
The Tenet Architecture for Tiered Sensor Networks
Omprakash Gnawali∗ Ben Greenstein†‡ Ki-Young Jang∗ August Joki† Jeongyeup Paek∗‡

Marcos Vieira∗ Deborah Estrin† Ramesh Govindan∗ Eddie Kohler†

Center for Embedded Networked Sensing
∗University of Southern California †University of California, Los Angeles

http://tenet.usc.edu/

Abstract
Most sensor network research and software design has been
guided by an architectural principle that permits multi-node
data fusion on small-form-factor, resource-poor nodes, or
motes. We argue that this principle leads to fragile and un-
manageable systems and explore an alternative. TheTenet
architectureis motivated by the observation that future large-
scale sensor network deployments will betiered, consist-
ing of motes in the lower tier andmasters, relatively un-
constrained 32-bit platform nodes, in the upper tier. Masters
provide increased network capacity. Tenet constrains multi-
node fusion to the master tier while allowing motes to pro-
cess locally-generated sensor data. This simplifies applica-
tion development and allows mote-tier software to be reused.
Applications running on masterstaskmotes by composing
task descriptions from a novel tasklet library. Our Tenet im-
plementation also contains a robust and scalable network-
ing subsystem for disseminating tasks and reliably deliver-
ing responses. We show that a Tenet pursuit-evasion applica-
tion exhibits performance comparable to a mote-native im-
plementation while being considerably more compact.

Categories and Subject Descriptors:
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication; C.2.4
[Computer-Communication Networks]: Distributed Sys-
tems; D.2.13 [Software Engineering]: Reusable Software
General Terms: Design, Experimentation, Performance
Keywords: Sensor networks, network architecture, motes

1 Introduction
Research in sensor networks has implicitly assumed an ar-
chitectural principle that, in order to conserve energy, itis
necessary to perform application-specific or multi-node data
fusion on resource-constrained sensor nodes as close to the
data sources as possible. Like active networks [36], this al-

‡Contact authors.
Author names appear in the alphabetical order of their last names.
This material is based in part upon work supported by the National Sci-
ence Foundation under Grant Nos. 0121778, 0435497, and 0520235. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation. Marcos Vieira was supported in part by
Grant 2229/03–0 from CAPES, Brazil.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SenSys ’06,November 1–3, 2006, Boulder, Colorado, USA.
Copyright 2006 ACM 1-59593-343-3/06/0011 . . . $5.00.

lows arbitrary application logic to be placed in any network
node. As its first proposers put it:

Application-Specific. Traditional networks are de-
signed to accommodate a wide variety of applications.
We believe it is reasonable to assume that sensor net-
works can be tailored to the sensing task at hand. In
particular, this means that intermediate nodes can per-
form application-specific data aggregation and caching,
or informed forwarding of requests for data. This is in
contrast to routers that facilitate node-to-node packet
switching in traditional networks. [6, Section 2]

This principle has governed the design of data-centric
routing and storage schemes [14, 28], sensor network
databases [23], programming environments that promote ac-
tive sensor networks [19], and a flexible yet narrow-waisted
networking stack [26].

The principle can minimize communication overhead, but
at what cost? In our experience, the major costs are increased
system complexity and reduced manageability. Systems are
hard to develop and debug since application writers must im-
plement sophisticated application-specific routing schemes,
and algorithms for multi-node fusion, while contending with
mote-tier resource constraints.

We examine here a different point in the space of possi-
ble architectures, motivated by a property common to many
recent sensor network deployments [2, 10, 35]. These de-
ployments have twotiers: a lower tier consisting of motes,
which enable flexible deployment of dense instrumentation,
and an upper tier containing fewer, relatively less constrained
32-bit nodes with higher-bandwidth radios, which we call
masters(Figure 1). Tiers are fundamental to scaling sensor
network size and spatial extent, since the masters collectively
have greater network capacity and larger spatial reach thana
flat (non-tiered) field of motes. Furthermore, masters can be
and usually are engineered to have significant sources of en-
ergy (a solar panel and/or heavy-duty rechargeable batteries).
For these reasons, most future large-scale sensor network de-
ployments will be tiered.

Future systems could take advantage of the master tier to
increase system manageability and reduce complexity, but
simply porting existing software to a tiered network would
only partially realize these gains. We seek instead toag-
gressivelydefine asoftware architecturefor tiered embedded
networks, one thatpreventspractices that we believe reduce
manageability, even at the cost of increased communication
overhead.

We therefore constrain the placement of application func-
tionality according to the followingTenet Principle: Multi-
node data fusion functionality and multi-node application
logic should be implemented only in the master tier. The cost

and complexity of implementing this functionality in a fully
distributed fashion on motes outweighs the performance ben-
efits of doing so.Since the computation and storage capabili-
ties of masters are likely to be at least an order of magnitude
higher than the motes at any point in the technology curve,
masters are the more natural candidates for data fusion. The
principle does allow motes to processlocally-generated sen-
sor data, since this avoids complexity and can result in signif-
icant communication energy savings. This architectural con-
straint could be relaxed if required, of course, but aggres-
sively enforcing it most clearly demonstrates the costs and
benefits of our approach.

The central thesis of this paper is that the Tenet archi-
tectural principle simplifies application development andre-
sults in a generic mote tier networking subsystem that can be
reused for a variety of applications, all without significant
loss of overall system efficiency. Our primary intellectual
contribution is the design, implementation, and evaluation of
aTenet architecturethat validates this thesis.

In Tenet, applications run on one or more master nodes
andtaskmotes to sense and locally process data. Conceptu-
ally, a task is a small program written in a constrained lan-
guage. The results of tasks are delivered by the Tenet system
to the application program. This program can then fuse the
returned results and re-task the motes or trigger other sensing
modalities. More than one application can run concurrently
on Tenet. Our Tenet system adheres to the Tenet architectural
principle by constraining mote functionality. All communi-
cation to the mote tier consists of tasks, and all communi-
cation from the mote tier consists of task responses (such
as sensor data) destined for a master, so applications simply
cannot express mote-tier multi-node fusion computation.

Tenet has several novel components. Using our simple yet
expressive tasking language, applications specify a task as a
linear dataflow program consisting of a sequence oftasklets.
For example, an application that wants to be notified when
the temperature at any mote exceeds 50◦F would write a task
of the form:
Sample(1000ms, 1, REPEAT, 1, ADC10, TEMP)

-> ClassifyAmplitude(50, 1, TEMP, ABOVE) -> SendPkt()

A task library implements a collection of composable
tasklets. A reliable multi-tiertask dissemination protocolen-
sures highly robust, rapid delivery of tasks from the master
tier to the motes. Since different applications may need dif-
ferent levels of reliability for transmitting data back to the ap-
plication, Tenet implements three qualitatively different data
transport mechanisms. Finally, arouting subsystemensures
robust connectivity between the tiers; it creates routing table
entries in a data-driven fashion in order to reduce overhead.

Tenet has been implemented for networks with MicaZ or
Tmotes in the mote tier and 32-bit devices such as Stargates
or PCs in the master tier. We have implemented a suite of
qualitatively different applications on Tenet, ranging from
tracking to vibration monitoring and network management.
Each of these applications is tens of lines of code, and re-
quires no modifications to the rest of the Tenet system.

We have extensively experimented with pursuit-evasion,
a particularly challenging application for Tenet since exist-
ing implementations deeply rely on multi-node data fusion
for efficiency [31]. In pursuit-evasion, one or more mobile

Figure 1—A tiered embedded network. Note that tiering does not imply
physical clustering; some motes can communicate with more than one mas-
ter, possibly over multiple mote hops.

pursuer robots track and attempt to “capture” one or more
evaders with the help of a sensor network. We compared
a Tenet implementation with a more traditional one, which
incorporates mote-tier multi-node fusion to reduce redun-
dant evader reports [31]; our Tenet implementation exhibits
higher accuracy and lower overhead that mote-PEG at the
cost of marginally higher evader detection latency.

