EuroCG 2011, Morschach, Switzerland, March 28-30, 2011

Distance between Folded Objects

Chen Gu*

Abstract

Geometric folding problems have recently attracted
much attention in both mathematics and theoretical
computer science. In this paper, we study the fol-
lowing basic problem: given a set of folded conforma-
tions of a unit-length rope in 1D, how do we decide
which are more similar or less similar to each other?
We first define a distance function between flat folded
states that incorporates both the geometry and the
overlap order. Then we do some computational ex-
periments clustering random folded ropes with this
distance metric. Finally, we generalize our results for
1D folded ropes to flat folded papers (origami) in 2D.

1 Introduction

We start by introducing the folding model and rele-
vant definitions from [3]. The notion of folding ropes
is very intuitive. Mathematically, we imagine the rope
as a one-dimensional line segment that has zero thick-
ness. A folding motion is a continuous motion of the
rope from one configuration to another that does not
cause the rope to stretch, tear, or self-penetrate. A
snapshot of this motion at a particular time is called
a folded state.

Since ropes are not rigid, all folded conformations
(final folded states) are flat foldings. A flat folding
has the property that it lies in the same space as the
unfolded line segment. However, there can be multiple
layers of the segment at a point, so the folding really
occupies a finite number of infinitesimally close copies
of the one-dimensional space. Formally, a flat folded
state can be specified by a function mapping all points
to their folded positions, together with a partial order
that specifies their overlap order. For every pair of
distinct noncrease points that are mapped into the
same position, this partial order should specify which
one lies above the other.

In this paper, we consider a new folding problem:
determine which folded conformations are more simi-
lar or less similar to each other. This problem is very
fundamental in the area of geometric folding and fairly
natural from a practical point of view. Traditionally,
there are many distance functions that can measure
the similarity between different geometric shapes [5].
However, the difficulty of comparing folded confor-
mations is that we cannot extract from the geometry

*Institute for Computational and Mathematical Engineer-
ing, Stanford University, guc@stanford.edu

TDepartment of Computer Science, Stanford University,
guibas@cs.stanford.edu

Leonidas Guibas’

the relative stacking order of portions of the line seg-
ment that come into contact as multiple overlapping
layers. This lack of information makes it impossible
to identify different folded states. Thus, we need to
define a distance function that incorporates both the
geometry and the ordering.

There have been several related studies on fold-
ing one-dimensional strings in recent years. For ex-
ample, Arkin et al. solved the 1D flat-foldability
problem that characterize which crease patterns
and mountain-valley assignments have flat folded
states [1], and Cardinal et al. investigated the folding
complexity about how to quickly fold a paper strip to
obtain a desired mountain-valley pattern of equidis-
tant creases [2]. In particular, we will use the results
of the 1D flat-foldability problem to design a sam-
pling algorithm in our experiment of clustering ran-
dom folded ropes with this distance metric.

2 Distance between folded ropes in 1D

In this section, we define a distance function to mea-
sure the similarity between different folded conforma-
tions of a unit-length rope, and develop an efficient
algorithm for the distance computation.

2.1 Distance function

In order to compare flat foldings, we discretize the
rope into 2n points, uniformly distributed on both
sides of the rope (see Figure 1). We use a plus sign
superscript to denote the points on the top side, and
a minus sign superscript to denote the points on the
bottom side. Now, consider the two conformations
shown in Figure 2: suppose we fold the rope at posi-
tion 3, but in two different directions. In 2(a), point
4 is connected to point 27, but not point 27; In 2(b),
point 4 is connected to point 2%, but not point 2.
Therefore, although the geometric positions of the
two discretized point sets are identical, we could dis-
tinguish these two conformations from their different
topological connections.

1 * -2y (a1

1 2 =2 -1y

Figure 1: Discretization

Figure 2: Mountain/Valley fold at position 3

27th European Workshop on Computational Geometry, 2011

Figure 3: Two conformations with different overlap orders

We define the distance function using the distance
root mean squared error (ARMS). dRMS is a met-
ric of distance between two point sets with known
correspondence, which is computed by comparing all
internal pairwise distances of the two point sets:

