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Abstract

We propose a new randomized algorithm for maintaining a set of clusters
among moving nodes in the plane. Given a specified cluster radius, our algo-
rithm selects and maintains a variable subset of the nodes as cluster centers. This
subset has the property that (1) balls of the given radius centered at the chosen
nodes cover all the others and (2) the number of centers selected is a constant-
factor approximation of the minimum possible. As the nodes move, an event-based
kinetic data structure updates the clustering as necessary. This kinetic data struc-
ture is shown to be responsive, efficient, local, and compact. The produced cover
is also smooth, in the sense that wholesale cluster re-arrangements are avoided.
This clustering algorithm is distributed in nature and can enable numerous appli-
cations inad hocwireless networks, where mobile devices must be interconnected
to collaboratively perform various tasks.

1 Introduction

Collaborating mobile devices are of interest in diverse applications, from wireless net-
working to sensor nets to robot exploration. In these applications there are mobile
nodes that need to communicate as they move so as to accomplish the task at hand.
These tasks can vary from establishing anad-hocmulti-hop network infrastructure that
allows point-to-point communication, to aggregating and assimilating data collected by
distributed sensors, to collaboratively mapping an unknown environment. A challenge
common to all these tasks is that communication is usually accomplished using low-
power radio links or other short-range technologies. As a result only nodes sufficiently
close to each other can communicate directly and therefore the communication topol-
ogy of the network is strongly affected by node motion (as well as obstacle interference,
etc.). The mobile networking community has been especially active in studying such
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problems in the context of networking protocols allowing the seamless integration of
devices such as PDAs, mobile PCs, phones, pagers, etc., that can be mobile as well
as switch off and on at arbitrary times. An example of such an effort is the recent
Bluetoothspecification [12].

A principle that has been discussed a number of times for enabling such collabora-
tive tasks is the organization of the mobile nodes intoclusters[3, 6, 10, 22]. Clustering
allows hierarchical structures to be built on the mobile nodes and enables more efficient
use of scarce resources, such as bandwidth and power. For example, if the cluster size
corresponds roughly with the direct communication range of the nodes, much simpler
protocols can be used for routing and broadcasting within a cluster; furthermore, the
same time or frequency division multiplexing can be re-used across non-overlapping
clusters. Clustering also allows the health of the network to be monitored and misbe-
having nodes to be identified, as some nodes in a cluster can play watchdog roles over
other nodes [18].

Motivated by these issues, in this paper we study the problem of maintaining a
clustering for a set ofn moving points or nodes in the plane. There is, of course, a
huge literature on clustering, as the problem in many variations has been studied by
several different communities, including operations research, statistics, and computa-
tional geometry. In our setting we assume that all the nodes are identical and each can
communicate within a region around itself, which we take to be anLp ball. For most
of the paper we will focus on a ball in theL∞ metric, that is an axis-aligned square
whose side is of lengthr, as this makes the analysis the simplest. We call two nodes
visibleto each other if they are within the communication range of each other. We seek
a minimal subset of then nodes, thecenters, such that every node is visible to at least
one of the centers. In the mobile device setting, unlike the general facilities location
context, it is appropriate to insist that the centers are located at the nodes themselves,
as these are the only active elements in the system; thus we are interested in “discrete
center” problems. We survey the literature on the static version of this problem in Sec-
tion 2. The problem is known to be NP-complete and most of the work has focused on
approximation algorithms.

Much less is known, however, about maintaining a clustering on mobile nodes.
There have been a few papers in the mobile networking community [3, 6, 10, 22]
proposing and simulating a number of distributed algorithms for cluster maintenance,
but to our knowledge there has been very little prior work on a theoretical analysis of
the problem. In particular, existing algorithms for the static version cannot be adapted
to the mobile case efficiently. Many static algorithms utilize space partition methods,
i.e., they partition space into smaller subregions and solve for each region separately.
For instance, one can design a simple constant approximation algorithm by choosing
one center out of every pre-fixed grid square of lengthr/2. Algorithms of such flavor
totally ignore the underlying topology of the node set and, as a result, suffer from many
unnecessary solution changes during node motion. For example, if nodes are traveling
together with the same velocity, then in fact there is no need to change the solution.
A “good” algorithm should only undergo solution changes that are necessary. Another
desirable property is that the algorithm can be implemented in a distributed manner on
nodes with modest capabilities, so as to be useful in the mobilead hocnetwork setting.
As nodes move around, we need efficient ways of incrementally updating the solution,
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based on local information as much as possible. We’ll formalize such properties in our
study.

In this paper we present a new randomized clustering algorithm that provides a set
of centers that is anO(1) approximation to the optimal discrete center solution. Our
algorithm usesO(log log n) rounds of a “center nomination” procedure in which each
node nominates another node within a certain region around itself to be a center; a
round of the nomination procedure can be implemented inO(n log n) time. Further-
more, we show how this approximately optimal clustering can be maintained as the
nodes move continuously. The goal here is to exploit the continuity of the motion of
the nodes so as to avoid recomputing and updating the clustering as much as possible.
We employ the framework ofKinetic Data Structures(KDS) [4, 11] to provide an anal-
ysis of our method. For this analysis we assume that nodes follow posted flight plans,
though they may change them at any moment by appropriately notifying the data struc-
ture. The correctness of the clustering is certified by a set of conditions, orcertificates,
whose predicted failure times are inserted as events into an event queue. At each certifi-
cate failure the KDS certification repair mechanism is invoked to repair the certificate
set and possibly the clustering as well. We show that the proposed structure is respon-
sive, efficient, local, and compact. Certificate failures and flight-plan updates can be
processed in expected timeO(log3.6 n) andO(log n log log n) respectively. Under the
assumption of pseudo-algebraic motions for the nodes, we show that our structure pro-
cesses at mostO(n2 log log n) events (certificate failures). We also give a construction
showing that for any constantc > 1, there is a configuration ofn points moving lin-
early on the real line so thatany c-approximate set of centers must changeΩ(n2/c2)
times. Thus, even though an approximate clustering is not a canonical structure [1], we
can claim efficiency for our method.

