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Abstract

We study the problem of aggregating data from a sparse set of
nodes in a wireless sensor network. This is a common situation
when a sensor network is deployed to detect relatively rare events.
In such situations, each node that should participate in the aggre-
gation knows this fact based on its own sensor readings, but there
is no global knowledge in the network of where all these interest-
ing nodes are located. Instead of blindly querying all nodes in the
network, we show how the interesting nodes can autonomously dis-
cover each other in a distributed fashion and form an ad hoc aggre-
gation structure that can be used to compute cumulants, moments,
or other statistical summaries. Key to our approach is the capability
for two nodes that wish to communicate at roughly the same time
to discover each other at a cost that is proportional to their network
distance. We show how to build nearly optimal aggregation struc-
tures that can further deal with network volatility and compensate
for the loss or duplication of data by exploiting probabilistic tech-
niques.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network proto-
cols—Routing protocols; F.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Nonnumerical Algorithms and Problems—Ge-
ometrical problems and computations

General Terms
Algorithms, Design, Theory

Keywords

Aggregation, Sensor Networks

1. INTRODUCTION AND RATIONALE

Information aggregation is a common operation in sensor net-
works. Traditionally, information sampled at the sensor nodes needs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IPSN’07, April 25-27, 2007, Cambridge, Massachusetts, USA.

Copyright 2007 ACM 978-1-59593-638-7/07/0004 ...$5.00.

aaaaa I et RN
aaaaa I R YRR
aaaaaaaaaa xagagagaﬂauaaalaaax’
xxxx+xxxx % X o o oo o0 a0 o 22 smit
nnnnn inananxnaxananhn,n,n.nxn
aaaaa R et e xr_4hnxxxx
Xowjee s X X X xxxn,n,i,x_. X -
oo X o b Sm——m—— X X X X X u.ux‘xixu
- 9 SUREvakaaRoSoTIVE Slol Sall R

i XX o X » XXXXX ) T TS T R
X@=f X o o X o oX o oo X o o o o XXX o X o o o o 0 o o
e S R e R A R 3 I TR
o e s e 0 o X o o X o o o X o xx’_lx aaaaaaa
CX@X X e X oo XXX X @l SEXCE B 5 & B E
eX e e X e X e e X e e X e P XXXXX@XXXXXXX o o
=XXXX,XXXX XXX« @X s @ms s ¢ X o o
B T T T xonunxr’~
| X@X - S o e oo o ix-

o s o 0 f o o o0 o s XX o o 0 o o 3 X o o

XXX X@XXXX @XXXXX@XXX
aaaaa X o +xx o o o

Figure 1. An example of sparse aggregation trees in a 1, 024-node
(32 x 32) grid network. The heavier solid lines represent the tree
edges. Nodes marked by crosses are not in the tree, but have been
involved in the tree formation phase (by relaying probe and recall
messages).

to be conveyed to a central base station for further processing, anal-
ysis, and visualization by the network users. Information aggrega-
tion in this context can refer to the computation of statistical means
and moments, as well as other cumulative quantities that summa-
rize the data obtained by the network. Such accumulation is impor-
tant for data analysis and for obtaining a deeper understanding of
the signal landscapes observed by the network. In certain contexts,
when atomic sensor readings might reveal inappropriate informa-
tion about a location or an individual, aggregation is also essential
for alleviating privacy concerns.

An important topic addressed by the wireless sensor networks
community over the last several years has been in-network aggre-
gation. The notion is that cumulants, moments, or summaries can
be computed directly in the network by sensor nodes endowed with
computational power, thus avoiding the expensive transmission of
all sensor data to a (possibly distant) base station. It is well known
that, for nearly all node technologies, data transmission over wire-
less links costs hundreds to thousands of times more energy than
performing local computation on the same data. In the setting of
untethered, energy-constrained sensor nodes monitoring a physical
environment, it thus becomes quite significant, for energy conser-



vation and network lifetime considerations, to be able to trade local
computation for communication as much as possible. There has
been a lot of interesting prior work on the in-network aggregation
problem, some of which is briefly surveyed in Section 2 below.

Most of the extant work assumes that the goal of the aggregation
is to accumulate data from all the network nodes. This is certainly
the case in scientific applications, where scientists are aiming to ob-
tain as detailed information as they can about the observed physical
phenomenon. In fact, physical scientists are often unhappy about
in-network aggregation, as they want to have access to the raw sen-
sor data, whenever possible. To some extent these concerns can be
alleviated by providing tools for filtered aggregation, where only a
select subset of nodes participate in the aggregation, according to
the values of some of their sensors, their geographic location, etc.
Even in these settings, however, all the nodes see all the queries—
they simply decide whether to participate in the aggregation or not.

In this paper we are interested in exploring a new part of the ag-
gregation problem space, by focusing on situations where only a
relatively small subset of the nodes have useful data to report, or
want to participate in an aggregation. This is appropriate, for ex-
ample, in settings where nodes perform some local processing first,
to map raw sensor data into event detections, and where events of
interest are relatively rare. Many applications of sensor networks
fit this model, as sensor networks are often deployed to monitor
and protect the health or safety of a system/space/environment, and
anomalous events are, by their nature, infrequent. For example, if
we have a sensor network monitoring a city, natural catastrophes
such as flooding, the spread of disease, earthquake damage, etc.,
may affect a relatively small portion of the city at any one time. The
causative factors of these disasters may depend on combinations of
external forces (e.g., rain, ground movement) and local conditions
(e.g., building construction, health habits), making their locations
hard to predict. What is common in such situations is that the sen-
sor nodes observing the event of interest know that it has occurred,
but there is no centralized knowledge in the network about where
all these event detections are.

In such situations existing aggregation methods are quite sub-
optimal. One can poll and query the network for these events, but
such queries will also have to be routed to the many nodes that have
nothing to report, wasting large amounts of energy. Clearly, for
rare events, frequent polling is inefficient. A purely event-driven
approach, where each node with a detection independently trans-
mits a record of the event to a base station, may also not be op-
timal. In the settings we have in mind multiple detections may
occur within a relatively short time period and it can be advanta-
geous to aggregate in-network for all the reasons given earlier, as
well as for avoiding the creation of hot-spots and single points of
failure around the base station. In other settings, where for exam-
ple rescue workers are embedded and operating in the same space
as the network, there may be no single fixed information sink. In-
stead the detections should be reported to the nearest network users,
with minimal latency. Similar challenges arise in settings where we
wish to track intermittently observable targets moving through a
sensor network. Traditionally, leader nodes aggregate information
and perform hand offs as the target moves. But when the detecting
nodes are all disconnected, this no longer works. How should these
nodes locally discover each other and pool their data to estimate the
target tracks?