N N
ARMS*(P.Q) = 3 3 3 (i — sl = llas — s1)°
i=1j=

For simplicity, we assume that n is large enough
so that we only fold the rope at integer sam-
ple points {1,2,...m — 2;n — 1} (or we can ap-
proximate all folding operations at these posi-
tions). Given two folded conformations, we com-
pute their distance using dRMS, where p;, p;, i, q; €
{Oﬂ (1/2)ia 1i7 (3/2)i7 Qia] (nf 1)ia (nf 1/2)i7 TL}
(We define (i + 1/2)* as the midpoint of i* and
(i +1)%.) The internal distance ||p; — p;|| is defined
as the geodesic distance d(p;,p;) from p; to p; along
the rope. For two points that come in contact in
the folded conformation, we consider them to be con-
nected, so that the distance between two contacted
points is 0. For example, consider the two conforma-
tions shown in Figure 3: we denote h = 1/n as the
length between two consecutive integer sample points
along the rope. In 3(a), since 0 and 6~ are connected,
we have d(0,6~) = 0; However, in 3(b), d(0,6~) = 2h
since the shortest path from 0 to 6~ along the rope
is 0 - 17(7) — 6~. Intuitively, the two conforma-
tions in Figure 3 have very similar geometric shapes,
however, it might follow a long trajectory if we want
to deform from one shape to another since they have
different overlap orders. Using this distance function,
we can check that the distance increases monotoni-
cally as we increase the overlap of the top two layers.

2.2 Algorithm

To compute internal pairwise distances, we build a
graph of 4n nodes corresponding to all sample points
{0,(1/2)%,1%,(3/2)*, 2%, ..., (n—1)*, (n—1/2)* n}.
For any two consecutive sample points along the rope,
we connect them by an edge with weight h/2. Thus,
the graph of an unfolded rope is simply a cycle of 4n
nodes. For two sample points that come in contact
by a folding operation, we add an edge between them
with weight 0. Then, the internal distance between
any two sample points along the rope is the same as
the shortest path distance between their correspond-
ing nodes in this graph.

This graph has a property that it is very sparse. In
fact, each node has exactly 2 incident edges of weight
h/2 and at most 2 incident edges of weight 0: for any
sample point, it belongs to at most 2 unit segments
on the rope (a unit segment has length h with two
endpoints at integer positions). For each segment,
there can only be one new segment lying immediately
above/below (depending on its side) it in the folded

conformation. Therefore, each sample point is con-
nected to at most 2 other sample points with edges of
weight 0 from these new segments. As a result, the
degree of each node in this graph is at most 4, which
means the total number of edges m = O(n).

For shortest paths computation, since there are
only two types of different weights in the graph (0 and
h/2), the shortest paths distances between all pairs of
nodes are multiples of h/2 between 0 and 1. From
this observation, when we implement the Dijkstra’s
algorithm from a single source, we can simply build
an array of 2n+ 2 cells, with cell ¢ pointing to a linked
list of nodes that have current upper bound on dis-
tance equal to ih/2. Initially, the source is linked to
cell 0, while all other nodes are linked to cell 2n + 1
(which serves as infinity). Each time we update the
upper bound on distance of some node by relaxing an
edge, this node moves left to a linked list of nodes
that have smaller distance. Using this data struc-
ture, the total amount of time is bounded by O(m)
for time we spent on relaxing edges plus O(n) time
we spent moving right in the array, looking for the
next non-empty cell. Thus, the total running time
of Dijkstra’s shortest path algorithm is O(m) in this
case [4], instead of O(m + nlogn) using Fibonacci
heaps. Finally, since m = O(n), we can implement a
single source Dijkstra’s algorithm in O(n) time, and
compute all internal pairwise distances in O(n?) time.

2.3 Symmetries

There are eight types of symmetries for folding ropes
(see Figure 4). The two conformations in each column
are identical, which only differ by a rotation of 180
degrees. Type (a) and type (b) differ by a horizontal
reflection: if we can swap the top/bottom sides of
the rope, these two types become identical. Type (a)
and type (c) differ by a vertical reflection: if we can
number the sample points in a reverse order from right
to left, these two types become identical. Finally, type
(d) contains both a horizontal and a vertical reflection
from type (a).

When we do not distinguish the two ends of the
rope, the conformations in type (a) and type (d) are
considered as the same state. In this case, we can de-
fine the distance between two conformations C; and
Cy as min{d(Cy, Cy),d(Cy, C5°t)}, where C3°! corre-
sponds to a type (d) rotation on Cy. Then the new
distance function would be invariant under rotations.
Furthermore, if we also want to include the symme-
try of reflections, we can define the distance between
two conformations as the minimum of four distances
under all possible rotations/reflections.

n = 0—= — 0 =—=n
o~ | s | = =1
=0 — "= [
L -. L — - 0= "
i [0 [5])

Figure 4: Symmetries

EuroCG 2011, Morschach, Switzerland, March 28-30, 2011

3 Experiment: clustering folded ropes

In this section, we test the performance of the dis-
tance function we defined in Section 2. We first de-
sign a sampling algorithm to generate random folded
conformations of a rope, and then use this distance
metric to cluster similar conformations together.