To summarize, our clustering algorithm has a number of attractive properties:

• We can show that the clustering produced is anO(1) approximation.

• The clustering generated by the algorithm issmoothin the sense that a point’s
movement causes only local clustering changes. This is in contrast to the optimal
clustering solution, which may undergo a complete rearrangement upon small
movements of even a single point.

• In the KDS setting, the algorithm also supports dynamic insertion and deletion
of nodes, with the same update bound as for a certificate failure, in addition to
the mentioned properties of our KDS.

• The algorithm can be implemented in a distributed fashion: each node only rea-
sons about the nodes visible to it in order to carry out the clustering decisions. In
fact, the algorithm can be implemented without any knowledge of the actual po-
sitions of the nodes—only knowledge of distances to a node’s visible neighbors
are necessary.

Because of these properties, our algorithm has many applications toad hocwireless
networks. We defer the detailed discussion to Subsection 5.3.

The remainder of the paper is organized as follows. Section 2 summarizes previous
work on discrete centers and related problems. Section 3 introduces the basic algo-
rithm and analyzes the approximation factors for the clusterings it produces. Section 4
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describes a hierarchical version of the algorithm and proves the constant approxima-
tion bound. Section 5 shows how this clustering can be maintained kinetically under
node motion and analyzes the performance of the algorithm in both centralized and dis-
tributed settings. Finally Section 6 concludes with some directions for future research.

2 Previous work

There is little prior work on this specific mobile clustering problem. The static version
of the problem is known to be NP-complete [9] and to admit a PTAS (polynomial time
approximation scheme). It is equivalent to finding the minimum dominating set in the
intersection graph of unit disks. The dominating set problem is defined as follows.
Given a graphG = (V, E), find a minimum size subsetV ′ of vertices, such that every
vertex inV \ V ′ is adjacent to some node inV ′. For our problem we build a graphG
on all the points and create an edge between two points if a disk of sizer centered at
one point contains the other point. The goal is to find the minimum dominating set in
G.

The dominating set problem on general graphs is NP-complete and hard to approx-
imate as well. In fact, no algorithm with approximation factor better than(1 − ε) ln n
exists unless NP⊂ DTIME(|V |log log |V |) [8]. A greedy algorithm can construct a so-
lution of sizek∗ log n, wherek∗ is the size of the optimal solution (this follows from
a reduction to the set cover problem). For the dominating set in an intersection graph,
Hunt et al. [14] gave a PTAS, providing a solution of size no more than(1 + ε)k∗,
for any constantε > 0. The basic idea of the PTAS comes from an algorithm by
Hochbaum and Maas [13] for the continuous variant, in which centers can be arbitrary
points on the plane. Roughly speaking, the method in [14] divides the space into strips
of a certain width, and a sub-problem is formed by grouping several consecutive strips
together and proceeding recursively.

The networking community has developed many protocols to deal with changing
network topologies. However, no theoretical bounds have been derived for many of
these heuristics. We note that our basic algorithm is similar to the Lowest-ID Cluster
Algorithm proposed by Ephremides, Wieselthier and Baker [7]. Experiments show that
this scheme works well in practice. A similar idea leads to the Max-Min D-clustering
scheme that was proposed by Amiset al. [2]. For the connected dominating set prob-
lem, Wu and Li proposed a distributed algorithm that performs badly in the worst case
(O(n)-approximation) but works well in simulation [26].

3 Basic algorithm

Before presenting the algorithms, we first give some formal definitions. Ad-cube with
sizer is a d-dimensional axis-aligned cube withside lengthr. Whend = 1 or 2, a
d-cube is also called an interval or a square, respectively. For two pointsp andq, p is
said to ber-coveredby or r-visible from q if p is inside the cube with sizer centered
at q. For a set ofn points (nodes)P = {p1, p2, . . . , pn} in thed-dimensional space, a
subset ofP is called anr-coverof P if every point inP is r-covered by some point in
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the subset. The points in a cover are also called (discrete) centers. A minimumr-cover
of P is anr-cover that uses the minimum number of points. We denote byαP (r) (or
α(r) if P is clear from the context) the number of points in a minimumr-cover ofP .
An r-cover is called ac-approximate cover ofP if it contains at mostc · αP (r) points.
Whenr is not mentioned, we understand it to be1. In this paper, we are interested in
computing and maintainingO(1)-approximate covers for points moving in the space.
For the sake of presentation, we will discuss our algorithms for points in one and two
dimensions, but our techniques can generally be extended to higher dimensions. In
the rest of the paper,log is understood to belog2, andln to beloge, unless otherwise
specified in the context. This distinction is important because in a few places,log
appears in exponents, and we have to make the base explicit in order to give precise
asymptotic bounds.