Our goal in this paper is to aggregate data in-network from a
small set of nodes that is possibly disconnected, but all of which
have data to aggregate within a relatively short period. Each node
knows locally whether it wants to be aggregated or not, but no
global information about the location of this set is available in the

network. We call this the sparse aggregation problem. We focus
on the problem of counting the number of nodes in the sparse de-
tection set, or of summing a set of values, one from each of these
nodes, as the canonical aggregation problems. Many other varia-
tions are possible. For brevity, we refer from now on to the nodes
in the aggregation set as the /ot nodes.

We present a class of solutions to the sparse aggregation problem
with several attractive properties:

e Our protocols are entirely distributed and need no prior in-
formation about whether hot nodes exist or where they are
located; nevertheless, they can exploit such information, if
available.

e We bring the hot nodes into a connected aggregation struc-
ture, such as a tree, whose total cost is within a small factor
of what would be possible if we had a full network map and
perfect knowledge of where the hot nodes are located.

e We exploit probabilistic techniques in data aggregation, to
make our protocols robust to network volatility and the in-
corporation of duplicate data, at the expense of a small prob-
ability of modest errors.

An interesting aspect of our work is the way that the data processing
and information aggregation can be interleaved with the routing,
hot node discovery, and tree-formation aspects of our protocols—
to the benefit of both. This paper provides a first theoretical analysis
and simulation validation of this sparse aggregation framework.

2. PREVIOUS WORK

We are not aware of previous work that specifically addresses
the sparse aggregation problem. However, there is a vast amount
of extant work on general in-network aggregation that we cannot
hope to fully survey here. Thus we focus on what is most relevant
to our approach.

Early work on in-network aggregation, e.g., TinyDB [11], uses
a tree-like structure to disseminate queries and collect results back
to the sink. Queries are pushed down the network to construct a
spanning tree. Aggregate values are routed up the tree with partial
data aggregated, compressed and pruned at internal tree nodes to
reduce communication cost. Various algorithmic techniques have
been proposed to allow efficient aggregation without increasing the
message size [3, 4, 17].

A serious problem with tree structures is that they are fragile un-
der transmission failures, which are common in sensor networks.
With in-network aggregation, packet loss can be fatal—as it may
lead to the loss of the values from an entire subtree. To improve
routing robustness, multi-path routing schemes can be adopted. But
this may lead to duplicate packets arriving at the base station and
subsequently cause double counting. To deal with this problem,
methods such as synopsis diffusion [3, 12, 13] were proposed to
decouple aggregation from message routing by designing aggrega-
tion schemes that are insensitive to message duplication and arrival
orders, a property named order and duplicate insensitive (ODI).
Many of these techniques intuitively implement an aggregation op-
eration by MAX/MIN or boolean operations on bit arrays, which
are by nature insensitive to duplicate data. The aggregation meth-
ods we use in this paper exploit similar tools.

Non-tree based methods, such as sweeps, have also been pro-
posed [18].



3. NETWORKSETUP AND AN OVERVIEW

Our approach to the sparse aggregation problem is based on and
inspired by a number of tools that we briefly mention here, then
develop further in later sections.

Suppose that sensor nodes are uniformly deployed inside a reg-
ular region with sufficient density for connectivity and coverage.
The boundary of the field is known. Furthermore, nodes on the

boundary have connections to an external high-speed network. Based

on their own sensor measurements, certain sensors in the field de-
cide that they are ‘hot’ (i.e., they believe they have detected some-
thing of interest). Our goal is to count the number of hot nodes in
the network, or more generally to compute efficiently certain ag-
gregate statistics about the set of hot nodes. These statistics may
involve the number of nodes, the locations of the nodes (if known),
or other secondary physical measurements that convey more infor-
mation about the phenomenon being observed. We assume that the
set of hot nodes is relatively small compared to the whole network.
There is no assumption that the hot nodes are ‘clustered’ in any
way, though this may turn out to be the case in practice, as physi-
cal phenomena exhibit spatial coherence. We would like to collect
these statistics at periodic intervals.

To accomplish this goal without explicitly interrogating all nodes,
we make a few assumptions that we believe to be reasonable. Since
we want the data collection to be initiated by the hot nodes them-
selves, we need to assume a common temporal framework for the
nodes, with a shared clock that lets a node know when to initiate
data collection. We do not require perfect (and unrealistic) clock
synchronization among the nodes—instead we assume that clock
drift between a pair of nodes is proportional to the distance be-
tween those nodes in the network. This can be accomplished by a
low-overhead time synchronization protocol, simply by guarantee-
ing that each node has a bounded drift with respect to each of its
1-hop neighbors. In the case of target tracking, nodes detect events
and participate in the aggregation protocol when a target passes by.
As long as the target keeps moving with a minimum speed, detec-
tion time differences at two nodes will also be bounded by some
constant times the relative distance of the nodes or the target path
length.

Distance-sensitive neighbor discovery. Key to our approach is a
probe protocol that can be initiated independently by a node and
involves emitting a few packets out of the node that follow certain
paths in the network while leaving a trail behind, until the probes
are terminated. The key property of the probe protocol is that if
two nodes, say u and v, at network distance d (with no knowledge
of each other) initiate probes at the same time, then a packet from
one of the nodes will encounter a trail left by a packet from the
other node after O(d) steps. We call this crucial property distance
sensitivity. At that encounter event

o if the probe packets carry data from the two nodes, the data
can be aggregated, and

e a path between the two nodes has been established whose
length is O(d) as well.

The same holds if the two nodes initiate probes within a time-lag
of O(d) of each other. Furthermore, at this point it is possible to
initiate another recall protocol whose function is to terminate the
probe packets of one of the two nodes, say u. This can be done
so that when all the packets of u have been stopped by the recall
protocol, the total work performed by both the probe and recall
protocols on both nodes u and v is still O(d).