3.1 Generating random folded conformations

In our experiment, we generate random folded confor-
mations of a rope from 1D crease patterns. The char-
acterization of flat-foldable crease patterns has been
studied extensively in origami science [3]. In 1D, a
crease pattern is a set of prescribed crease points la-
beled with mountain or valley directions on a line seg-
ment. In the model of simple foldings, a flat folding
is made by a sequence of simple folds, each of which
folds one or more layers of the line segment. In [1],
Arkin et al. showed that a 1D mountain-valley pat-
tern is flat foldable if and only if it can be folded by
a sequence of crimps and end folds.

Formally, let cq,...,c,, denote the creases on a line
segment, oriented from left to right. In addition,
let ¢y denote the left end and c¢,41 denote the right
end. First, a pair (¢;,c¢;41) of consecutive creases is
crimpable if ¢; and c¢;41 have opposite directions and
lcic1 — ¢i| > |ei — civ1] < |cig1 — ciyel. Crimping
such a pair corresponds to fold ¢; and then fold ¢;1,
using one-layer simple folds. Second, ¢y is a foldable
end if |cg — ¢1| < |e1 — 2|, and ¢, is a foldable
end if |¢,—1 — ¢n| > |¢n — ¢ny1|. Folding such an end
corresponds to perform a one-layer simple fold at its
nearest crease. In the 1D flat-foldability test, we only
need to search for one of these two local operations to
perform. Moreover, the sequence can be found in any
greedy way.

Using this result, we can generate random folded
conformations as follow: we first randomly gener-
ate a crease pattern by sampling folding positions
and mountain/valley directions uniformly on the rope,
and then run the flat-foldability test to check whether
this crease pattern can be folded flat. We repeatedly
search for a local minimum segment and test whether
we can fold it using crimp or end fold, until we reach
the final flat folding or we know it cannot be folded
flat. When the flat-foldability test fails, we simply
generate a new crease pattern and test it again.

Notice that some crease patterns may have multiple
flat folded states (for example, see Figure 3). The rea-
son is that their sequences of crimps and end folds are
different so that they have different overlap orders in
the fold states. From this observation, we randomly
select an allowable crimp or end fold operation in each
step during the flat-foldability test. Using this sam-
pling technique, we would be able to generate all valid
crease patterns and folded conformations. Finally, if
we want to avoid duplicated folded conformations, we
can use our distance function to check whether the
distance between the new folded conformation and
any previous conformation is equal to 0.

3.2 Clustering result

Using the dRMS metric, each conformation maps to a
point in dimension N? whose coordinates are its pair-
wise internal distances. Thus, we can apply standard
clustering algorithms to group similar conformations
together. Notice that when we allow rotations or re-
flections in the distance computation, each conforma-
tion may correspond to multiple points in the dRMS
space. In this case, we can use clustering algorithms
which do not require coordinate representations.

In our implementation, we set n = 20 and gener-
ate 40 random conformations by at most 5 folds. We
do not distinguish the two ends of the rope so that
two conformations are considered as the same state
if they only differ by a type (d) rotation (see Fig-
ure 4). For clustering, we select cluster centers using
the farthest-first traversal algorithm, which gives a 2-
approximation solution for the k-center problem by
repeatedly picking a new center with maximum dis-
tance to its nearest center in the last iteration.

Figure 5 shows the experiment result with 10 clus-
ters. We see that it works fairly well for cluster-
ing similar folded conformations. Generally, our dis-
tance function will ignore small crimps and end folds,
and compare the folding structures of long segments.
If two conformations have the same overlap order
with similar lengths on corresponding long segments,
or different overlap orders but the overlap length is
small, then their distance should be small; Otherwise,
they are more likely to be in different clusters.

4 Extension to flat folded papers in 2D

In this section, we generalize our results for 1D simple
folding to orthogonal folding in 2D. In the orthogonal
folding model, we only fold along horizontal or vertical
directions on a square (or rectangular) piece of paper,
where horizontal and vertical are defined by the sides
of the paper. In origami science, this model is also
called the map folding.

