the target, including both internal dynamic
constraints as well as a model of global objectives. We
have shown elsewhere that a KDS can be used to track the
local environment of each target, e.g., the presence of ob-
stacles, friendly or enemy vehicles, etc. [19]. This detailed
knowledge of the local environment allows for much
better prediction of what a target is likely to do next.

Probabilistic Relational Reasoning
Since noise and uncertainty is inherent in all sensing,
models of both objects and their relations must be set in a
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probabilistic setting to be practically useful. For example,
the belief state of the system as to the location a target t
must be represented as a probability distribution (PDF).
Both parametric and nonparametric representations are
useful for such distributions. Though simple analytic
models, like Gaussians, are the easiest to deal with, they
cannot capture complex multimodal distribution shapes.
The CCW example was based on representing a distribu-
tion as an array on a quantized 2-D grid of cells. A
quad-tree hierarchy was implemented on top of each such
target distribution to aid in the evaluation of the likeli-
hood of theCCW relation. A popular way to proceed is to
represent distributions as discrete sets of weighted parti-
cles in a factored position space, where each particle is a
hypothesis about the position of one or a small group of
objects, and its weight indicates the probability of that hy-
pothesis. Such particle filtering methods have been exten-
sively and successfully used in statistics and in several
application areas [32], [26]. In its simplest form this rep-
resentation assumes that the motion of different objects
are uncorrelated, which is rarely true. Joint distributions
can capture dependencies among the objects as needed
and full or approximate factorizations can be used to re-
duce the dimensionality.

Particle-based representations of distributions have a
number of advantages for our purposes:
� They can model arbitrary distributions;

� The amount of detail can be varied as needed by con-
trolling the number of particles used;
� Combinatorial methods can be used to deal with the
computational complexity associated with large numbers
of particles.

We must also devise ways to represent uncertainty on
the values of the complex attributes that we wish to main-
tain or track as the objects move. Such attributes are often
geometric structures, like a Delaunay triangulation, a
convex hull, or a minimum spanning tree that involve dis-
crete (combinatorial) as well as continuous data. Thus the
challenge becomes how to model distributions over such
combinatorial objects. Though in in principle the particle
approach can deal with arbitrary distributions, the large
number of possible structures makes this approach im-
practical. For example, n points in the plane can have a
number of different triangulations or spanning trees that
is exponential in n [31], each of which might be the cor-
rect attribute value. Again, the only way to deal with these
exponential-size distributions is by factorizing them by
using as many independence assumptions about the in-
puts as we can safely make. For example, a cycle separator
in a Delaunay triangulation all of whose edges can be cer-
tified with probability 1 effectively decouples the uncer-
tainty about what the triangulation looks like inside the
cycle and outside the cycle. If we can factor a distribution
into parts whose uncertainties are independent of each
other, we can then use particles to represent each of the
parts separately and thus attain dimensionality reduction
and a great compression in the overall number of particles
needed for a specified degree of approximation. Such fac-
toring is heavily exploited in the graphical models com-
munity (Bayes nets, Markov nets) for probabilistic
inference with good success [26].

Indeed Bayesian networks (BNs) [26] have been a suc-
cessful and widely used probabilistic model for objects
when reasoning in the presence of prior beliefs and sensor
evidence. Locality of interaction is embodied by explicit
conditional independence assumptions between random
variables, encoded in a graphical representation: a node is
conditionally independent of all its nondescendants,
given values for its parents. In the context of moving ob-
jects, dynamic Bayesian networks (DBNs) [15], [36]
capture the dependence between the past and current
states of an object. By appropriately enriching the notion
of “object state,” we can usually make the Markovian as-
sumption that the future state of the system is independ-
ent of its past, given the present.

While DBNs are useful models for a system whose
overall composition is fixed, they are inadequate, as de-
fined above, for the task of tracking scenes where the rela-
tions between individuals change constantly, there is
uncertainty about the identity of the individuals involved
[7], and the set of individuals varies over time as objects
enter and leave the scene [20]. In [16], [28], and [29], a
new relational probabilistic language was introduced,
which extends the Bayesian network language with addi-
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tional features representing objects and the relations be-
tween them. Each object (entity) in the domain has its
own attributes, which correspond to random variables in
the standard Bayesian network framework. The language
allows the attributes of one object to depend,
probabilistically, on properties of a related object. These
extended DBNs are called relational DBNs (RDBNs);
they can serve as probabilistic models of relations be-
tween objects.