In the simplest scenario, when we use the probe and recall pro-
tocols, we will think of v and v as ‘competing’ in a tournament.

When an encounter event occurs, the winner of the tournament is
decided based on the data carried or left behind by the probe pack-
ets. The losing node then has his probes terminated by invoking the
recall protocol, while the probes of the winner continue to propa-
gate. Probe packets that are not recalled will eventually reach the
boundary of the network, where they stop. Their data is aggregated
in an appropriate base station, using the high-speed network avail-
able for the boundary nodes.

We will use the above communication pattern in several varia-
tions in what follows. Effectively, our intersecting probes provide
a lightweight rendez-vous mechanism, allowing nodes within dis-
tance d to discover each other’s existence at a cost of O(d), and not
the Q(d?) that a traditional broadcast in a planar network requires.

Tree formation. To form an aggregation tree, we let each node
choose a random number from some distribution, named the weight
of this node. The weights of the hot nodes determine how the ag-
gregation tree is formed. The weights can also be exploited in the
specific aggregation to be performed, as will be explained later.

At the right time, according to their local clocks, hot nodes ini-
tiate probes carrying their weights. When two probes encounter
each other, the packet with lower weight wins and initiates a recall
protocol for the packets of the node with the larger weight. Probe
messages that are not recalled will eventually reach the network
boundary. Thus a spanning forest of the hot nodes all connected to
the network boundary is formed which can be used for subsequent
data aggregation.

What is the total cost of the tree formation? Note that each node
u will have its probes recalled by a node v of smaller weight, to
whom it loses in some encounter event during the tournament'.
This happens at a total cost proportional to the distance d from
u to v. Thus each losing node spends effort that is proportional to
its distance to the node that defeats it. We show in Section 5 that
this simple property is enough to guarantee that the overall effort
spent in the aggregation for nodes other than the one of minimum
weight is O(T log n), where T is the cost of a minimum spanning
tree connecting the hot nodes.

Our distributed construction of the aggregation tree was moti-
vated by the nearest neighbor trees by Khan, Kumar, and Panduran-
gan [8], which are built by giving desired nodes (the hot nodes in
our context) certain priorities and then connecting, in a distributed
manner, each node to its nearest node of higher priority. We note
that in the aggregation tree (or forest) formed by our protocol, a
node is not necessarily connected to its nearest neighbor of higher
priority. But our tree still has a small total weight. The overall cost
of the algorithm is O(T'log n + K'), where K is the time needed
for the probes of the minimum weight node to reach the sensor field
boundary.

Aggregation. After the aggregation tree or forest is formed, data
aggregation can be conducted by having the data flow up the tree
and aggregated in the standard way. An interesting aspect of our
protocol is that we can actually integrate data aggregation with the
tree formation process so that they both happen simultaneously.
Recall that in the tree formation procedure we use random prior-
ities to determine which probe message should proceed. These
random priorities can be used to implement data aggregation, by
using probabilistic counting techniques. Essentially the formation
of the tree achieves the computation of the minimum of some ran-
dom numbers chosen by the hot nodes, with which one can derive
an approximation to the final aggregation value. Note that since

"'We assign the nodes on the boundary weight —oo so that probes
that reach the boundary (and thus deliver their data to the sink) are
recalled.



we are aggregating by computing mins, the framework is robust
to packet duplication, multiple encounter events between packets
from the same two nodes, etc.

4. FORMATION OF A SPARSE
AGGREGATION TREE

This section generalizes and fleshes out the details of the meth-
ods in Section 3. Note that an unknown sink (or sinks) seeking
the results of the aggregation can easily be integrated into this tree
discovery/formation scheme. Thus the the aggregated data can be
delivered to any desired location or locations in the network.

4.1 Double Rulings

To achieve the distance-sensitivity property for neighbor discov-
ery, in our probing protocol each participating node initiates probe
packets and sends them along double ruling trails. A double ruling
scheme defines a set of trails through every node in the network
with the following properties: (i) the maximum length of the trail
through each node is O(D), where D is the network diameter; (ii)
the trails through two nodes p and q are guaranteed to intersect in
the network; (iii) there is a path connecting p and ¢ through the trail
intersection with total length O(d), where d is the network distance
between p, g. Double ruling schemes were initially designed for in-
formation discovery in a sensor network where a sink desires to ob-
tain specific data from a data source while neither of the source or
sink knows the location of each other. Different from a pure ‘pull’
or pure ‘push’ approach (both of which involve expensive flood-
ing operations), a double ruling scheme adopts a symmetric infor-
mation discovery principle with both the source and sink actively
searching for each other, as first suggested in rumor-routing [1].
The notion of trails has appeared in a number of other papers as
well, including in trajectory forwarding [14], in the asymptotics
of query strategies [16], and the combs and needles work [10]. A
number of double ruling schemes that guarantee distance sensitiv-
ity have been devised in the literature [15]. For example, with geo-
graphical location information, a simple double ruling scheme de-
fines the trail for each node p as a cross, i.e., horizontal and vertical
paths that go through p. See Figure 2 for an example. The length
of a path connecting p, g through either of the two intersections is
the ¢ distance between p, ¢, which is at most a factor of v/2 more
than the Euclidean distance between p and q.

Figure 2. The double ruling trail through each node consists of a
cross. The two crosses from nodes p and ¢ intersect.

This rectilinear double ruling scheme can be implemented by
geographical greedy forwarding. A node sending a probe packet
to the north will select the next hop as the one among all 1-hop
neighbors that has the maximum y-coordinate. The other three di-
rections are treated similarly. Under uniform deployment of sensor
nodes with sufficient density, the greedy algorithm will create paths
that resemble a cross passing through the initial node.

We call a node receiving probe packets from both p and q a junc-
tion node. A junction node can be a node on both double ruling

trails from p and ¢q. Or, if two double ruling trails do not intersect
at sensor nodes, then we have two crossing links, ab and cd. As-
suming sufficient sensor density, because of the broadcast nature of
a wireless network, there will a node in the vicinity of the crossing
that receives and stores probes from both p and ¢, and this node is
a junction. Junction nodes may not be unique, however. What is
crucial is that there is always a path through some junction node
connecting p and g with total length O(d), where d is the distance
between p, q.