In the following, we first present the algorithms for the static version of the problem
and later describe their implementation for moving points.

3.1 Description of the basic algorithm

The algorithm, which is distributed in nature, is the following: we impose a random
numbering (a permutation of1, 2, . . . , n) onto then points, so that pointpi has an index
Ni. In most situations in practice each mobile node is given a unique identifier (UID)
at set-up time, and these UIDs can be thought of as providing the random numbering
(either directly, or via a hash function on the UIDs). Each pointpi nominates the largest
indexed point in its visible range to be a center (note that a point can nominate itself if
there is no other point with larger index inside its range). All points nominated are the
centers in our solution. A cluster is formed by a selected center and all the points that
nominated it.

First, we note that randomization is essential for the performance of our scheme.
Without randomization, the only approximation bound that holds, even in the one-
dimensional case, is the trivialO(n) bound. For example, consider the one-dimensional
case in whichn points are equally spaced along a unit interval, with their indices in-
creasing monotonically from left to right. Each point in the left half of the set has a
different center, which is the rightmost point within distance1/2 of it. Thus the num-
ber of centers produced by the algorithm isn/2, even though the optimal covering uses
only a single center.

In the following, we are able to show that forany configuration, if the ordering
is assigned randomly, the basic algorithm yields a sub-linear approximation (log n in
1-D, and

√
n in higher dimensions) with high probability.

3.2 Analysis for the basic algorithm

3.2.1 Analysis for the one-dimensional case

As a warm-up, we first present the analysis for this algorithm in the1-D case, where
points lie along the real line and the unit square corresponds to the unit interval.

Lemma 3.1 If V ′ is a subset of the points that are mutually visible to each other, then
there is at most one point inV ′ nominated by points inV ′.
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Let the optimal centers beOi, i = 1, 2, . . . , k. We partition each unit intervalUi

centered atOi into two sub-intervals withOi as the dividing point. We define the
visible rangeof an interval to be all the points on the line that are visible to at least one
of the nodes in the interval and call nodes in the visible range thevisible setfor that
interval.

Theorem 3.2 The basic algorithm has an approximation factor of4 ln n + 2 in expec-
tation.

Proof: It suffices to show that, for each sub-intervalS, the number of centers
nominated by points inS is at most2 ln n + 1. The visible range ofS is contained
in an interval of size32 as shown in Figure 1. We useSl to denote the portion of the
interval to the left ofS andSr for the right portion. Note that the points inS are
mutually visible. Lemma 3.1 shows that all the points inS nominate at most one
center inS.

Now we calculate the expected number of centers inSr that are nominated by
points inS. Let x = |S| andy = |Sr| be the number of nodes in the respective
subintervals. Scan all points from left to right inSr. The ith point in Sr can be
nominated by a point inS only if it has the largest index compared to all points to
its left in S ∪ Sr. Therefore, the expected number of centers inSr is no more than∑y

i=1
1

x+i < ln n. A similar argument works forSl, and we can conclude that all
points inS nominate at most2 ln n + 1 centers.

Sl

1
2

3
2

S Sr

Figure 1:Visible range in1-D

We remark that the approximation bound is asymptotically tight. Consider the
following situation in Figure 2: the unit interval centered atp is divided into two sub-
intervalsSl andSr. Sl contains

√
n evenly distributed points, each of which can see√

n more points inSr from left to right. In this configuration, with probability1/2, the
leftmost pointq in Sl nominates a point in the first group of

√
n points inSr. This is

becauseq sees2
√

n points (
√

n in Sl and another
√

n in Sr). Under a random num-
bering, the point with the maximum rank falls inSr with probability1/2. In general,
a point in theith group ofSr is nominated by thei-th point inSl with probability 1

i+1 .

Thus the expected number of centers (inSr alone) is
∑√

n
i=1

1
i+1 = Ω(log n). But a

single center atp covers all the points.
We can also prove that theO(log n) upper bound holds with high probability. This

fact is useful in our hierarchical algorithm, which achieves a constant approximation
factor, and in our kinetic maintenance algorithms.

Theorem 3.3 The probability that the basic algorithm selects more thanck∗ ln n cen-
ters isO(1/nΘ(c2)), wherek∗ is the optimal number of centers.
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Figure 2:Lower bound for the1-D case

Proof: We divide the optimal intervals in the same way as in the proof of Theo-
rem 3.2. Consider a sub-intervalS and its right portionSr. We look for the fraction
of random numberings such that points inS nominate not too many centers inSr.
We sort all points inS ∪ Sr according to their coordinates from left to right into
a sequence ofm points. The sequence of their indices can be viewed as a random
permutation on numbers1, 2, . . . , m. Each center inSr must have a bigger index
than all the other points to its left. Thus, to guarantee that points inS nominate no
more thans centers inSr, it suffices to ensure that the total number of left-to-right
maximal indices in the sequence is no more thans. The number of permutations
with s left-to-right maxima is known as the Stirling numberC(m, s), which is

asymptotically equal tom! e−
θ2
2 /
√

2π, for s = lnm + θ
√

ln m, asm → ∞ and
θ/m → 0 [24]. Letx be the random variable of the number of left-to-right maxima
in this permutation. Then we have

Prob(x ≥ s) =
∫ ∞

s

P (l) dl ≤
∫ ∞

s

C(m, l)
m!

dl .