Our evaluation of the individual components of Tenet re-
veals that Tenet’s task library can support high task through-
put and its reliable dissemination mechanism is fast. More
generally, our evaluation supports the thesis that the Tenet
architectural principle can simplify application development
and promote code reuse without much loss of efficiency.

2 The Tenet Principle
The Tenet architectural principle moves aggressively away
from prevailing practice in prohibiting in-mote multi-node
sensor data fusion. In contrast to a mote-application-specific
view of sensor networking, the principle constrains the pro-
cessing of data received from multiple sensors to be placed at
the master tier, regardless of whether that processing is spe-
cific to an application or can be expressed as a generic fusion
service. (It might, for example, be possible to cast beam-
forming or tracking as a generic service that can be used
by many applications.) This has several advantages. First,
since masters have more processing and storage resources,
applications can perform more sophisticated fusion than is
possible with the motes. Second, masters can use their high-
capacity network to exchange data spanning a large spatial
extent, giving fusion algorithms more context into sensed
phenomena and resulting in more accurate decisions.

The tradeoff is, of course, a potential loss of efficiency.
This loss is limited, however, since Tenet allows motes to
processlocally-generatedsensor data. This is crucial—it is
infeasible to collect timeseries data from every sensor in
a large sensor network—and also covers much of the ef-
ficiency gain we have achieved from fusion in prior de-
ployments. This loss can come in three forms. The first is
the opportunity cost of in-mote multi-node fusion. We ar-
gue that this cost is small, since for most applications that
we could think of, there is significanttemporalredundancy
(which we can eliminate using local processing), but little
spatial redundancy (in almost all deployments, we under-
sample spatially). Another, smaller, cost is that processed

sensor data needs to be routed over multiple hops from a
mote to the nearest master. We argue that even this cost is
negligible, since the network diameter in a well-designed
sensor network will be small; wireless loss rates being what
they are, large diameter sensor networks will be inefficient.
The third cost is that in-mote fusion can reduce congestion
inside the network. For instance, in pursuit-evasion, leader
election within a one-hop neighborhood results in a single
evader detection being transmitted; since Tenet does not per-
mit such fusion, it can potentially incur the bandwidth costof
transmitting multiple detections to masters. However, as we
show in Section 4, Tenet can avoid this by adaptively setting
task parameters so that only nodes having a high-confidence
evader detection need transmit their values to a master.

Will the Tenet principle hold when mote processing
power, memory and communication capabilities evolve sig-
nificantly? The principle simplifies the management and
control of constrained motes, and we expect that, for rea-
sons of price, form factor, or battery capacity, motes will
continue to be impoverished for the foreseeable future. Even
if the technology were to evolve to the point where mote con-
straints did not matter, we believe our Tenet implementation
would still be a viable, flexible, programming system for a
distributed system of sensors.

3 The Tenet System
In this section, we first describe a set of design principles that
guided the development of the Tenet implementation. We
then describe, in some detail, the two main components of
Tenet, its tasking subsystem and its networking subsystem.
We conclude with a discussion of the limitations of our cur-
rent Tenet prototype, motivating directions for future work.

3.1 Design Principles
The Tenet architectural principle constrains the design space
for sensor network architectures, but is not itself an architec-
ture. Our Tenet system is based on the Tenet principle and
the five additionaldesign principlesdescribed here. Again,
we define these principles aggressively, since that will show
when violating the principles is necessary for network per-
formance or functionality.

The Tenet principle prohibits multi-node fusion in the
mote tier. The precise form of this prohibition is expressed
as restriction on sensor network communication, which must
take the form ofAsymmetric Task Communication: Any
and all communication from a master to a mote takes the
form of a task. Any and all communication from a mote is
a response to a task; motes cannot initiate tasks themselves.
Here, a “task” is a request to perform some activity, perhaps
based on local sensor values; tasks and responses are seman-
tically disjoint. Thus, motes never communicate with (send
sensor data explicitly directed to) another mote. Rather, mas-
ters communicate with (send tasks to and receive data from)
motes, and vice versa.

The second principle expresses theAddressability prop-
erties of a Tenet network:Any master can communicate
with any other master as long as there is (possibly multi-
hop) physical-layer connectivity between them; any master
can task any mote as long as there is (possibly multi-hop)
physical-layer connectivity between them; and any mote

should be always be able to send a task response to the task-
ing master.This principle helps enforce high network robust-
ness and a relatively simple programming model. For exam-
ple, imagine that a moteA is connected one-hop to a master
M, but could be connected to a different master,M′, via three
hops. The addressability principle requires that, ifM fails, A
will learn aboutM′ and be able to send responses viaM′,
and vice versa. The requirement to support master-to-master
communication allows, but does not require, the construction
of distributed applications on the masters. Addressability re-
quires much less of motes, however; a mote must be able
to communicate withat least onemaster (assuming the net-
work is not partitioned), not all masters, and mote-to-mote
connectivity is not required. This is by design, and greatly
simplifies mote implementations.

The third Task Library principle further defines what
tasks may request of a mote:Motes provide a limited library
of generic functionality, such as timers, sensors, threshold-
ing, data compression, and other forms of simple signal pro-
cessing. Each task activates a simple subset of this func-
tionality. A task library that simultaneously simplifies mote,
master, and application programming while providing good
efficiency is a key piece of the Tenet architecture. We discuss
the design of the task library below.

Finally, RobustnessandManageability are primary de-
sign goals. Robust networking mechanisms, which permit
application operation even in the face of extensive failures
and unexpected failure modes, are particularly important for
the challenging environments in which sensor networks are
deployed. Manageability implies, for example, that tools in
the task library must provide useful insight into network
problems—such as why a particular sensor or group of sen-
sors is not responding, or why node energy resources have
been depleted far faster than one would have expected—and
allow automated response to such problems.

Three important advantages arise from these design
principles. First, applications execute on the master tier,
where programmers can use familiar programming inter-
faces (compiled, interpreted, visual) and different program-
ming paradigms (functional, declarative, procedural) since
that tier is relatively less constrained. Second, the mote tier
networking functionality is generic, since Tenet’s network-
ing subsystem merely needs to robustly disseminate task de-
scriptions to motes and reliably return results to masters.
This enables significant code reuse across applications. Fi-
nally, mote functionality is limited to executing tasks andre-
turning responses, enabling energy-efficient operation.

3.2 Tasks and the Task Library

The key tradeoff faced when developing a language for de-
scribing tasks is between expressiveness and simplicity. Con-
ventional Turing-complete languages place few or no restric-
tions on what a programmer may request a mote to do, but
make tasks error prone, hard to understand, and hard to reuse.

Tenet chooses simplicity instead. A Tenet task is com-
posed of arbitrarily manytaskletslinked together in a lin-
ear chain. Each tasklet may be thought of as a service to be
carried out as part of the task; tasklets expose parameters
to control this service. For example, to construct a task that
samples a particular ADC channel every 500 ms and sends

Figure 2—Mote data structures for a typical task

groups of twenty samples to its master with the tagLIGHT,
we write:
Sample(500ms, 20, REPEAT, 1, ADC0, LIGHT) -> SendPkt()

Tenet restricts tasks to linear compositions of tasklets for
simplicity and ease of construction and analysis, another ex-
ample of an aggressive constraint. Tasks have no conditional
branches or loops, although certain tasklets provide limited
versions of this functionality. For example, a tasklet within a
task may repeat its operation, and a tasklet may, depending
on its parameters, ignore certain inputs, implementing a poor
man’s conditional.

Tenet’s task library was inspired by our own prior work on
SNACK [8] and VanGo [9], and somewhat resembles other
sensor network tasking architectures [22]. It can also be seen
as a particular instantiation of a virtual machine [17]. How-
ever, rather than allow application-specific VMs, we have
worked to make this VM flexible, general, high-level, and
efficient enough to support easy programming and tasking
from masters.

Task Building Blocks The tasklets in the Tenet task li-
brary provide the building blocks for a wide array of data ac-
quisition, processing, filtering, measurement, classification,
diagnostic, and management tasks. For example, the Mea-
sureHeap tasklet collects statistics on dynamic memory us-
age in the system, while the Alarm tasklet delays subsequent
tasklets on a task chain until a particular time (relative toa
global time base) is reached.