To improve the system robustness to link failures and packet loss,
we can augment this basic double ruling scheme by using multi-
path routing. That is, a node holding important data (say, in the
sense discussed at the end of Section 6) can send its probe packets
along a wider band, rather than a single path. This can be controlled
by specifying the width W of the band. A probe packet from source
p heading north is broadcast to the nodes in its 1-hop neighborhood;
all the nodes with z-coordinate within [p, — W/2, p, + W/2] and
y-coordinate higher than the transmitting node will re-transmit the
probe. W can be chosen according to the importance of the data.
More about the coupling of data and routing will be discussed in
Section 6.

In the sequel we use this rectilinear cross scheme to describe the
probe and recall protocols. For our sparse aggregation problem,
any double ruling scheme satisfying the three properties above is
adequate and such schemes can be devised for quite general field
morphologies and sensor distributions [15].

4.2 Probe and Recall Protocols

The sparse aggregation protocol starts at a particular time. We
assume the nodes have bounded clock drift. The clock difference
between two nodes p, g is bounded by «||pg||, where « is a con-
stant, and ||pq]|| is the network distance between p, g.

The hot nodes with data to report participate in the tree forma-
tion protocol, composed of two sub-protocols, the probe protocol
and the recall protocol, which together establish an aggregation tree
connecting all the hot nodes. The goal of the probe protocol is to
discover other hot nodes in the network and establish communica-
tion paths between them. The goal of the recall protocol is to prune
excess packets traveling in the network, after hot nodes discover
each other, so as to reduce the communication overhead.

To maintain a consistent tree structure in a distributed environ-
ment, we invoke a ranking system on the hot nodes. In general,
each hot node uses a pseudo-random hash function on its node ID
to generate a unique priority number. When two nodes discover
each other by the probe protocol, the node with higher priority
‘wins’ and continues its probe packet. The node with lower pri-
ority ‘loses’ and initiates the recall protocol to terminate its probe
packets. We assume that the probe packets travel in the network
with ‘unit’ speed. The recall packets travel with speed M > 1 in
order to catch up to and terminate the probe packets. M depends
on the bound on clock drift and is typically a small constant.

At time zero, a hot node sends out probe packets in the four
directions north, south, west and east. A probe packet from a node
p contains the source of the probe, p, and the direction the probe
travels. A node sends the probe packet to all the nodes in its 1-hop
neighborhood and those in the direction of the probe re-transmit.
The number of nodes that retransmit can be adjusted for improved
robustness, as explained earlier. A similar trade-off was recently
analyzed in [19].

Each node keeps a status table recording the information it has
received from each hot node. This includes: a tuple (SOURCE,
MSGTYPE, PARENT, JUNCTION), where SOURCE is the ID of the
hot node, MSGTYPE is PROBE for a probe packet and RECALLED



for a recall packet, PARENT and JUNCTION are the parent and junc-
tion node in the aggregation tree, to be defined later.

When a node w receives a probe packet from p, it first checks
whether it has already received any packet from p; if so, this packet
is ignored. Otherwise w records the probe packet. In addition, if
w has received messages from other hot nodes, w checks if it is
a junction node and if any probes need to be recalled. If w has
received a message from a node g with priority higher than p, then
the probe message from p will be recalled. Node ¢ is a candidate
to be the parent of p in the aggregation tree. If p’s priority is higher
than all the other hot nodes whose status entries have MSGTYPE =
PROBE at node w, then those probes will be recalled. They are
assigned p as a potential parent. The probe packet for p will be
re-transmitted.

The recall protocol is initiated when a hot node p ‘loses’ to an-
other hot node ¢ at a junction node w. Node q is a possible parent
of p. The recall packet contains the IDs of p (the child), g (the par-
ent), and w (the junction node). A recall packet travels at speed M,
faster than the speed of the probe packets. A recall packet has no
direction associated with it but uses flood-fill to travel through the
trails of the probe packets. When a node x receives (or initiates) a
recall message, it first checks the status for node p in its local table.
If  has received a message from p before and the current status
is PROBE, then x will change the status of p to RECALLED. The
recall message will be broadcast to all the 1-hop neighbors of z. If
z has no message from p, or the status is RECALLED, x does not
send the recall message further.

When node p itself receives a recall packet for p, it sets its parent
to be the parent-candidate g in the packet and remembers the junc-
tion node w where the trails of p and ¢ met. Thus the parent of p
in the aggregation tree is determined by the first recall packet that
reaches p.

The boundary of the sensor region is incorporated into the proto-
col by initializing every boundary node as a junction whose prob-
ing node (the base station b) has the highest priority. When a probe
packet for hot node p reaches a boundary node w, p loses to b, and
w initiates the recall protocol for p with potential parent b and junc-
tion node w. Finding boundaries in networks has been addressed
by a number of authors [5, 6, 9, 20].

The status tables in the nodes record the trails of probe and recall
packets, and also provide a way to suppress redundant retransmis-
sions. Due to the broadcast nature of wireless communication, a
packet may be received by multiple nodes. In the probe and recall
protocol, multiple nodes may realize they are junction nodes and
thus initiate the recall procedure. However, once a node has re-
ceived a recall packet and updated its status, it will not respond to
any further recall packets other nodes may have generated.

4.3 Forming an Aggregation Tree

As described in the preceding subsection, the aggregation tree
is a logical structure recorded in the hot nodes themselves: each
node p knows its parent ¢ in the tree. The parent may either be
another hot node or the boundary of the sensor region. Thus the
‘tree’ is actually a forest of trees, with the number of trees in the
forest dependent on the distance from the region of hot nodes to the
boundary. Nevertheless, we will continue to use the word ‘tree’ to
describe the structure—it is still an aggregation tree, but the chil-
dren of the base station are joined to it by high-performance links.

Our simulations, described in Section 7, use the simple parent-
child representation of the aggregation tree. The earlier figure 1
shows an example of the tree we obtained. One can see that only
a small fraction of the nodes are involved in the tree formation.
Although our simulations use the simple tree representation, there

are several variants on the tree structure that pay greater attention
to the physical embedding of the tree in the sensor network, with
varying impacts on communication cost and reliability.