Given a square paper in 2D, we discretize it by using
a uniform grid on both sides of the paper (see Figure
6(a)). Similarly, we can define the distance between
two flat folded papers using the dRMS distance func-
tion (under rotations/reflections if necessary). In par-
ticular, we define the internal distance between two
sample points by their geodesic Manhattan distance
along the paper. For example, the distance between
pt and ¢t is 2h (b = 1/n), however, the distance
between p™ and ¢~ is 4h since we need to go across
the boundary of the paper. Again, for two points
that come in contact in the folded conformation, we
consider them to be connected, so that their internal
distance along the paper is 0.

To compute internal pairwise distances, we build a
graph consists of all sample points at (ih/2,jh/2)*
(n 4+ 1 integer positions and n midpoints along each
axis) on both sides of the paper. Each sample point
is connected to its 4 neighbors in the grid by edges of
weight h/2, and at most 4 contacted points by edges

27th European Workshop on Computational Geometry, 2011

Cluster 1 P R === ?

» — . * 4 sk . *
Cluster 2 {'—T’ = } {E} ¢ R 5 T

. . . . * U :) *
Cluster 3 & o P 4 = ?
B b 1

Cluster 4 e — e — L= 3

u 10 0 i)

;i X * 2 ® *
s 2 5
Cluster 5 g 5 —_— ‘:ﬁ;—‘ —
T 2z I
i s ol 2 *
Cluster 6 i.é; } {—’_":> @
5 e
\ ¢ * sk
3 T

Cluster 7 D — — 31 - 0

11 1 * *
Cluster 8 —— %1} 3 5 s

T 10 B
1« * b * = * =
. 2 13
Cluster 9 - — = d A = T p
T
s ol 3

Cluster 10 %) é

Figure 5: Experiment result: in each cluster, the first conformation represents the cluster center computed by the farthest-
first traversal algorithm, and all other conformations are sorted in ascending order by their distances to this cluster center.

(Conformations marked with a “*’

of weight 0. (we check the 4 unit squares around a
sample point to see if there are any unit squares lying
immediately above/below (depending on their sides)
them in the folded conformation, see the shaded ar-
eas around p in Figure 6(a)). Therefore, the degree of
each node in this graph is O(1), and the total number
of edges m = O(n?). Using a similar data structure
from the 1D algorithm, we can implement a single
source Dijkstra’s algorithm in O(n?) time, and com-
pute all internal pairwise distances in O(n?) time.

In addition, we can also allow folding operations to
be axis-parallel plus at a 45-degrees angle (see Figure
6(b)). In this case, we can still use the geodesic Man-
hattan distance for internal distances computation.
The only difference is that we may need to check at
most 8 unit triangles around a sample point to build
edges for connected points in the folded conformation.

When we allow folding operations at arbitrary di-
rections, the geodesic Manhattan distance does not
work because the grid may not be aligned after a sim-
ple fold. In this case, we may define the internal dis-
tance between two sample points as their geodesic Eu-

C e,
T T T AT AT
| | | N AN SN S
| | | # | s | s
[! | P B N N
I s e H
| | | N oSN SN s
| | | ps | s | s
| al | PN \al PN
e N . e, ok
| | | N B BN
| | | s | s | s
| | | SN SN SN
Iy i I o o
h h

@ ®
Figure 6: 2D folding (a) orthogonal (b) diagonal

are rotated by 180 degrees when compared with the cluster centers.)

clidean distance along the paper. However, since the
shortest path connecting two points along the paper
might be at any direction, we need to build a com-
plete graph of all sample points, and the computation
for their geodesic Euclidean distance might be very
complex in a complicated folded conformation. The
case of arbitrary folding in 2D might be a topic for
our future research.

Acknowledgments

This research was supported by NSF grant 11S-0914833.

References

[1] E. Arkin, M. Bender, E. Demaine, M. Demaine,
J. Mitchell, S. Sethia, and S. Skiena. When can you
fold a map? Computational Geometry: Theory and
Applications, 29(1): 23-46, 2004.

J. Cardinal, E. Demaine, M. Demaine, S. Imahori,
S. Langerman, and R. Uehara. Algorithmic folding
complexity. In Proceedings of the 20th Annual In-
ternational Symposium on Algorithms and Compu-
tation, Lecture notes in Computer Science, volume
5878, pages 452-461, 2009.

E. Demaine and J. O’Rourke. Geometric Folding Al-
gorithms: Linkages, Origami, Polyhedra. Cambridge
University Press, 2007.

2l

H. Gabow. Scaling algorithms for network problems.
Journal of Computer and System Sciences, 31:148-
168, 1985.

L. Kavraki. Molecular distance measures. Connex-
ions, http://cnx.org/content/m11608/1.23/, 2007.