The difficulty in constructing such a library is in de-
termining what the right building blocks should be. The
GetRoutingInfo tasklet should, of course, record a node’s
routing state. But what should Sample do? Should it know
how to be periodic? Should it know how to sample from
more than one ADC channel simultaneously?

Our guiding principle is that tasklets should provide as
much functionality as possible, while still being easy to use
and reuse. So, Sample knows how to repeat, collect blocks of
samples, and sample several channels concurrently, because
this level of functionality is still easy to control—the param-
eters to Sample are intuitive—and it is still fairly efficient.
(A Tmote mote can manage the state of roughly 100 Sample
tasklets even with its limited RAM.)

The Task Data Structure Figure 2 presents the task data
structures from the perspective of a mote. A task executing
on a mote has two parts: a task object maintains the tasklet
chain, and one or moreactive containershold intermediate
and final results of task processing.

The task object includes a task ID and a list of tasklets with
their corresponding parameters. During installation each
tasklet’s constructor is called, passing any parameters speci-
fied by the master; the constructor returns to the task object
these parameters, pointers to methods to run, modify, and
delete the tasklet, and any needed tasklet state. Finally, anew
active container is created that points at the first tasklet in the
chain. The underlying scheduler will soon start task process-
ing by passing that active container to the first tasklet.

An active container corresponds to a task whose process-
ing is in progress. The active container moves from tasklet to
tasklet, being processed by each in turn. Once it reaches the
end of the chain of tasklets it is deleted. An active container
maintains a pointer to its task object and an index specifying
where it is currently in the task object’s array of tasklets.A
repeating tasklet clones the active container after each itera-
tion. For example, while executing the task:
Wait(1000ms, REPEAT) -> StampTime(TIME, LOCAL)

-> SendPkt()

an active container is cloned and emitted from the Wait
tasklet every 1000 ms. Thus, there may be several active con-
tainers associated with the same task in the system at the
same time.

An active container also holds a bag of attributes, con-
taining all data resulting from task execution. Each attribute
is simply the tuple〈tag, length, value〉. For example, in the
above task, the StampTime tasklet adds an attribute with the
tagTIME to the bag.

In general, tasklets name their input and output data types
explicitly using these tags. Thus:
Sample(10000ms, 1, REPEAT, 1, ADC0, LIGHT)

-> ClassifyAmplitude(39, 1, LIGHT, ABOVE)
-> StampTime(TIME, LOCAL)
-> LinkAttributes(LIGHT, TIME, AND) -> SendPkt()

will send timestamped light values only when their values
are greater than 39. It is up to the task composer to verify
that the data type specified as input to an tasklet is compatible
with that tasklet.

All state associated with a task is maintained by that task.
Tasks and tasklets are dynamically allocated. Since tasks ar-
rive unpredictably it is impractical to statically plan memory
allocation for them; dynamic allocation improves system ef-
ficiency by providing a way to allocate memory resources
only where needed.

Mote Runtime The Tenet mote runtime provides a set of
task-aware queues for waiting on hardware resources. Each
queue is owned by aservicecorresponding to a particular
tasklet. For example, the Wait tasklet delays a task for a
period of time. Its corresponding waitservicemaintains a
queue where tasks may reside until it is time for them to
proceed. Likewise, the Sample service maintains a queue of
tasks waiting for the ADC resource.1

At the heart of the system is the Tenet scheduler. It main-
tains a queue of tasks waiting to use the mote’s microcon-
troller. The scheduler operates at the level of tasklets, and
knows how to execute the task’s tasklets in order. Since it
operates at this level of granularity (as opposed to execut-
ing each complete task one at a time), several concurrently
executing tasks may get fair access to a mote’s resources.

1Arbitration between tasklets that use the same resource is important. We
expect the underlying system (e.g. TinyOS) to provide this functionality.

Tasklets Description ROM RAM
ApplyClassification Reapplies a previous classification 120 0
ClassifyAmplitude Decides if signal’s amplitude is interesting 282 0
CopyAttribute Copies an attribute 150 0
Count Increments a counter 136 0
DeleteAttribute Deletes an attribute 204 0
Disjunct Helper tasklet for OR-based classification 124 0
GatherStatistics Calculates statistics on a data set 514 0
Lights Turns on LEDs based on a given input value 234 0
LinkAttributes Classify attributes jointly 250 0
MemoryStats Measures the heap 214 0
NextHop Generates routing information 94 0
Reboot Reboots the mote 60 0
Sample Samples specified ADC channel(s) 4796 113
SampleRssi Uses radio RSSI as a virtual sensor 208 14
SaveClassification Saves a previous classification 212 0
SendPkt Send using packet-based transport 1078 140
SendStr Send using stream-based transport 1016 142
SetAlarm Delays a task until a specified time 330 16
StampTime Reports the current (local or global) time 176 0
Wait Delays a task (possibly periodically) 950 28

Figure 3—Tasklets in the Tenet task library, with ROM and RAM bytes
saved by removing each tasklet from our mote application.

Task Operations The task description disseminated from
a master to its motes contains, in serialized form, a task iden-
tifier and the list of tasklets that comprise that task. Each
tasklet encodes its name (from a well-known enum) and its
parameters as a tag-length-value attribute.

Motes accept three operations on tasks: installation, mod-
ification, and deletion. When a mote receives a task descrip-
tion from a master containing a task ID that is not currently
installed, the mote concludes that this task should be in-
stalled. A description containing a currently installed task
is interpreted as a request to modify that task; when the de-
scription is also empty, the mote interprets the message as
a request to destroy a running task. To delete a task, all ac-
tive containers corresponding to that task are found and de-
stroyed (they may be hiding in any tasklet’s associated ser-
vice or in the scheduler), followed by the task object itself.

OS Dependencies The Tenet task library was imple-
mented on top of TinyOS, but we follow very few of the
programming patterns of that operating system. The advan-
tage to using TinyOS is in the robustness and availability of
its drivers. The chief drawback is that we cannot dynami-
cally load software libraries at runtime; thus, all tasklets an
application might require must be compiled into a single bi-
nary. In the future, we may consider OSes that relax this re-
striction [11], allowing required tasklets to be fetched from a
master dynamically.

Examples Figure 3 describes Tenet’s current tasklets and
their contributions to program size and static memory alloca-
tion. We may link together these building blocks to compose
a wide array of sensing, maintenance, and diagnostic tasks.

For instance, we have composed several tasks that assess
and maintain the health of a sensor network. To verify by
visual inspection that a mote is running properly, we may
inject theBlink task:
Wait(1000ms, REPEAT) -> Count(4, A) -> Lights(A, 0, 0x7)

Every second, this task adds 4 to a counter, places the value
of this counter into an attribute calledA, and displaysA as a
pattern of LEDs. (The second and third parameters of Lights
determine which byte and bits ofA, respectively, should be
displayed.)CntToLedsAndRoutedRfmis a more complicated
task to help verify that there is end-to-end connectivity from
a master to a mote.

Wait(1000ms, REPEAT) -> Count(1, A)
-> Lights(A, 0, 0x7) -> SendPkt()

In addition to blinking, this task transmits the value ofA back
to the master node.

To further diagnose our motes, we may monitor routing
table information and the memory usage by issuingPingand
MeasureHeaptasks:
Wait(1000ms, REPEAT) -> NextHop(A) -> SendPkt()
Wait(1000ms, REPEAT) -> MemoryStats(B) -> SendPkt()

Ping reports the routing table’s next hop information every
second.MeasureHeapreports a mote’s current and peak al-
locations on the heap. Such tasks, as well as data acquisition
and processing tasks, may run concurrently.

If mote software seems to be behaving poorly, the Re-
boot() task may be used to reset a mote. This is often the
most prudent recourse. Of course, some mote software fail-
ures within the routing, transport, and task installation soft-
ware may prevent properly receiving, installing, and execut-
ing theReboottask.