Using the logical representation of the aggregation tree, aggre-
gation happens at the hot nodes themselves. The children of a node
p send their results to p, p aggregates them, and then p sends the
resulting summary on to its parent. There are several choices for
how each node p sends data to its parent q.

e Send a packet from p along p’s trail to the junction node w,
then along ¢’s trail to q. This has the advantage that the probe
and recall protocol has already demonstrated the existence of
this path—no path discovery is required.

e Use some network-specific point-to-point routing mechanism,
such as geographic routing [7], to send a packet from p to g,
bypassing the junction w entirely. This reduces the load on
the trail nodes, but forces the packet to discover its own path.

e If p’s results are known to be particularly important and their
successful delivery is crucial, the preceding two possibilities
can be combined, or either can be complemented by trans-
mitting in a band around the basic path, with the width of
the band dependent on the importance of the message, as de-
scribed in Section 4.1.

Routing along the trails of the logical aggregation tree may cause
some inefficiency in the routing. Packets may be sent in one direc-
tion along p’s trails from its children, only to have the summary
packet from p traverse the same trail in the opposite direction on
the way to its parent. We can avoid this redundancy (possibly sav-
ing a constant factor in communication costs) by exploiting the em-
bedding of the aggregation tree. We add a third phase to the probe
and recall protocol, in which a node p notifies all the nodes in its
trails of its parent g and junction node w. This allows all the nodes
in p’s trails to direct the trail edges toward w. Node w becomes a
proxy for p in the aggregation tree. Instead of sending data to p for
aggregation, all p’s children (represented by their proxy nodes on
p’s trail) send data along p’s trail to w, where aggregation occurs
before w sends a summary packet toward the junction represent-
ing p’s parent. Node p also sends its own individual data to w for
aggregation. Two variants of this approach are possible:

e Each proxy for a child of p sends its data along p’s trail in-
dependently to w. A constant fraction of p’s trail may be
traversed for each child.

e The child proxies along p’s trails may be used as intermedi-
ate aggregation points, combining data from the child with
data flowing along p’s trail from nodes farther from w along
the trail. This reduces the number of messages that must be
sent—each trail segment is traversed just once—but makes
the aggregation tree more vulnerable to deadlock because of
single-node failures.

A final modification enhances robustness by replacing the aggre-
gation tree with a DAG. To do this, we modify the recall protocol
so that all recall messages for a node p propagate back to p. This
increases the amount of communication in the recall phase of the
protocol, but has the advantage that p is informed of all its candi-
date parents, not just the one whose recall packet reaches it first.
Node p can choose multiple parents among the candidates, perhaps
up to four, one for each cardinal direction. When p performs its
aggregation (here we assume the simple tree structure, with aggre-
gation performed at hot nodes rather than proxies), it sends the re-
sulting data to all its parents, thereby increasing the likelihood that
the data will reach the base station. Of course this requires that we
use an ODI (order and duplicate insensitive) scheme.



S. QUALITY OF THE SPARSE
AGGREGATION TREE

In this section we discuss the performance of the protocols in
the previous section and characterize the aggregation tree that they
build. The asymptotic bounds we present apply to all the tree vari-
ants discussed in Section 4.3, with the caveat that multiplying the
width of important communication paths to increase reliability has
a corresponding multiplicative cost in communication resources.

As noted in Section 4.2, the clock skew between any two nodes
u and v is bounded by «||uv||, where ||uv|| is the network distance
between u and v. The speed of probe packets is 1 and the speed of
recall packets is M > 1. We denote the set of hot nodes by S.

For any hot node p, let trail(p) be the set of nodes in p’s trails.
Because of the uniform distribution of sensor nodes, |trail(p)| is
proportional to the distance between p and the farthest node in
trail(p). Furthermore, |¢rail(p)| is proportional to the total number
of packets in the probe and recall protocol attributable to p.

When a probe meets the trail of another node’s probe, at least
one of the two will be recalled, if neither has already been recalled.
This observation leads to the following lemma (proof omitted):

Lemma 5.1. Let u and v be two hot nodes. Then
min(|trail (uw)), [traid(v)]) < C - ||uv]]|
for some constant C.

Let E be the set of nearest-neighbor edges: for each hot node w,
E contains the edge from w to its nearest hot node, denoted nn(u).

Lemma 5.2. E contains a partial matching® of size 9(|S|).

It is well-known that the minimum spanning tree of S, denoted
MST(S), contains all the edges of E. (If MST(S) does not con-
tain e = (v, nn(v)) for some node v € S, adding e to MST(S)
creates a cycle, and the tree weight can be decreased by retaining
e and removing the other cycle edge incident to v.) The weight
of MST(S), i.e., its total length, is |MST(S)|. The length of an
individual edge e = (p, q) is len(e) = ||pq]|.

Theorem 5.3. Let K be the maximum, overallv € S, of the short-
est axis-aligned distance from v to the boundary of the sensor re-
gion. Then

> ltrail(v)] = O(K + |MST(S)| - log [S]).
veES

PROOF. Forany subset X C S, define f(X) = >_  |trail(v)].

We want to estimate f(.S).

For a given X C S, let E be the set of nearest-neighbor edges
defined with respect to X, and let E'5s be a maximal-cardinality
matching in E. Because every edge of E s belongs to MST(X),

> len(e) < [MST(X)].

ecE

Also note that | MST(X)| < |TSP(X)| < |TSP(S)| < 2|MST(S)

where T'SP(-) is the minimum-length traveling salesman tour of a
point set.

By Lemma 5.1, every edge e € Ej is incident to a node v such
that |¢trail(v)| < C-len(e). Let the set of these nodes be X ;. We
have

f(Xn)= > |trail(v)| < C - |MST(X)|.

veEX

2A partial matching is a set of edges such that each node is an
endpoint of at most one edge.

Create a new set X' = X \ Xp; by Lemma 5.2, | X'| < 8|X
for some constant § < 1. Assembling the pieces, we have

F(X) = f(Xa) + F(X') < C-|MST(X)| + f(X")
< 20 |MST(S)| + f(X').