If we sets = c ln n, this formula becomes

Prob(x ≥ c ln n) ≤
∫ ∞

(c−1)
√

ln n

e−
θ2
2√

2π

√
ln mdθ

≤
√

ln m

π

∫ ∞

(c−1)
√

ln n√
2

e−x2
dx

≤ n−
(c−1)2

2√
2π(c− 1)

≤ n−Θ(c2) .

For O(k∗) sub-intervals, since each needs to be considered only twice for its left
and right points, the probability that there are more thanck∗ ln n centers is less than
Θ(n)n−Θ(c2), which isO(n−Θ(c2)).

3.2.2 Analysis for the two-dimensional case

Unfortunately Theorem 3.3 does not extend to higher dimensions. We will show that in
two (and higher) dimensions, the method above produces aΘ(

√
n log n) approximate

cover with high probability. The analysis is similar to the1-D case. Again, we consider
the sub-squares with side length1/2. For such a squareS, suppose thatL is the visible
range ofS. Clearly, L is a square of side length3/2 and can be partitioned into9
sub-squares whereS is the center one (Figure 3). Now, we have the following lemma:
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Lemma 3.4 Suppose that|L| ≤ m. Then the number of centers nominated inside
S is O(

√
m) in expectation. Furthermore, the probability thatS contains more than

8
√

m ln m + 1 centers is bounded byO(1/mln m).

Proof: We need to consider only those points insideL. It suffices to bound the
number of centers nominated by points in each sub-squareS′ of L. If S′ = S, since
all the points are mutually visible inS, there can be at most one point nominated.
ForS′ 6= S, suppose thatx = |S|, y = |S′|. A point p ∈ S can be nominated by a
pointq ∈ S′ if q finds thatp has the largest index in its visible range. Sinceq sees all
points inS′, p must have rank higher than all the points inS′. Thus, the probability
that p can be nominated is at most11+y . Thus, in expectation, there are at most

x
1+y points nominated. On the other hand, since there are onlyy points inS′, there
can be at mosty centers nominated by points inS′. The expected total number of
centers is therefore no more thanmin(y, x

1+y ) ≤ √
x + y + 1− 1 <

√
m.

3
2

1
2

S ′

L

S

Figure 3:Visible range in2-D

Furthermore, ify <
√

m ln m, then we know thatS′ cannot nominate more than√
m ln m points. Otherwise,S′ containsy >

√
m ln m points. In order to nominate

s points inS, S must contain at leasts points with higher ranks than all the points
in S′. That is,S must contain thes highest ranked points inS ∪ S′.

The probability for this to happen is:
(

x

s

)/(
x + y

s

)
=

x!(x + y − s)!
(x + y)!(x− s)!

<

(
x

x + y

)s

<
(
1− y

m

)s

<

(
1−

√
m ln m

m

)s

.

Thus, ifs >
√

m ln m, we have

Prob(x ≥ s) <

(
1− ln m√

m

)√m ln m

<

(
1
e

)ln2 m

= O(
1

mln m
) .

Summing over all the9 sub-squares, we see that the expected number of centers
nominated inS is bounded byO(

√
m), and with high probability, the number of

centers nominated is bounded byO(
√

m ln m).
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By Lemma 3.4, it is easy to obtain

Theorem 3.5 For points in the plane, the algorithm has an approximation factor of
O(
√

n) in expectation. Further, the probability that there are more than
√

n ln n · k
centers isO(1/nln n−1), wherek is the optimal number of centers.

Proof: Consider an optimal coveringUi, 1 ≤ i ≤ k. We partition eachUi in the
optimal solution into4 quadrant sub-squares and apply Lemma 3.4 to each sub-
square. Since there are at mostO(n) sub-squares, the high probability result also
holds.

Again, this bound is asymptotically tight. Consider the configuration in Figure 4:
the upper left sub-squareS1 has

√
n points, each of which can see a distinct set of√

n points in the lower right sub-squareS2. Each point inS1 will nominate a point in
S2 with probability 1/2. Thus the expected number of centers inS2 is Ω(

√
n). We

1 2 3 4 . . .

pi

. . .

√
n
√

n

√
n

√
n

S1

S2

√
n

Figure 4:Lower bound for the2-D case

remark that in this analysis, the use of the unit square and the dimensionality is not
essential. It is easy to extend the analysis to any centrally symmetric covering shape
in any dimension; the constant factors, however, depend on the covering shape and the
dimensionality.

Note also that the worst-case examples in Theorems 3.2 and 3.5 require a signifi-
cantly non-uniform distribution of the points. The distributions encountered in practice
are much less skewed, and the basic algorithm returns much better results, as experi-
ments show [10].

4 Hierarchical algorithms for clustering

The basic algorithm is simple, but it achieves only anO(
√

n) approximation for points
in the plane. To obtain a constant-factor approximation, we will use a hierarchical
algorithm that proceeds in a number of rounds. At each round we apply the basic
algorithm to thecentersproduced by the previous round, using a larger covering cube.
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Suppose thatδi = 2i/ log n, for i > 0. Initially, setP0 to beP , the input set of points.
At the ith step, for1 ≤ i < log log n, we apply the basic algorithm using squares
with side lengthδi to the setPi−1 and letPi be the output. The final output of the
algorithm isP ′ = Plog log n−1. (To make our analysis fully rigorous, we would need
to useblog nc andblog log nc instead oflog n andlog log n; however, in the interest of
readability, we will omit the floor functions from this paper.) We claim that:

Lemma 4.1 P ′ is a1-cover ofP .