The tasklet Sample serves as the data sources for acqui-
sition and processing chains. A Send-style tasklet is usually
the chain’s tail; the particular tasklet depends on the typeof
transport desired (see below). For example,
Sample(1000ms, 1, REPEAT, 1, ADC0, A) -> SendPkt()

provides the most basic sampling and transmission support
one might expect from a mote. Every second, this task takes
a sample from the ADC’s channel 0, gives it the nameA and
transmits it. It is similar to the TinyOSSenseToRfmapplica-
tion in that it periodically collects a single sensor value,and
to TinyOS’sSurgeapplication in that it delivers data using
multi-hop transport.

Sample’s parameters make it fairly flexible. The following
configuration, for example, samples both channels 0 and 1
and stores five samples of each before sending them:
Sample(1000ms, 5, REPEAT, 2, ADC0, A, ADC1, B)

-> SendPkt()

To instruct a mote to process the samples it collects, a
master may specify tasklets between Sample and SendPkt.
A rather complicated example is as follows:
Sample(1000ms, 10, REPEAT, 1, ADC0, A)

-> StampTime(B, LOCAL)
-> ClassifyAmplitude(45, 3, A, ABOVE)
-> GatherStatistics(A, C, MEAN_DEV, 1)
-> Lights(A, 1, 0x7) -> SendPkt()

Every second, this task takes a sample from the ADC, and
passes samples through the chain 10 at a time. On each pass
through the chain, the task records the local time, classifies
the samples as interesting if at least three of them have an
amplitude of at least 45, measures the running mean devia-
tion from the mean, and displays on the LEDs a pattern rep-
resentative of the values of the samples. Then it transmits
the measured statistic and the timestamp. The sample itself
is transmitted as well, but only if it happens to be interesting.

3.3 The Networking Subsystem
Tenet’s networking subsystem has two simple functions, to
disseminate tasks to motes and to transport task responses
back to masters. The design of the networking subsystem is
governed by four requirements.

Function Mechanism
Disseminating tasks from a
master to a mote

Tiered reliable flooding of a sequence of packets
from any master

Routing task responses from
a mote to a master

Tiered routing, with nearest master selection on the
mote tier, and overlay routing on the master tier

Routing transport
acknowledgements from
master to mote

Data-driven reverse-path establishment

End-to-end reliable transport
of events

Transactional reliable transmission protocol

End-to-end reliable transport
of time series

Stream reliable transmission with negative
acknowledgements

Figure 4—Tenet networking mechanism summary

The subsystem should support different applications on
tiered networks.Routing and dissemination mechanisms in
the prior sensor network literature do not support tiered net-
works (Section 5). As a result, we had to build a complete
networking subsystem from the ground up while leveraging
existing mature implementations where possible. An impor-
tant design goal was to support many application classes,
rather than tailoring the networking subsystem to a single
class.

Routing must be robust and scalable.The routing system
must find a path between a mote and a master if there exists
physical multi-hop connectivity between them. In Tenet, the
routing system needs to maintain state for motes since mas-
ters may need to transmit packets to motes; the routing state
on the motes must, in the worst case, be proportional to the
number of actively communicating motes or the number of
masters, whichever is greater. Intuitively, this is the best the
routing system can do, short of implementing source routing
(a possibility for future work).

Tasks should be disseminated reliably from any master to
all motes.Any master should be able to task motes, so task
dissemination must work across tiers. Furthermore, tasks
must be disseminated reliably, and a mote must be able to re-
trieve recently disseminated tasks after recovery from a tran-
sient communication or node failure.

Task responses should be transported with end-to-end re-
liability, if applications so choose.Some applications, such
as structural monitoring or imaging, are loss-intolerant.Fur-
thermore, as applications push more data processing onto
the motes, this processed data will likely be loss-intolerant.
This makes end-to-end reliable transmission a valuable ser-
vice Tenet should support. While many existing systems use
a limited number of hop-by-hop retransmissions or hop-by-
hop custodial transfer (retransmit until the next hop receives
the packet), neither of these mechanisms ensures end-to-end
reliable delivery; for example, if the receiver of a custodial
transfer fails immediately after the transfer is complete,the
data may be irretrievably lost.

The following sections describe the design of Tenet’s net-
working subsystem and how the design achieves these goals;
Figure 4 summarizes its novel mechanisms.

Tiered Routing In Tenet, all nodes (masters and motes)
are assigned globally unique 16-bit identifiers. The identi-
fier size is determined by the TinyOS networking stack, and
motes use the 16-bit TinyOS node identifier. Masters run IP,
and use the lower 16 bits of their IP address as their globally
unique identifier for master-to-mote communication. This
requires coordinated address assignment between the mas-

ter and the mote tiers, but this coordination does not impose
significant overhead during deployment.

Tenet’s routing system has several components: one com-
ponent (master tier routing) leverages existing technology;
another component (mote-to-master routing) is adapted from
existing tree-routing implementations; and two other com-
ponents (data-driven route establishment for master-to-mote
routing, and overlay routing on the master tier) are novel.

Our addressability principle requires masters to be able to
communicate with each other. Tenet simply uses IP routing
in the master tier. This has two advantages. First, distributed
Tenet applications can use the well-understood socket inter-
face for communicating between distributed application in-
stances. Second, Tenet can leverage routing software devel-
oped for wireless IP meshes. Our current implementation al-
lows multiple IP routing mechanisms; our experiments use
static routing, but Tenet can easily accommodate other wire-
less routing protocol implementations such as Roofnet [1].

Tenet’s addressability also calls for any mote to be able to
return a response to the tasking master. Standard tree-routing
protocols do not suffice for this since they assume a single
base station. Tenet uses a noveltiered routingmechanism,
where a mote’s response is first routed to its nearest master,
and is then routed on the master tier using an overlay. In or-
der to enable motes to discover the nearest master, each bor-
der master periodically sends beacons into the mote cloud.
When a mote receives a beacon, it relays that to its neigh-
bors after updating a path metric reflecting the quality of the
path from itself to the corresponding master. Then, the mote
selects, as its “parent”, that neighbor which advertised the
best path to a master. Over time, a mote’s parent may change
if the path quality to its nearest master degrades, or if the
nearest master fails, conditions detected by the periodic bea-
cons. This requires mote state proportional to the number of
active masters, and as long as a mote can hear at least one
master, it can send traffic to the master tier. We have modi-
fied two standard tree routing protocols (MultiHopLQI and
MintRouting; we use the former in our experiments) to sup-
port this nearest master selection. When a mote receives a
packet from any neighbor that isnot its parent, it forwards
the packet to the parent.

Once the packet reaches the master tier, an IP overlay is
used to forward the packet to the destination master. A mas-
ter node that gets a packet from the mote tier examines the
16-bit destination address on the packet. It translates that to
an IP address (by prepending its own 16-bit subnet mask
to that address), then determines the next hop towards that
IP address using the IP routing table. It then encapsulates
the packet in a UDP packet, and sends that to the next hop.
The next hop master node repeats these actions, ensuring that
the packet reaches the destination. This IP overlay is imple-
mented as a user-space daemon. Together with nearest mas-
ter selection, IP overlay routing ensures that if there exists a
path between a mote and the master to which it should send
its task response, that path will be taken.

The routing system also enables point-to-point routing be-
tween masters and motes. This is necessary in two cases.
First, our reliable transport mechanisms (described below)
require connection establishment and acknowledgment mes-
sages to be transmitted from a master to a mote. Second, in

certain circumstances, it may be necessary to adaptively re-
task an individual mote; for efficiency, a master can directly
send the task description to the corresponding mote instead
of using our task dissemination mechanism described below.
Observe that, in either case, a master needs to be able to uni-
cast a packet to a mote only after it has received at least one
packet from the mote.

Tenet’s scalable data-driven route establishment mecha-
nism uses this observation. When a mote gets a task response
data packet from a non-parent, it establishes a route entry to
the source address (say S) in the packet, with the next hop
set to the sender. It also sets a timer on the route entry (in our
implementation, 30 seconds); when the timer expires, this
entry is removed. If the entry existed previously, the mote re-
sets the associated timer. Only after updating the state does
it forward the packet to the parent. Subsequently, when the
parent sends a packet destined to S (say a transport acknowl-
edgment from a master), the node uses this routing entry to
forward the packet to S, and resets the associated timer. Thus,
the routing entry is active as long as a mote has recently com-
municated with its master. Masters also implement a similar
algorithm that sets up these data-driven routes so packets on
the master tier are correctly routed towards S.