The base case for | X| = 1is f(X) = O(K). By induction on
| X[, we have f(X) <2C - |[MST(S)| -log, . |X| +O(K). O

>

Because the aggregation tree built in Section 4.3 uses a subset of
the nodes in all the trails, the theorem has the following immediate
consequence:

Theorem 5.4. The aggregation tree constructed by our protocol
has total length O(|MST(S)| - log |S| + K), where K is as de-
fined in Theorem 5.3.

The maximum degree of the aggregation tree is also important
for its performance. Nodes with high degree must perform much
more aggregation work than the average (which is just constant).
In the following theorem we bound the maximum degree of our ag-
gregation tree. The proof is omitted from this version of the paper.

Theorem 5.5. Let A be the aspect ratio of S, i.e., the ratio between
the maximum and minimum distances between elements of S. If
the clock skew parameter « is less than 1, then the maximum degree
of any node in the aggregation tree of Section 4.3 is O(log A).

6. AGGREGATION

Many possible aggregation strategies are possible, within the
framework discussed above. If the network has solid connectiv-
ity and point-to-point routing already in place, then a logical ag-
gregation tree is all that is needed and aggregation can happen in
the traditional way, after tree formation. If the network is volatile,
however, then a DAG-based approach with multi-path connectiv-
ity is preferable, together with an ODI aggregation scheme. Note
also that our tree discovery protocol naturally leads to a multiply-
connected structure, as for each pair of nodes the multiple probe
paths establish multiple routes between the nodes.

Of special interest is the fact that our protocols allow fine inter-
leaving between tree formation and aggregation. Specifically, the
random priority needed by the tree formation process can be used
to implement a probabilistic aggregation scheme. In this way ag-
gregation is already completed, as soon as the tree is formed.

Specifically, we can make use of certain properties of the classi-
cal exponential distribution. A random variable x chosen from an
exponential distribution with parameter A, A > 0, has a probability
density function f(x; \) given by

[ AeT 0 >0
f(x’A)_{o, if ©<0

The cumulative distribution function F'(x; \) is given by

[ 1—e if x>0
F(““”A)_{o, if <0

The distribution has mean 1/ and variance 1/A2. The following
two properties of the exponential distribution are crucial for us.

Theorem 6.1. If x, and x2 are independent random variables with
parameters A1 and \1 respectively, then

A
Prob(xl < Iz) = N _’_1)\2 .



Theorem 6.2. If x1,x2,...,x, are independent exponential ran-
dom variables, where x; has parameter \;, then

min(x1,x2,...,%Tn)

is an exponential random variable with parameter y ., Ai.

A consequence of these properties is that if x1,x2,...,z, are
independent exponential random variables chosen from exponen-
tial distributions with parameters A1, A2, . . ., A, respectively, then
their minimum is a random variable with mean 1/ " | A;. This
effectively allows us to replace a data summation by a data mini-
mization operation which, as mentioned, is insensitive to data du-
plication and thus is advantageous in a volatile network setting.

This use, to our knowledge, was first pointed out by E. Cohen [2],
in the context of solving counting problems on large graphs. In our
adaptation of the Cohen framework, each network node ¢ holding
data value f; independently selects a random number drawn from
an exponential distribution with density function fie™%i®. If y is
the minimum number chosen by any hot node, then 1/x is an un-
biased estimator of the sum of F' = f1 + fo + -+ + fn. Sum-
ming values at the hot nodes is a surprisingly powerful aggregation
primitive. If node locations are known, this primitive can be used
to compute arbitrary moments of the hot node position distribution,
conveying a picture of where the exceptional events are being de-
tected. Alternatively, summation can be used to compute moments
of the values sensed by the nodes, covariances between node loca-
tions and values, etc.

For the primitive of summing values, we can use the random
number chosen from the exponential distribution described above
as the weights in the tree formation protocol. Recall that during
tree formation, a number of packets may reach the field boundary,
from where these weights can be transmitted to the base station
and the minimum weight can be retained. No packet can stop the
packets of the hot node whose weight is globally minimal—and
therefore these packets will reach the boundary and the base sta-
tion. Thus as the tree is formed, the base station can immediately
derive an approximation to the aggregated value. For applications
in which a quick and dirty approximation suffices, our job is done
at the moment when the tree is formed. For better accuracy, we can
repeat this experiment a number of times. Cohen shows that, for a
given parameter &, if we repeat this experiment O( Siz log n) times,
where n is the number of nodes involved, average the minimum
weights obtained in each experiment, and then take the inverse of
that, this quantity lies, with high probability, within relative error
€ of F'. With O(s%) experiments, the expected relative error is at
most €. We report on some simulations validating these bounds in
Section 7.

In summary, by integrating data aggregation with node discovery
and tree formation, the simple distributed probe protocol performs
two important tasks at once: it connects the hot nodes into an aggre-
gation tree that is nearly optimal in terms of communication cost,
while at the same time performing the min-based aggregation that
can translate into an estimate of the final aggregation.

The robustness of aggregation deserves further exploration. Note
that this type of probabilistic counting has built-in robustness to
data loss, as well as duplicate insensitivity. Some of the simulations
reported below quantify how many exponential variates are neces-
sary to obtain a given degree of accuracy. For example, if the small-
est variate in the counting problem is lost, but the second smallest
makes it, our final count will be off by only 1 in expectation—
while in regular aggregation a single lost subtree count can cause
unbounded error. If other variates are lost, they have no impact on
the count. The counting problem also allows this self-determined

yet globally consistent notion of data importance, which when cou-
pled with multi-path routing can guarantee further robustness. Al-
though this does not directly extend to the completely general case
of summation of hot node values, in most scenarios prior knowl-
edge of the range of node values, past measurements, etc., can be
used to develop a notion of the significance of data locally, without
requiring additional extensive communication.

7. SIMULATIONS AND EXPERIMENTS

In this section we evaluate by means of simulation the perfor-
mance of our sparse aggregation scheme in a number of settings.