Proof: We actually prove a stronger statement:Pi is a 2i+1

log n -cover ofP .

We proceed by induction. The assertion is clearly true wheni = 0. Suppose that
it is true for i, i.e., every pointp ∈ P can be covered by a size2i+1/ log n square
centered at a pointq ∈ Pi. If q is also inPi+1, thenp is covered. Otherwise, there
must be aq′ so thatq nominatesq′ at the(i + 1)th step. Thus,p is covered byq′

with a square with side length2i+1/ log n + δi+1 = 2i+2/ log n. That is,Pi+1 is a
(2i+2/ log n)-cover ofP .

In the following, we bound the approximation factor forP ′. To explain the intu-
ition, we first consider the situation whenP admits a single center, i.e., there is a unit
square that covers all the points inP . Recall thatα(x) denotes the number of centers
of an optimal covering ofP by using squares with side lengthx. First, we observe that

Lemma 4.2 α(x) ≤ 4/x2.

Proof: We uniformly divide the unit square into4/x2 small squares of sizex/2.
We then pick one point from each non-empty small square, which gives anx-cover
with at most4/x2 centers.

According to Theorem 3.5, the expected size ofPi+1 is at mostc
√
|Pi|α(δi+1),

for some constantc > 0. Denote byni the size ofPi. We have the following recursive
relation:

n0 = n , ni+1 ≤ c
√

niα(δi+1) ≤ c
√

ni
4 log2 n

22i+2
.

By induction, it is easy to verify that

ni ≤ (c2 log4 n)n
1
2i

42i−4
.

Thus|P ′| = nlog log n−1 ≤ c2214 = O(1).
We cannot apply this argument directly to the general case becauseα(x) can be

as large asΘ(n). In order to establish a similar recursive relation, we consider points
restricted to lie in squares of a certain size. For any squareS with side lengthδi, let
mi(S) denote the expected value of|Pi ∩ S|. Further, letmi denote the maximum of
mi(S) over all the squaresS with sizeδi. We then have the following relation between
mi’s.

Lemma 4.3 mi+1 ≤ c
√

mi, for some constantc > 0 and any0 ≤ i < log log n− 1.
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Proof: Consider a squareS of side lengthδi+1. Its visible regionL, with respect to
side lengthδi+1, is a square with side length2δi+1 = 4δi. ThusL can be covered
by 42 = 16 squares with side lengthδi. That is,|Pi ∩ L| ≤ 16mi in expectation.
By Lemma 3.4, we know that the expected number of points insideS that survive
after the(i + 1)th step of the algorithm isO(

√
|Pi ∩ L|) = O(

√
mi). Thus, we

havemi+1 ≤ c
√

mi, for some constantc > 0.

Now, we can prove that

Theorem 4.4 P ′ is a constant approximation to the optimal covering ofP with unit
squares in expectation.

Proof: Clearlym0 ≤ n. Solving the recursive relation in Lemma 4.3, we find that
mi ≤ O(c2n1/2i

). Settingi = log log n − 1, we havemlog log n−1 = O(1), i.e.,
for a squareS with side length1/2, the expected number of points ofP ′ insideS
is O(1).

Now, suppose that an optimal cover usesk unit squares. We can then cover all the
points by4k squares with side length1/2. Since each of these squares contains
O(1) points inP ′ in expectation, the total number of points inP ′ is bounded by
O(k).

In addition, we have:

Corollary 4.5 For a modified version of the hierarchical algorithm, i.e., we stop the
center election process as soon asmi drops belowlog n, then the number of centers
generated is aO(log3 n) approximation to the optimal cover ofP , with probability
1− o(1).

Proof: From Lemma 3.4, at roundi, mi+1 ≤ 8
√

mi ln mi + 1, with probability

1 − O(1/mln mi
i ). So mi+1 ≤ c′m1/(2−δ)

i for some constantc′ and0 < δ <
1. In this corollary, we change the base of the log function from2 to 2 − δ, so

mi ≤ c′
2−δ
1−δ n

1
(2−δ)i . To obtain aO(log3 n) approximation, we could stop the center

election process as soon asmi drops belowlog n. For a square of side length
1, the total number of centers inside isO(log3 n), because the size of squares at
level i is at least1/ log n. We achieve this bound with probability bigger than
(1−O(1/(log n)ln log n))log log n−1 ≥ 1− o(1).