Data-driven route establishment maintains one timer and
one routing entry per actively communicating mote. More
precisely, each mote maintains at most one timer and one
routing entry for each active mote in the subtree of its nearest
master. There is some scope for optimization; it may suffice
to maintain just one timer overall, an approach we have not
yet implemented.

Tiered Task Dissemination Tenet’s task dissemination
subsystem reliably floods task descriptions to all motes. This
choice is based on the observation that in most of the appli-
cations we describe in this paper, and those we can foresee,
tasking a network is a relatively infrequent event, and appli-
cations usually task most if not all the motes. When appli-
cations need to select a subset of the motes to task, they can
indicate this by prepending apredicate taskletto the task de-
scription. A predicate is a function of static attributes ofa
node (such as the sensors it has, its current location, and so
on). All motes begin executing the task, but only those motes
whose attributes satisfy the predicate complete execution.

Tenet’s reliable task dissemination mechanism is built
upon a generic reliable flooding protocol for tiered networks
calledTRD. TRD provides the abstraction of reliably flood-
ing a sequence of packets from any master to all motes in
the network. TRD’s abstraction is different from that consid-
ered in the literature (Section 5). Disseminating a task using
TRD is conceptually straightforward. Applications send the
task to TRD; if the task description fits within a packet, TRD
sends the packet directly, otherwise it fragments the task de-
scription into multiple packets which are then reassembled
at each mote.

TRD works as follows. Suppose a master M wishes to
transmit a task packet. TRD locally caches a copy of the
packet on M, assigns a sequence number to the packet, and
broadcasts the packet to its neighbors as well as to any at-
tached motes (in case M happens to be a border master).
Motes also cache received packets, and rebroadcast previ-

ously unseen packets to their neighbors, and so forth. In our
implementation, both master and mote caches are of fixed
size (25 entries), and cache entries are replaced using LRU.

Of course, some motes or masters may not receive copies
of the packet as a result of wireless transmission errors. To
recover from these losses, each node (master or mote) oc-
casionally transmits a concise summary of all the packets it
has in its cache. These transmissions are governed by an ex-
ponentially backed off timer [18], so that when the network
quiesces, the overhead is minimal. The summaries contain
the lastk (wherek is a parameter determined by the mem-
ory available on the motes) sequence numbers received from
each active master. If the node detects that a neighbor has a
higher sequence number than in its own cache, it immedi-
ately requests the missing sequence number using aunicast
request. If a node detects that a neighbor has some missing
packets, it immediately broadcasts a summary so the neigh-
bor can rapidly repair the missing sequence packets, and so
other nodes can suppress their own rebroadcast. Lastly, when
a node boots up, it broadcasts an empty summary prompting
neighbors to send their summaries.

This protocol has several interesting features. It uses the
master tier for dissemination; as we show in our experiments,
this results in lower task dissemination latencies than if asin-
gle master were used to interject tasks into the mote cloud. It
is extremely robust: all the nodes in the network would have
to simultaneously fail for a packet to be lost. It periodically
transmits small generic summaries, proportional in size pro-
portional to the number of active masters.

On the master side, TRD is implemented within a sepa-
rate daemon that also implements the transport protocols de-
scribed below. Applications connect to this daemon through
sockets and transmit a task description to TRD (our imple-
mentation has a procedural interfacesend task() that
hides this detail from the programmer). Before transmitting
a new task, TRD assigns it a unique task ID and maintains a
binding between a task ID and the application. Applications
can use this task ID to modify or delete tasks. This ID is also
included in task responses so that the transport layer knows
which application to forward the response to. Our TRD im-
plementation checkpoints assigned task IDs to avoid con-
flicting task ID assignments after a crash. TRD keeps copies
of task packets received in memory. An interesting side ef-
fect of TRD’s robustness is that a master which recovers after
a crash may receive a copy of a task it had previously sent
out. TRD can (our current implementation does not) check
the received copy against all the tasks listed in its cache, and
delete that task if a copy is not found.

Our mote implementation of TRD is engineered to fit
within mote resource constraints and support multiple plat-
forms. TRD stores its packet cache in flash memory in or-
der to conserve RAM and only maintains a small index of
the flash contents in RAM. Furthermore, TRD currently only
supports a fixed number of masters (currently 5) to limit the
size of the index. Eventually, TRD will need to implement a
consistent aging strategy by which master entries in the sum-
mary are individually timed out to accommodate new mas-
ters. We plan to explore this in future work.

Finally, Tenet applications might also wish to selectively
re-task a subset of the motes; for example, an application

might choose to adjust the sampling rate on some sensors
based on observed activity. Applications can use TRD to
disseminate a modified task description with an appropriate
predicate or, if it is more efficient, send the updated task de-
scriptions directly to the motes using one of Tenet’s reliable
transport protocols described in the next section.

Reliable Transport Tenet needs a mechanism for trans-
mitting task responses from a mote to the master that origi-
nated the task, possibly with end-to-end reliability. Tenet cur-
rently supports three types of delivery mechanisms: a best
effort transport useful for loss-tolerant periodic low rate ap-
plications, a transactional reliable transport for events, and
a stream transport for high-data rate applications (imaging,
acoustics, vibration data). All three delivery mechanismsuse
a limited number of hop-by-hop retransmissions to counter
the high wireless packet loss rates encountered in prac-
tice. Applications select a transport mechanism by using the
corresponding tasklet in their task description (respectively,
SendPkt(), SendPkt(E2EACK), or SendStr()). The imple-
mentation of best-effort transport is conventional; the rest of
this section discusses the transactional and stream transport
mechanisms.

Transactional reliable transport allows a mote to reliably
send a single packet (containing an event, for example) to a
master. In Tenet, transactional transport is implemented as
a special case of stream transport: the data packet is piggy-
backed on stream connection establishment.

The stream transport abstraction allows a mote to reli-
ably send a stream of packets to a master. When a task
invokes the SendStr() tasklet, the stream transport module
first establishes an end-to-end connection with the corre-
sponding master. Stream delivery uses a connection estab-
lishment mechanism similar to that of TCP. However, be-
cause stream delivery is fundamentally simplex, the connec-
tion establishment state machine is not as complex TCP’s
and requires fewer handshakes for connection establishment
and teardown. Once a connection has been established, the
module transmits packets on this connection. Packets contain
sequence numbers as well as the task ID of the correspond-
ing task. The remote master uses the sequence numbers to
detect lost packets and sends negative acknowledgments for
the missing packets to the mote, which then retransmits the
missing packets. End-to-end repair is invoked infrequently
because of our hop-by-hop retransmissions (Section 4).

On masters, transport protocols are implemented at user
level. Transport and TRD execute in one daemon so that they
can share task ID state. On motes, our implementation is en-
gineered to respect mote memory constraints. Retransmis-
sion buffers at the sending mote are stored in flash in order
to conserve RAM.2 Furthermore, our implementation has a
configured limit (currently 4) on the number of open connec-
tions a mote may have. Both stream and transactional trans-
port work transparently across the two tiers in Tenet. Both
types of reliable delivery can traverse multiple hops on both
tiers of the network and there is almost no functional dif-
ference between our implementations for the two tiers. Our

2Every new packet sent using stream transport is stored to a circular
flash buffer, which can hold 200 packets in our current implementation. This
design trades off energy against RAM. We plan also to explorealternate
retransmission strategies.

current implementation does not incorporate any congestion
control mechanisms, which we have left to future work.

3.4 Limitations
We view our current work on Tenet as the first step towards
a general-purpose architecture for sensor networks. As such,
our current prototype lacks some functionality required to
support many sensor network applications.