7.1 Communication Costs

The main metric we consider is the communication cost of a sin-
gle aggregation task. If aggregation is initiated by a base station,
then we include the costs of both the query phase and the data col-
lection phase. In our protocol there is no query phase. Our aggrega-
tion cost is defined to be the cost of forming an aggregation tree, as
the basic logical structure described in subsection 4.2, and the cost
of sending partial aggregates along child-parent paths if data ag-
gregation/delivery has not been accomplished (if data aggregation
is combined with tree formation as in Section 6 this cost is 0).

We assume that the cost of sending a message is proportional
to the Euclidean distance between the sender and the receiver, a
justified assumption in the case of dense deployment. Although
not completely realistic, we believe that this assumption does not
influence the overall outcomes of our comparisons, but only the
absolute costs, which we are less interested in.

We compare our algorithm to two general aggregation paradigms,
commonly known as ‘push’- and ‘pull’-style aggregation, rather
than any specific method proposed in the literature. Almost all ex-
isting methods that we are aware of (see Section 2) belong to one
of these categories. In Figures 3 and 4, the vertical axis is the ratio
of the cost of our scheme vs. the cost of the corresponding ‘push’
or ‘pull’ scheme—thus the smaller the better.

‘Pull’-based method: The base station queries all nodes, and only
the hot nodes reply. The query cost is essentially the cost of flood-
ing the entire network. We consider two variations for the data
collection cost. In the first data collection, the hot nodes reply by
sending the data upstream along the spanning tree constructed in
the flooding phase. Data can be aggregated at internal nodes of the
tree. We also consider the case when each hot node replies inde-
pendently along its shortest path to the base station, disregarding
any message trails it may encounter along the way. This method
invokes higher communication cost, but requires no coordination
and scheduling of partial aggregates, which makes it much easier to
implement. Since the hot nodes are scattered at unpredictable loca-
tions, scheduling for in-network aggregation of irregularly spaced
participants is non-trivial. Our two performance metrics are the
sum of the fixed query cost and that of the two reply costs, as de-
scribed above. Note that we discount the costs of both reply meth-
ods significantly by disregarding the non-trivial amount of work
required to discover the shortest paths and the cost of coordination
and scheduling for in-network aggregation, respectively. Another
serious overhead that we did not account for in the ‘pull’-method
is that the user/sink needs to know when to ‘pull’. As interesting
events happen irregularly and unexpectedly, a ‘pull’ approach in
practice may waste a lot of communication by querying when the
data is not yet be available. Our comparison is unrealistically favor-
able to this approach, as we simply ignore the cost of the unfruitful
polling queries that a practical ‘pull’-method would definitely in-
clude.
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Figure 3. (i), (ii) Communication cost of ‘pull’-aggregation in the 100 x 100 grid network. The query dissemination cost is the cost of the
flooding on all nodes. Hot nodes reply using shortest paths to the base station (the boundary in this case). (i) Without in-network aggregation;
(i1) With in-network aggregation; (iii) Communication cost of ‘push’-aggregation. Hot nodes reply using shortest paths to the boundary.

‘Push’-based method: The hot nodes themselves report to the sink
via shortest paths without being explicitly queried. There is no
query cost. Again we heavily underestimate the cost in this method
by disregarding the cost of maintaining the shortest paths to the
sinks (which requires some form of flooding).

We consider the regular grid topology and the simulation of the
real-world deployment built by the Extreme Scaling (ExScal) project
at the Ohio State University, as deployed in Florida in December
2004. We examine how the performance of our aggregation scheme
is influenced by the number and density of hot nodes, as well as the
delay with which various nodes launch their probes. The delay may
come from imperfect synchronization or may be inherent in the ap-
plication, as in the case of intermittent tracking.

7.1.1 Simulated Grid Network

We tested the algorithm on a network with regular grid topology,
consisting of 10, 000 nodes (100 x 100 grid). The whole boundary
acts as a base station, i.e., the boundary nodes can communicate
quickly and reliably using an external network.

‘Pull’ and ‘push’ aggregation: Figure 3 shows how our protocol
compares to the ‘pull’- and ‘push’-based methods described above,
depending on the number of hot nodes and their spatial proximity.
Different curves correspond to varying spatial distributions of hot
nodes, specifically the extent to which they are ‘clustered’ in space.
In the experiment, hot nodes are generated by first picking a random
square of side length equal to the prescribed ‘cluster size,” then se-
lecting a prescribed number of nodes within the cluster uniformly
at random. This models the emergence of some physical events
that influence the sensors in its proximity. During the experiments
we discovered that the distances of hot nodes to the boundary are
important parameters for the cost metric, so we grouped the data
points by the separation parameter: the ratio of the diameter of the
set of hot nodes in the ¢ norm and the shortest distance between
the hot nodes and the boundary. The larger the separation, the fur-
ther away the hot nodes from the boundary.

In the ‘pull” scenario without in-network aggregation, when com-
pared to the simpler shortest-path-based method (Figure 3 (i)), our
algorithm performs better for almost all parameter settings, which
is expected, as it avoids flooding the network to announce the query
to all nodes. The benefit of our method when hot nodes are co-
located is quite significant. In the pull model with in-network ag-
gregation (Figure 3 (ii)), our advantage is not as significant. Again
we remark that scheduling in-network aggregation between sparse
nodes is not trivial. The major challenge is that, an internal node
has no knowledge of whether or not there are hot nodes in its sub-
tree. Thus data propagating upstream has no idea whether it should
wait at internal nodes to be aggregated with data from other hot

nodes. In our implementation we actually ‘cheat’ in favor of the
pull method by assuming that this is known. Even in this very pes-
simistic comparison, our sparse aggregation scheme is still better
when the hot nodes are sparse and well-clustered. For the same
reason, in the remaining experiments we only compare with the
pull model with hot nodes sending their data separately with no
in-network aggregation.

In the ‘push’ scenario (Figure 3 (iii)), our tree is better by 20 to
30 percent unless the hot nodes are too few and their separation is
small. With only a few very scattered nodes, the sum of their indi-
vidual shortest paths is indeed nearly optimal. So the ‘peaks’ come
from the overhead of our protocol. In other words, most probes get
propagated all the way to the boundary (because there is not much
opportunity for early aggregation), and our algorithm gets penal-
ized for trying four directions and traversing the same trails twice.