5 Kinetic discrete clustering

To kinetize the algorithm, we place a half-size square centered over each point. If two
such squares intersect, we know the corresponding points are mutually visible. In this
section when we say “squares,” we refer to these half-size squares.
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5.1 Standard KDS implementation

The intersection relation between two squares can change only at discrete times. If two
squares of the same size intersect with each other, one square must have a corner inside
the other square. Therefore, we can maintain the left and right extrema of squares
in x-sorted order and the top and bottom extrema of squares iny-sorted order. The
certificates of the KDS are the ordering certificates for thex- and y-sorted lists of
square extrema. We maintain the lists containing the extrema of active squares for each
level of the hierarchy. An event is a certificate failure. When an event happens, we
first check whether it is a “real” event, i.e., whether it causes two squares to start/stop
intersecting. When two squaresS1, S2 start intersecting, we will need to check the
square with the lower rank, sayS1, to see if its nomination has a lower rank thanS2. If
so, we need to changeS1 to point toS2. If S1, S2 stop intersecting, we need to check
if S1 nominatedS2. If so, we need to find another overlapping square with the highest
rank. To answer this query efficiently, we maintain a standard range search tree [19] for
then points. For our purpose, the internal nodes of the second-level binary trees in the
range tree are augmented with the maximum index of the points stored at descendants
of each node. This will let us find the points within a query square that are larger than
some query index inO(log2 n) time. To maintain the range search trees kinetically, we
keep sorted lists of thex- andy-coordinates of the points themselves, in addition to the
sorted lists containing the extrema of the squares on each level. A range tree can be
updated by deleting a point and re-inserting it in the right place [5].

For the hierarchical algorithm, we need to maintain these structures for each level.
In addition, we also need to insert or delete a point to or from a level, as a consequence
of an event happening at a lower level. This requires the sorted lists and range search
trees used in the basic algorithm above to be dynamic. These requirements can easily
be satisfied by maintaining balanced binary search trees and dynamic range search
trees.

5.2 Kinetic properties

This kinetic data structure has most of the properties of a good KDS [4]. We assume
the points have bounded-degree algebraic motion in the following arguments.

To analyze the efficiency, i.e., the number of events, of our algorithms, we first give
some lower bound constructions.

Lemma 5.1 The number of changes of the optimal cover forn points in motion is
Θ(n3) in the worst case.

Proof: Consider the graphG in which each vertex represents a point and each
edge joins a visible pair of points. Clearly, the minimum discrete covering of the
points is exactly the same as the minimum dominating set of the graph. The graph
can change only when two points become or cease to be visible to each other. For
bounded degree algebraic motions, this can happen onlyO(n2) times. For each
such event, the change to the minimum covering is at mostO(n). Thus, in the
worst case, the number of changes isO(n3).

12



We now construct an example in which any optimal cover must changeΘ(n3)
times. The construction uses6m+6 static points along the perimeter of a rectangle
[0, R]× [0, 1.6], whereR = 0.4(3m + 1). The left and right sides of the rectangle
have three points apiece, located at(0, 0.4i) and(R, 0.4i) for i = 1, 2, 3. The top
and bottom sides of the rectangle have3m points apiece, located at(0.4i, 0) and
(0.4i, 1.6), for i = 1, . . . , 3m. We label the points counterclockwise from0 to
6m + 5 as shown in Figure 5. In this configuration, each pointi can see the points
i− 1, i + 1 (modulo6m + 6) and no other points. Thus, an optimal cover contains
2m + 2 centers and can be realized in one of three ways by using points3i, 3i + 1,
or 3i + 2, respectively, which we call types0, 1, and2, respectively. Clearly, to
change from one type to another, we need to makeΘ(m) changes to the cover.

Now consider what happens when a single pointp moves linearly along thex-
axis. For anyi, suppose thatqj is the middle point between the pair3i+j, 3i+j+1,
for 0 ≤ j ≤ 2. Whenp is located atqj , the only pointsp can see are3i + j and
3i + j + 1. Thus, an optimal cover has to use either3i + j or 3i + j + 1 as a
center. In other words, an optimal cover has to be of typej or j + 1. It is easily
verified that whenp moves fromq0 to q2, an optimal cover has to change its type.
Therefore, an optimal cover undergoesΘ(m) changes whenp moves fromq0 to q2.
Whenp moves from(0, 0) to (R, 0), the number of changes isΘ(m2). We repeat
this procedure by sendingm points along thex-axis, passing through the interval
[0, R] one at a time. This causes a total ofΘ(m3) changes to optimal covers. The
total number of points isn = 7m + 6, so the total number of center changes is
Θ(n3).

3m

3m+1

3m+2
3m+36m+2

6m+3

6m+4

6m+5

0 1 2 3m-3 3m-2 3m-1
p

Figure 5:Lower bound for optimal coverings
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Figure 6:Lower bound approximate coverings
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While the optimal cover in this construction changesΩ(n3) times, a2-approximate
cover does not change at all—we can simply use an optimal cover for the static points
and assign each moving point to be a center. However, in the following, we will show
that for any constantc, there is a set of moving points that forces anyc-approximate
cover to changeΩ(n2/c2) times.

Theorem 5.2 For any constantc > 1, there exists a configuration ofn points moving
linearly on the real line so that anyc-approximate cover undergoesΩ(n2/c2) changes.

Proof: In the following, we assume thatc is an integer andn = 2cm, where
m > 2c is an integer. We groupn points intom groups, each containing2c points.
We label each point by(i, j) where0 ≤ i < m is the group number, and0 ≤ j < 2c
is the numbering within each group. Initially, all the points in theith group are
located ati · 2m, and the speed of the point(i, j) is j · 2m. To summarize, we
consider pointsp(i, j, t) defined asp(i, j, t) = (i + jt) · 2m, for 0 ≤ i < m,
0 ≤ j < 2c, andt ≥ 0.