Infrastructural components can often be easily incorpo-
rated into the Tenet system. Our current prototype already
includes time synchronization. Once a mature implementa-
tion of localization is available, it will be conceptually easy
to incorporate that into Tenet. Information from infrastruc-
tural components (such as location and time) can be ex-
ported to applications through tasklets; indeed, we have de-
veloped preliminary versions of tasklets that export routing
state (next hop), and that allow applications to read global
time and synchronize task execution.

In the near-term, we will explore several extensions to
the Tenet system. The first is support for actuation, which
is naturally expressed as a task. Similarly, mote-tier stor-
age can also be realized by adding appropriate abstractions
(reading and writing to named persistent storage) and as-
sociated tasklet implementations. Finally, support for low-
latency communication or bounded-latency messages is im-
portant for time-critical sensing applications and will need
careful transmission scheduling mechanisms in the network-
ing subsystem.

Longer-term, we will explore the impact of disconnections
caused by mobility, mechanisms for ensuring the authentic-
ity and integrity of data, and methods for multi-user access
control and resource management.

4 Tenet Evaluation
This section evaluates Tenet through microbenchmarks of
its tasking and networking subsystems and reliable stream
transport, and through two application studies, includinga
pursuer-evader game (PEG), an application believed to be
particularly challenging to implement efficiently withoutin-
network data fusion. We find that Tenet’s core mechanisms,
such as tasking, scale well; that Tenets are robust and man-
ageable; and that even challenging applications may be im-
plemented as Tenet tasks with little efficiency loss.

4.1 Tasks and Tasklets
Tenet tasklets and the base Tenet implementation, par-
ticularly its tasking and memory subsystems, should be
lightweight enough to allow many tasks to execute concur-
rently on a mote—for instance, to run diagnostics tasks con-
currently with sensing tasks. Thus, as an end-to-end evalu-
ation of the Tenet tasking software stack, we find the maxi-
mum number of copies of a task that a mote can support. A
Tmote can run 26 concurrent versions of a nontrivial task;
this maximum concurrency rises for simpler tasks. We also
measure other basic aspects of the system, such as memory
and packet overhead.

Concurrency We begin the concurrency study with a sim-
ple sample-and-send task:
Sample(20000ms, 1, REPEAT, 1, ADC0, A) -> SendPkt()

Max Memory Usage(bytes) Data Transmitted (bytes/packet)
Task Concurrency Application Overhead Dissemination Output % Overhead
Diagnostics — 122 32 38 26 46%
Sample[1]→ SendPkt 38 122 18 24 6 67%
+ StampTime 36 134 20 32 14 57%
+ ClassifyAmplitude 31 150 22 44 14 57%
+ GatherStatistics + DeleteAttribute 26 192 26 62 18 44%
Sample[40]→ SendPkt — 200 18 24 84 5%

Figure 5—Statistics for example tasks. Max Concurrency shows the number of concurrent tasks a single Tmote mode can support. Memory Usage shows
the number of bytes used per task for application data and malloc overhead. Data Transmitted shows the number of bytes needed to specify a task in a task
dissemination packet, and the number of bytes sent per task execution. The % Overhead column shows how much of that load is taken up by attribute overhead
(type and length bytes); when the Sample task is instructed toinclude 40 samples per attribute instead of one, this overhead drops significantly.

We increase the sampling period to 20 seconds to prevent
the radio from being the concurrency bottleneck. The fact
that the radio cannot support very much traffic—particularly
when communicating over multiple hops—is a well-known
issue with sensor networks in general. Varying numbers of
copies of this task are run alongside the following single di-
agnostics task, which is a union ofPing andMeasureHeap
plus a timestamp:
Wait(1000ms, REPEAT)

-> StampTime(A, LOCAL) -> MemoryStats(B)
-> NextHop(C) -> SendPkt()

A single Tmote mote can concurrently execute the diag-
nostics task plus 38 sample-and-send tasks, but the mote has
insufficient resources to support a 39th. Naturally, tasks that
contain more tasklets consume more resources, so the mote
can execute fewer of them at once. We measure this effect
by adding tasklets to the sample-and-send task, thus making
it more complex. For each incremental addition to the task,
we measure how many of that intermediate task can execute
on a mote at the same time. The most complicated task is as
follows:
Sample(20000ms, 1, REPEAT, 1, ADC0, A)

-> StampTime(B, LOCAL)
-> ClassifyAmplitude(0, 1, A, ABOVE)
-> GatherStatistics(A, C, MEAN_DEV, 1)
-> DeleteAttribute(A) -> SendPkt()

This task is similar to the data acquisition and processing
example above, except that we additionally delete the sample
for good measure. Figure 5 shows the results: a Tmote can
execute concurrently 26 of this most complicated task.

Memory We now turn our attention to identifying the
resource bottleneck that prevents higher task concurrency.
There are two candidates, available MCU cycles and RAM.
Radio bandwidth cannot be the bottleneck as our tasks sent
sufficiently little data.

Our results indicate that memory is the tasking bottleneck
on our motes. Figure 5 shows the total bytes allocated from
the heap per task in steady state, and the total number of
bytes allocated to manage those heap blocks (two bytes per
block). Our Tenet Tmotes have around 5813 bytes available
in RAM for the heap and call stack. In the steady state, a
sample-and-send task uses 140 (122+ 18) bytes allocated
from the heap and the diagnostics task uses 154 (122+ 32)
bytes. Thus, even ignoring the call stack, a Tmote wouldn’t
be able to support more than⌊(5813−154)/140⌋ = 40 con-
currently executing sample-and-send tasks while a diagnos-
tics task is running. In actuality, a Tmote supports 38. On
more RAM-constrained motes, this number can be much
lower; a Tenet micaZ, for example, supports only 9 sample-
and-send tasks.

Input Samples Execution Time(ms)

1 2.2
40 2.6

400 6.2
800 11.2

1200 14.8

Figure 6—Execution time of measuring the mean deviation from the mean
as a function of the number of input samples. Averaged over five runs.

Even tasks that use our most CPU-intensive tasklet, Gath-
erStatistics, experience memory constraints before processor
constraints. The following task demonstrates this:
Sample(1000ms, 1, REPEAT, 1, ADC0, A)

-> StampTime(B, LOCAL)
-> GatherStatistics(A, C, MEAN_DEV, 1)
-> StampTime(D, LOCAL) -> DeleteAttribute(A)
-> SendPkt()

This task measures and reports the mean deviation from the
mean of a collected sensor value. We record the time before
and after running this tasklet to measure its execution speed.
Our hypothesis is that for the tasklets we have written, none
consume enough MCU cycles such that concurrency will be
bounded by the microcontroller. Figure 6 lists the execution
times of calculating the mean deviation from the mean as a
function of the number of input samples. Even when process-
ing 1200 samples at a time, which consumes about half the
application’s available RAM, the execution time is a mere
14.8 milliseconds. Thus, a mote running several tasks that
gather statistics will only be CPU-bound when the aggregate
sampling rate is approximately 81,000 samples per second.

Data Transmitted and Packet Overhead The task li-
brary’s processing flexibility results from the use of flex-
ible attribute-based packets and data structures. However,
nothing is for free: this flexibility comes at the cost of in-
creased overhead. Figure 5 shows the packet overhead as-
sociated with adding type and length fields to each of our
data attributes. It requires 24 bytes to specify a task as sim-
ple as sample-and-send. Each packet generated by this task
contains only six bytes of application data, four of which
are the name and length of the attribute containing the sam-
ple. When sampling is periodic, the ratio of task specification
bytes to output bytes becomes insignificant, but for tasks that
put a single sample in each packet the overhead of describing
the response in TLV format is still large.

To compensate for this overhead, the Sample tasklet can
put more than one sample in an attribute. When the master
specifies that 40 samples be sent in each packet (the Sam-
ple[40]→ SendPkt task), this overhead drops to 5%.