Tree quality: We measured the quality of the aggregation tree built
by our algorithm. Equivalently, this is the cost of collecting the data
from all hot nodes, once an aggregation tree has been built. For in-
stance, this could be the per-iteration cost of repeated aggregation
from a fixed set of sources in a short time interval during which the
tree is sufficiently stable.

In light of our theoretical result (Theorem 5.4), we normalize the
cost by that of the MST of the hot nodes and the base station. The
results are shown in Figure 4 (i). One can see that, at least for net-
works of this size, the MST approximation factor does appear to
grow nearly logarithmically with the number of hot nodes. How-
ever, the constant factor is very good (much better than the explicit
constants of the theorem would suggest): our aggregation tree was
never more than twice the length of the MST.

Tracking: We now consider the application of sparse data aggre-
gation to the problem of tracking a target that is only intermittently
detected. In this experiment we assume for simplicity that the tar-
get moves along a straight-line path with constant speed. We vary
the target speed (relative to the message speed), and the density of
detections along the track. For each fixed setting of the two parame-
ters, we generate 50 line segments with randomly chosen endpoints
as the trajectories of the target. For a given track, we distribute the
target detections uniformly along the track and trigger each observ-
ing node’s probes when the target passes by this node.

We examine how the speed of the tracked object influences the
cost of the sparse aggregation tree. The probes of consecutive hot
nodes along the object’s path are now launched with clock skew
inversely proportional to the speed of the object (i.e., the faster the
target moves, the smaller the clock skew of the probe packets).

As before, we compare our cost to the cost of the ‘pull’ aggre-
gation initiated by the boundary nodes, where the observers reply
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Figure 6. A typical section of the Thick Horizontal part of the
ExScal deployment. There are 100 motes (shown as disks) and 4
stargates (only two shown as triangles).

independently using shortest paths. The results are shown in Fig-
ure 4 (ii). The simulation results show the following observation.
We are at least 50% better in terms of total communication cost.
When the clock skew of the probe packets is smaller, the probe
packets are recalled earlier. This results in lower total communica-
tion cost.

7.1.2  Simulated ExScal Deployment

Our second set of simulations used the ExScal deployment model,
in particular the deployment setup that the ExScal documents refer
to as Thick Horizontal. It is a two-tier deployment, with Tier 1 con-
sisting of XSM motes, and Tier 2 of more powerful stargate nodes.
Some stargates are designated as gateways between the tiers. The
deployment consists of 7 sections (see Figure 6), each containing
about 100 motes, 2 gateway stargates and 2 stargates that commu-
nicate strictly in Tier 2. The sections are laid out in sequence along
a straight line (see Figure 5).

The network is organized hierarchically to facilitate routing and
other applications. Each stargate is responsible for its section. For
the sparse aggregation problem, these gateway stargates provide
natural aggregation points for hot nodes within one section. For
this deployment we let the leftmost stargate (in Figure 5) be the
base station. In tree formation, we choose the four neighbors for
double ruling as shown in Figure 6.

The results are in Figure 4 (iii). In this simulation we only used
the metric where the hot nodes reply to the base station using short-
est paths (in this case, this is the shortest path to the nearest stargate
plus a path up the hierarchy). The important features of the result-
ing plots consistently agree with those of the grid network (Fig-
ures 3 (i) and 3 (iii)). When the hot nodes are extremely sparse (less
than 3%), the ‘push’ scheme is the most efficient, otherwise our
scheme works better. The ‘pull’ scheme is consistently the worst.

7.1.3  Summary

Our simulation results lead to the following conclusions regard-
ing the comparative communication costs of the sparse aggregation
framework and the ‘push’ and ‘pull’ aggregation paradigms:

e The sparse aggregation scheme is consistently more com-
munication efficient compared to the ‘pull’-based approach
without in-network aggregation, for both the grid and ExScal
topologies. This remains true even when compared to ‘pull’-
based aggregation (favored by our assumptions), as long as
the percentage of hot nodes is less than 8% or so. The sparse
aggregation scheme is also superior to the ‘push’-based ap-
proach, if more than 3% of nodes are hot. Thus sparse ag-
gregation fills in an interesting gap between scenarios where
‘pull’ and ‘push’ methods are respectively preferred.

e The efficiency of our sparse aggregation scheme becomes
more evident when hot nodes are clustered and far from the
network boundary.

e Modest clock drift does not affect the aggregation cost sig-
nificantly.

7.2 Quality of Probabilistic Aggregates

Recall from Section 6 that the theoretical bound for the number
of experiments with exponential variates required for a relative er-
ror of € in expectation and with high (inverse polynomial in the
number of hot nodes) probability is O(¢~2) and O(¢ 2 log n), re-
spectively, where n is the number of hot nodes. We ran an experi-
ment to test how the algorithm performs in practice.

We focused on the simplest problem of counting, and chose sev-
eral ground truth (exact count) values ranging from 10 to 10, 000.
Notice that the theoretical convergence speed does not depend on
the actual count, but only on desired accuracy (relative error) and
confidence (probability of success).

For each exact count we recorded the number of experiments
needed to achieve relative error of 10%, 5% and 1%. Figure 7
shows the failure probability (one minus the confidence) vs. the
number of experiments. Estimates of this probability are obtained
from 1, 000 independent experiments®. The results form three dense
‘clusters’ of curves. A cluster corresponds to a target accuracy, and
a curve within a cluster to a ground truth value. Thus we con-
firm that the exact count has little influence on the convergence.
The remaining three curves are the theoretical counterparts. They
are simply plots of the function (for complete derivation see [2])

3These experiments are not to be confused with the experiments
for estimating the counts. The latter are run an a priori unbounded
number of times, i.e., until the desired accuracy is reached.
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e € {0.01,0.05,0.10}. The actual estimates are consistently bet-
ter than theoretical predictions. An estimate from around 50 exper-
iments is good enough for many applications—it is within 10% of
the exact count with probability 0.9. The theoretical requirement
for the same accuracy and confidence is about 10 times as high.

8. CONCLUSION

We have shown how to aggregate data from a sparse set of rele-
vant nodes in a wireless sensor network. We believe that the probe
and recall protocols proposed here can be useful in other contexts,
e.g. for stopping a flood once its task has been accomplished, etc.

where
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