Whenevert = k+1/m, for some integerk < m, p(i, j, t) = (i+jk+j/m)·2m =
2(i+ jk)m+2j. For any two distinct points(i, j) and(i′, j′), if i+ jk 6= i′+ j′k,
then|p(i, j, t) − p(i′, j′, t)| > 2m − 4c ≥ 2; if i + jk = i′ + j′k, since(i, j) and
(i′, j′) are distinct,j′ 6= j and|p(i, j, t)− p(i′, j′, t)| ≥ 2. Thus, at timet, no two
points are within distance1. In other words, any covering has to haven centers
(Figure 6).

On the other hand, at timet = k for an integerk < m, sincep(i, j, k) =
(i + jk) · 2m where0 ≤ i < m, 0 ≤ j < 2c, andk < m, each point has position
2sm for some0 ≤ s < m + 2ck. That is, att = k, the minimum covering has at
mostm + 2ck centers (Figure 6). Thus, ac-approximate cover may have at most
c(m + 2ck) centers. Therefore, between timesk andk + 1/m, there are at least
n − c(m + 2ck) = n/2 − 2c2k changes to anyc-approximate covering. In total,
for all 0 ≤ t < K, the number of changes is at least

∑
0≤k<K(n/2 − 2c2k) >

Kn/2 − c2K2. SettingK = n
4c2 < m, we have established that the total number

of changes isΩ(n2/c2).

Lemma 5.3 The number of events in our basic algorithm isO(n2).

Proof: An event is the failure of an ordering certificate in anx- or y-sorted list of
square side coordinates or point coordinates. Since the points have bounded-degree
algebraic motion, each pair of points can causeO(1) certificate failures.

Theorem 5.4 The number of events processed by our hierarchical KDS is at most
O(n2 log log n), and hence the KDS is efficient.

Proof: We maintainx- andy-ordering certificates on each oflog log n levels. As in
Lemma 5.3, each pair of points can causeO(1) certificate failures on each level. In
addition, in the hierarchical KDS, we need to consider the events for maintaining
the range search tree. Those events can happen when two points swap theirx-
or y-ordering. Such an exchange requires possible updates of the range trees on
all levels where the exchanging pair is present. Again, there areO(n2) exchange
events at each level.
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We now proceed to examine the cost of processing the kinetic events.

Theorem 5.5 The expected update cost for one event isO(log3.6 n). Hence the KDS
is responsive in an expected sense.

Proof: When two points exchange inx- or y-order, only the relevant range search
trees need to be updated. We needO(log2 n) time to update each oflog log n range
trees.

When two pointspi, pj start/stop being mutually visible at any level of the hier-
archy, we can update the centers involved withpi, pj in O(log2 n) time, since we
may need to search for a replacement center in the range tree. One new center may
appear and one old center may disappear; these changes bubble up the hierarchy.

On hierarchy levels above the bottom, we divide the changes into two kinds,
those caused by the motion of the points in that level and those caused by insertion
or deletion of points bubbled up from lower levels. The number of changes of the
first kind per event is a constant.

Let us consider the insertion of pointp. The only points that may change their
centers are those inp’s visible rangeS. We divideS into four quadrantsSi, each
with ki (i = 1, 2, 3, 4) points. If there is some point inSi that nominatesp to be
its center, the index ofp must be bigger than the indices of all theki points. The
probability of this occurring is 1

ki+1 . Therefore, the expected number of point-
center changes caused by the appearance ofp is at most

k1

k1 + 1
+

k2

k2 + 1
+

k3

k3 + 1
+

k4

k4 + 1
+ 1 ≤ 5.

Assuming thatp becomes a center, how many centers does it replace? For a
given quadrantSi, suppose the number of centers its points nominate ismi ≤ ki.
At most one of these centers is insideSi. If m′ points are outsideSi, the probability
that p replacesj of them is at most1/(m′ + 1). Hence the expected number of
centers replaced in a single quadrant is upper bounded by either

1
ki + 1

(
1 +

1 + · · ·+ mi − 1
mi

)
=

mi + 1
2(ki + 1)

≤ 1
2

,

if one of the centers is insideSi, or by

1
ki + 1

(
1 + · · ·+ mi

mi + 1

)
=

mi

2(ki + 1)
≤ 1

2

if none of the centers is insideSi. Each replaced center may stop being a center at
this level of the hierarchy, if it is nominated by no points outsideS. Thus the ex-
pected number of centers created/destroyed in this level (inserted/deleted at higher
levels) due to the appearance ofp is at most4× 1

2 + 1 = 3.

We can make a similar argument for the disappearance of a point. So the ex-
pected total number of point-center changes at all levels of the hierarchy per event
is at most

5× (3log log n + 3log log n−1 + · · ·+ 1)
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which isO(3log log n) = O(log1.6 n).

Since insertion or deletion in a range search tree costsO(log2 n), the total ex-
pected update cost isO(log3.6 n).

Theorem 5.6 The kinetic data structure usesO(n log n log log n) storage. Each point
participates in at mostO(log log n) ordering certificates. Therefore, the KDS is com-
pact and local.

Proof: Range trees takeO(n log n) space per level. All other data structures use
less space. Each point participates in at mostO(1) ordering certificates in each
level.