4.2 Application Case Study: Pursuit-Evasion
How much, if at all, does Tenet degrade application per-
formance relative to a mote-native implementation that per-

Figure 7—Testbed topology as gathered by NextHop()
→ SendPkt(). Masters are stars, motes are dots. PEG
experiments use only the central master.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

F
ra

ct
io

n
of

 R
ep

or
ts

Positional Error

Mote-PEG
Tenet-PEG

Figure 8—PEG application error

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50 100 150 200 250

F
ra

ct
io

n
of

 R
ep

or
ts

Reporting Latency (ms)

Tenet-PEG
Mote-PEG

Figure 9—PEG detection latency

forms in-mote multi-node fusion? In this section, we exam-
ine this question by comparing mote-native and Tenet imple-
mentations of a pursuit-evasion application.

Pursuit-Evasion Games Pursuit-evasion games (PEGs)
have been explored extensively in robotics research. In a
PEG, multiple robots (the pursuers) collectively determine
the location of one or more evaders, and try to corral them.
The game terminates when every evader has been corralled
by one or more robots. PEGs have motivated interesting re-
search directions in multi-robot coordination. In this paper,
however, our interest in PEGs comes from the following ob-
servation: in obstructed environments such as buildings, pur-
suers may not have line-of-sight visibility to evaders, anda
sensor network can help detect and track evaders. Indeed,
Sharp et al. [31] describe a mote-level implementation of
the mechanisms required for evader detection and tracking
in PEGs. In their implementation, the mote network senses
evaders using a magnetometer, and transmits a location es-
timate to one or more pursuers. The network continuously
tracks evaders, so that pursuers have an almost up-to-date,if
approximate, estimate of where the evaders are. The pursuers
can then employ collaborative path planning algorithms to
move towards the evaders.

We have re-implemented a version of Sharp et al.’s sys-
tem, including theirleader election, landmark routing, and
landmark-to-pursuer routingmechanisms. (We could not
use their implementation since it was developed on a pre-
vious generation sensor platform, the mica2dot.) Leader
election performs in-mote multi-node data fusion to deter-
mine the centroid of all sensors that detect an evader; the
other mechanisms route leader reports to pursuers. Our re-
implementation, which we callmote-PEG, uses Sharp et al.’s
algorithms, but a more mature routing technology, namely
MultihopLQI. This allows for a more meaningful compari-
son with our Tenet implementation.

Tenet and PEGs PEGs represent a stress test for Tenet. In
a dense deployment, it is highly likely that multiple motes
will sense the evader. Pushing the application-specific pro-
cessing into the motes, as mote-PEG does in its leader elec-
tion code, can conserve energy and reduce congestion. Be-
cause Tenet explicitly forbids in-mote multi-node fusion,it
cannot achieve similar efficiencies.

We have implemented a single pursuer, single evader PEG
application for Tenet. In Tenet-PEG, the pursuer is part of
the master network. The Tenet-PEG application runs on the
pursuer, which tasks all the motes to report evader detections
whose intensity is above a certain thresholdT. The pursuer

receives the task responses and computes the evader posi-
tions as the centroid of all reports received within a window
P, whereP is the sampling period at the motes. Extending
this implementation to multiple pursuers involves distribut-
ing the application across the master tier, which we have left
to future work.

Although Tenet-PEG cannot reduce network traffic by
multi-node data fusion on the motes, it can control overhead
by dynamically adjusting the threshold. In our Tenet-PEG
implementation, we have implemented a very simple adap-
tive algorithm.K, the target number of reports, is an input
parameter to this algorithm. Initially, our Tenet-PEG imple-
mentation sets a low threshold. When it has received at least
P (10, in our current implementation) distinct sensor values,
it picks theK-th highest sensor value (K is 3 in our experi-
ments), and re-tasks the motes to report at this threshold. A
more sophisticated algorithm would continuously adjust the
threshold based on the number of received reports, and is left
for future work; however, even this simple algorithm works
well in practice.

Experimental Methodology and Metrics We now com-
pare the performance of Tenet-PEG and mote-PEG. Our
experiments are conducted on the testbed shown in Fig-
ure 7. This testbed consists of 56 Tmotes and 6 Stargates
deployed above the false ceiling of a single floor of a large
office building. The Stargate and mote radios are assigned
non-interfering channels. This testbed represents a realistic
setting for examining network performance as well as for
evaluating PEGs. The false ceiling is heavily obstructed, so
the wireless communication that we see is representative of
harsh environments. The environment is also visually ob-
structed, and thus resembles say, a building after a disaster, in
which a pursuit-evasion sensor network might aid the robotic
search for survivors.

We make two simplifications for our experiments, which
affect both implementations equally and therefore do not
skew the results. First, lacking a magnetometer sensor, we
use an “RSSI” sensor. The evader periodically sends radio
beacons and sensors detect the existence of the evader by the
receipt of the beacons. The beacon’s RSSI value is used as
an indication of the intensity of the sensed data. Since mul-
tiple nodes can detect the evader beacon, its effect is similar
to that of having a real magnetometer. The RSSI is also used
to implicitly localize the evader; RSSI has been used before
for node localization [4], and since we only require coarse-
grained localization (see below), it is a reasonable choicefor
our experiments as well. Second, to create a realistic multi-
hop topology, we limit the transmit power of each mote. This

Overhead(msg/min)
Min Max Average

Mote-PEG 191 384 272
Tenet-PEG 181 255 217

Figure 10—PEG application overhead

results in a topology with a 9-hop diameter, and is compara-
ble to the diameter of the network used in [31]. This also
results in a realistic tiered network, with the largest distance
from a master to a mote being about four hops.

In this setting, since we are interested in how the network
affects application performance, we conduct the following
experiment. We place one stationary pursuer. An evader tours
the floor, carrying a laptop attached to a mote that emits the
evader beacon. The frequency of evader beaconing, as well
as that of RSSI sampling, is 2 Hz. The laptop receives user
input about its current location, and maintains a timestamped
log of the evader position. This log represents the ground
truth. For Tenet-PEG, we use a network with a single mas-
ter; this enables a more even comparison with mote-PEG,
since using a tiered network could skew performance results
in Tenet’s favor.

In comparing the two implementations, we use the follow-
ing metrics. Our first metric measures application-perceived
performance, theerror in position estimate. Many robotic
navigation techniques reduce the map of an environment to a
topological map [16]. This topological map is a collection of
nodes and links that represents important positions in the en-
vironments. Using such a topological map, path planning can
be reduced to graph search [3]. Our Tenet-PEG implementa-
tion actually implements a simple graph search technique. In
PEG implementations that use such a topological map, the
goal is to narrow the evader’s location down to the nearest
node on the topological map. Thus, our definition of posi-
tion error at a given instant is the distance on the topological
map between the pursuer’s estimate of the evader’s position,
and ground truth. We study the variation of position error
over time. In our implementation, we divide our floor into 14
topological nodes, each approximately 22 feet apart.

Our two other metrics measure network performance. The
first is the latencybetween when a mote detects an evader
and when that detection reaches the pursuer. We measure this
using FTSP timestamps. The second is theapplication over-
head, the total number of messages received per minute at
the pursuer. This measure, while unconventional, indicates
the how well the filtering algorithms work. If we get more
than the expected 120 reports (at 2 Hz sampling rate) per
minute, duplicate information is being received. For Tenet-
PEG, this means the RSSI-threshold is too low; for mote-
PEG it means that sometimes multiple nodes get elected as
leaders.

Results Figure 8 shows that Tenet-PEG estimates the
evader position slightly more accurately than mote-PEG.
There are two reasons for this. First, our Tenet-PEG imple-
mentation adaptively sets the reporting threshold using in-
formation from many nodes across the network. By contrast,
mote-PEG’s reporting decisions are based on a local leader
election, which can sometimes result in spurious local max-
ima. Second, while mote-PEG computes evader position as

the centroid of all the reporting nodes, Tenet-PEG simply
uses the position of the reporting node. In mote-PEG, the
reporting nodes may sometimes span our floor, resulting in
cases where mote-PEG error is several hops.

Figure 9 shows that Tenet-PEG’s latency is only
marginally higher than that of mote-PEG. Our preliminary
analysis indicates that the small difference is attributable to
the latency across the serial link between the master and its
attached mote, as well as processing overheads in the Tenet
stack.

Finally, Figure 10 shows that Tenet-PEG incurs slightly
lower overhead than mote-PEG. This can also be at-
tributed to Tenet-PEG’s adaptive threshold selection algo-
rithm, which reduces the number of reporting nodes.