In our environment, the sensors and our tracking
ability are rarely sufficient to determine the truth of each
KDS certificate with certainty. As discussed above, a
certificate fails when the sensor(s) tracking it can no lon-
ger confirm its validity with high confidence. This can
occur both when the corresponding relation has become
false or when the sensor(s) simply cannot verify it. Un-
like the classical KDS setting where a failed certificate al-
ways leads to a proof and/or attribute repair, in our
situation a failed certificate may initiate a search for al-
ternate support structures using other high-confidence
certificates, or it may have to allow for having multiple
active hypotheses about the attribute value, each with
some significant probability. It may also happen that no
single hypothesis has significant probabilistic mass, but
certain limited sets of hypotheses do. These hypotheses
sets must be appropriately summarized and used as a
unit by the KDS mechanism.

To ground this discussion, consider the simple certifi-
cate a bf in the LEADER_IN_THE_CORRIDOR example
above. If no camera can certify a bf directly, and if we do
not know either a or b’s position with certainty, we can-
not infer that a bf with certainty. However, if we have a
joint probability distribution over the (continuous)
RDBN attributes representing the positions of a and b,
we can determine the probability of this event. Now, con-
sider the task of tracking the entire global relation “a is
leading the group.” Computing the probability of this
event directly requires that we reason about the positions
of all of the individuals simultaneously: The problem
does not decouple, because our beliefs about the posi-
tions of different individuals are usually correlated. The
KDS decomposes this global relation into a set of local
certificates. If kcertificates are used in the KDS proof, and
each is true with probability 1−ε, the total probability of
error is at most kε.

Care, however, must be exercised in selecting the cer-
tificates. An RDBN tracking algorithm can maintain a
belief state where certain correlations are maintained
while others are ignored. In particular, if a and c are in
different clusters in the belief state, then our estimate of
the joint distribution of their positions is likely to be
only a rough approximation and therefore so will our es-
timate of the probability that a is in front of c. Fortu-
nately, we can integrate the strengths of the KDS
framework with the RDBN belief state representation.
The KDS framework allows us to “prove” that a cf indi-
rectly, by having a certificate for a bf and another for

b cf . As our belief state representation allows overlap-
ping clusters, we might have a and b in the same cluster
and b and c in the same cluster. Hence, although we
might not be able to conclude directly that a is ahead of c,
we might be fairly certain that a is ahead of b and b is
ahead of c. (Of course, if computational resources al-
lowed us to maintain an exact belief state about the en-
tire situation, such local inconsistencies would not be
possible.) To implement this scheme, the KDS algo-
rithm has to be extended to search for proofs that match
the RDBN belief state representation. More precisely,
the KDS will search for a proof based on certificates that
are easy to verify with confidence based on the current
belief state representation. Conversely, the KDS can
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guide the RDBN belief state representation, in a way
that is more conducive to finding good proofs for the
global properties we are trying to track.

We gave a simple example of estimating theCCW rela-
tion assuming uncorrelated target belief states. Using rea-
soning such as the above, we can then proceed to attack
the more complex AM_I_SURROUNDED? scenario.

The KDS can also be used to guide the RDBN depend-
ency model evolution. First, the RDBN defines its de-
pendency model via a set of relations between individuals.
This set can change over time, as the situation evolves.
Consider one more time our LEADER_IN_THE_CORRI-
DOR example, as shown in Figs. 1 and 9: the KDS might
become aware that a is near obstacle X and also visible
from individual m (based, say, or a geometric analysis of
the locations of a, m, and X). This relation is used by by the
RDBN to adapt its dependency model, resulting in a pre-
diction that a will pass to the right of X so as to avoid m. As
the scenario evolves, camera 3 will see a, updating our be-
lief about a’s location. The KDS will drop obstacle X from
a’s local environment, but add the obstacle Y; the relations
used by the RDBN will be adjusted accordingly. As the re-
lations change, the approximate tracking algorithm also
changes its belief state structure to model the dependencies
between the objects that interact strongly. We can allow
the choice of the belief state structure to depend on the
needs of the KDS, so that the belief state is more likely to
provide accurate probabilities about certificates that sup-
port the global properties we are trying to track.

Conclusion
The sensor net architecture presented in this article starts
from a high-level description of the mission or task to be
accomplished and then commands individual nodes to
sense and communicate in a manner that will accomplish
the desired result with attention to minimizing the com-
putational, communication, and sensing resources that
will be required. Much work remains to be done to refine
and implement the relational sensing ideas presented here
and validate their performance. We believe, however,
that the potential pay-off for the relation-based sensing
and tracking we have proposed can be large, both in terms
of developing rich theories on the design and complexity
of sensing algorithms, as well as in terms of the eventual
impact of the deployed sensor systems.
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