5.3 Distributed implementation

The KDS implementation requires a central node to collect all the information and per-
form the hierarchical clustering algorithm. For wireless mobilead hocnetworks [23],
all the wireless nodes are homogeneous and a central node is not available most of
the time. Furthermore, the cost of communicating all the data to such a node can be
prohibitive. Our hierarchical algorithm can be implemented in a distributed manner,
making it appropriate for mobile networking scenarios. Specifically, the nodes inad
hocwireless networks use omnidirectional antennas with a broadcast nature, i.e., a sin-
gle transmission can be received by all the nodes within a certain neighborhood. In
the most popular power-attenuation model [20], a node can send out some messages
whose signal power drops as1/rα wherer is the distance from the transmitter antenna
andα is a constant between2 and4. We assume each node can adjust its transmitting
power so that only the nodes within a certain range can receive the messages.

To implement the hierarchical clustering algorithm, we first describe how to obtain
range information about internode distances. Each node broadcasts a “who is there”
message and waits for replies. Each node that hears the request responds. The hierarchy
can be implemented by having nodes broadcast with different power for each level
or by other local positioning mechanisms. When the nodes move around, each node
broadcasts these “Hello” beacons periodically, with a time interval dependent on its
moving speed. Therefore, each point keeps track of its neighborhood within different
size ranges. When a neighbor enters or leaves any of thelog log n ranges of a node,
each node involved checks whether it needs to update its center. When it nominates a
center that is not nominated by any other node, the center will also be added to a higher
level and may cause updates in that level. If a node ceases to be pointed to by any node,
then it also has to be deleted from higher levels in the hierarchy. Clearly, all of these
operations can be done locally without centralized control.

Notice that by the power-attenuation model, the energy consumed at each node is
kept low, since each node transmits only within a small neighborhood. We emphasize
here that range information (inter-node distances) is sufficient for each node to select
a center for each level. This information can often be obtained using the node radios
themselves or acoustic range-finding ultrasonic devices [25]. No global positioning
information is needed to implement our clustering algorithm.
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This contrasts with many algorithms proposed for mobilead hocnetworks [16, 15,
17], which require that the exact location of each wireless node be known. Obtaining
global position information is expensive—a GPS receiver per node is a costly addition.
Providing only a modest number of nodes with GPS and computing the positions of
the others by multilateration techniques [21] is possible for static nodes, but quickly
breaks down when most nodes are moving, as the convergence of the method is slow.
A final drawback of GPS is that it does not work for indoor situations.

In the distributed implementation described above, the total storage needed isO(sn),
wheres is the maximum number of nodes inside a node’s range. In the worst case, this
can beΘ(n2), but in practice,s is often small. Furthermore, we can restrict the storage
of each node to benε, where0 < ε < 1, and still get a constant approximation. If
we let each node keep up toO(nε) neighbors and select a center among them, then we
have the following:

Lemma 5.7 In 2-dimensional space, the number of centers nominated inside a unit-
size squareS by the space-restricted one-level algorithm isO(nmax(1−ε,1/2)) in ex-
pectation.

Proof: We use the same notation as Lemma 3.4. SupposeL is the visible range of
S. L can be divided into9 sub-squares of size1/2. Consider any such sub-square
S′, and supposem = |L|, x = |S|, y = |S′|. For points inS′ such that the number
of neighbors is≤ nε, from Lemma 3.4, the expected number of centers inS that
are nominated by those nodes inS′ is bounded by

√
m ≤ √

n. The rest of the
points inS′ store onlynε neighbors. A pointp in S can be nominated by those
points only ifp has the largest index amongnε points. So the probability is at most
1/nε. The expected number of centers inS nominated by points inS′ is no more
thanx/nε ≤ n1−ε.

Let cε denotemax(1− ε, 1/2).

Theorem 5.8 The expected number of centers generated by the space-restricted hier-
archical algorithm is a constant-factor approximation to the optimum.

Proof: Recall the notations in Section 4. From the previous lemma we established
the recurrencem′

i+1 ≤ cmcε
i . Somi ≤ c

1
1−cε nci

ε . We simply change the base of
the log function from2 to 1/cε in the proof of Theorem 4.4. Afterlog log n − 1
rounds, we again obtain a constant approximation.

6 Summary and future work

Our randomized hierarchical algorithm can be extended to the case in which the ranges
are any congruent convex shape and to higher dimensions. Most of the analysis for
the 2-D case works for any dimensiond, except that the constant approximation factor
depends exponentially ond. Our algorithms also support efficient insertion or deletion
of nodes.
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This work also raises several open problems. In the standard KDS setting, where
we have nearly linear space, our center updating algorithm exploits the fact that the
ranges are aligned congruent squares. Can we find a similar algorithm in a standard
KDS setting with congruent disk ranges instead? Finally, our algorithm is randomized
and it would be interesting to find a deterministic algorithm for the mobile centers
problem.

We note that our algorithm clusters based solely on the positions of the mobile
nodes. It would be interesting to develop clustering strategies that utilize additional
information about the node motions, say both position and velocity. Such clusterings
may be far more stable under motion, although they may require more clusters. In fact,
a trade-off between the quality and stability of a clustering needs to be investigated.
Besides clustering, numerous other problems forad hocnetworks can be studied in
the same style as the clustering problem, including network connectivity, route mainte-
nance, node misbehavior detection, etc. We should also note that the constant approx-
imation ratio in our analysis is quite large. That is partly because our analysis applies
in the worst case. In practice, we can expect much better performance.

We believe that kinetic clustering is a fundamental problem for the organization of
mobile devices and deserves further study. Motion models and quality measures for
different application areas need to be studied and developed further.
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