Overall, our results are extremely encouraging. In the case
of medium-scale pursuit-evasion, an application previously
thought to demand in-mote multi-node data fusion for per-
formance, Tenet implementations can perform comparably
with mote-native implementations. Although some applica-
tions may require in-mote multi-node data fusion, our results
argue thatstarting with in-mote multi-node data fusion is
essentially premature optimization: easier-to-manage Tenet-
style versions may perform just as well.

4.3 Application Case Study: Vibration Monitoring
In Section 4.1, we show several examples of debugging and
maintenance tasks that are trivial to express in Tenet. It is
difficult to measure quantitatively whether Tenet simplifies
the programming of more realistic applications, but we can
give concrete examples. For instance, we have built a Tenet
implementation of a mature structural monitoring system,
Wisden [25, 39], which reliably transmits vibration sam-
ples from a network of motes to a base station. Each mote
transmits only interesting events using a simpleonset de-
tector [25], greatly reducing communication requirements.
Wisden implements specialized mechanisms for reliability
and time synchronization. An onset is defined to be a part of
a signal waveform that exceeds the mean amplitude by more
than a few standard deviations.

To port Wisden to Tenet, we implemented a DetectOnset
tasklet and used it to build a task functionally equivalent to
Wisden’s mote code. Specifically:
SampleMDA400(20ms, 40, A, Z_AXIS)

-> DetectOnset(A, B) -> SendStr()

Here,SampleMDA400 controls a vibration sensorboard and
SendStr() invokes our stream transport.

Figure 11 shows the vibration time-series on two MicaZ
motes using a single master. One mote was programmed
with the above task, butwithoutDetectOnset (the lower time-
series). The other was programmed with the above task (the
upper timeseries). We then put the two motes on a table and
hit it. The task without DetectOnset sends vibration data even
before the onset; this vibration is induced by human activity
(movement, typing). The other task does not send spurious
vibrations, resulting in our small experiment in a 90% traffic
reduction. The Tenet version of Wisden’s mote code reduces
in the end to three simple tasklets. Tenet integrates support
for tasking and stream transport, making the Wisden appli-
cation itself both smaller and simpler. Our qualitative judge-
ment is that, even for these reasons alone, Tenet significantly
simplifies application development.

Figure 11—Vibration sensing with onset detector

Masters 1 2 3 4 5 6
Average (ms) 543.60 317.52 225.84 177.88 126.29 116.05
Min (ms) 35.64 37.26 33.42 29.96 28.45 31.08
Max (ms) 871.58 730.53 437.06 364.56 272.62 270.09
Std. deviation 224.05 197.42 128.83 109.18 94.14 77.06

Figure 12—Task dissemination latency using StampTime()→ SendPkt()

4.4 Manageability
Network monitoring is an important part of networked sys-
tem manageability. Although we have not extensively evalu-
ated manageability as such, it have been able to quite easily
construct simple applications that can monitor and measure
a Tenet network. For example, the following task allows us
to get a snapshot of the routing tree at any instant:
Wait(1000ms, ONCE) -> NextHop(A) -> SendPkt(E2E_ACK)

This obtains each mote’s routing parent using our reliable
packet delivery protocol. Figure 7 was gathered in this man-
ner. Such an application can be invaluable for monitoring
and debugging, particularly since it can run concurrently on
Tenet with an application which we may be trying to debug.

It is also easy to perform certain kinds of measurements.
This task:
StampTime(A, GLOBAL)

-> Wait(1000ms, ONCE) -> SendPkt(E2E_ACK)

timestamps a task using the time computed by the FTSP pro-
tocol (which is integrated into the stack) as soon as it is
received, backs off for a second to reduce congestion, and
sends the results back. It can be used to measure the la-
tency of task dissemination. We have run this on the network
shown in Figure 7 and measured the Tenet’s task dissemi-
nation latency with a varying number of masters turned on.
With 6 masters, the average tasking latency is 110 ms, and
the largest is 550 ms. The benefits of tiering are clearly evi-
dent; in our testbed, the average tasking latency using 6 mas-
ters is about a fifth of that using only 1 master (because the
network has a much smaller mote diameter, leaving fewer
opportunities for lost packets and retransmissions between
motes).

4.5 Robustness
We conducted a simple experiment to demonstrate the ro-
bustness of our current Tenet implementation to the failureof
masters. In this experiment, we tasked 35 nodes in a 5 master
network to sample their temperature sensor and transmit the
samples using our reliable transport protocol. The task chain
for this experiment was:

Figure 13—Sequence number evolution of stream transport connections

Sample(100ms, 1, REPEAT, 1, ADC10, A) -> SendStr()

Five minutes after tasking the network, we turned off one of
the masters, and five minutes thereafter, another.

Figure 13 plots, for each connection, the received se-
quence number against the time at which the correspond-
ing packet was received at the master. Two things are no-
ticeable about the figure. For all connections, initially, the
sequence number evolves smoothly, showing relatively few
packet losses. When the first master is turned off, the se-
quence number evolution of some (but not all) of the motes
exhibits a discontinuity; until routing converges again, many
packets are lost. Eventually, however, those connections do
recover and packets from the affected nodes are retransmit-
ted to the master. We attribute the long routing convergence
times to the high traffic rate in the network. A similar behav-
ior is seen when the second master is turned off.

We also measured negative acknowledgement rates to es-
timate the efficacy of stream transport. For sources that were
not affected by the route change, only 7% of the packets were
lost end-to-end, despite a fairly heavy traffic load. By con-
strast, the number was 25% for those sources that were af-
fected by master failure. Finally, using our tasking latency
measurement tool, we measured the latency before and dur-
ing this experiment; the average tasking latency increased
threefold (from 137 ms to 301 ms).

5 Related Work
In the earliest work on sensor network architecture, Estrin
et al. [6] motivate the need for application-specific multi-
node aggregation within the network. More recently, Culler
et al. [5] describe SNA, a software architecture that describes
the principles by which mote software and services are ar-
ranged. They also define the “narrow waist” of the architec-
ture to be a translucent Sensor Protocol layer that exports
neighbor management and a message pool, on top of which
several network protocols can be built [26]. Tenet is com-
plementary to SNA, since Tenet constrains the placement of
application functionality in a tiered system and does not ad-
dress the modularization of software. The mote tier in Tenet
can be implemented on an SP-based system.

The Tenet principle shares some similarities with the In-
ternet’s end-to-end principle [30]. Both principles discuss
the placement of functionality within a network, and in both
cases the rationale for the principle lies in the tradeoff be-
tween the performance advantages obtained by embedding

application-specific functionality and the cost and complex-
ity of doing so. However, the Tenet principle is not subsumed
by, nor a corollary of, the end-to-end principle, since it is
based on a specific technological trend (tiered networks).

Many sensor network deployments in the recent past have
been tiered. Examples include the Great Duck Island de-
ployment [35], the James Reserve Extensible Sensing Sys-
tem [10], and the Extreme Scaling Network [2]. In these
deployments, tiering provides greater spatial scale and in-
creased network capacity. Other systems have been built
upon tiered networks. SONGS [21] focuses on a set of high-
level services designed to extract semantic information from
a tiered network. Lynch et al. [15] discuss tiered networks for
structural monitoring since upper-tier nodes can perform the
sophisticated signal processing functions required for the ap-
plication. Rhee et al. [29] describe the design of a tiered net-
work for increasing sensor network lifetime. Tenet, however,
is an architecture for building applications for such networks
quickly and effectively.

Several pieces of work and have analytically examined the
benefits of tiered systems. Liu and Towsley [20] show that if
the number of masters exceeds the square root of the number
of motes, a tiered network exhibits no capacity constraint.
Mhatre et al. [24] describe a similar result for the lifetime
of a tiered network. Finally, Yarviset al. [40] explore how
the geometry of tiered deployments affects their lifetime and
capacity. This line of research sheds some light on tiered net-
work placement and provisioning.

Many of Tenet’s components are inspired by sensor net-
work research over the last five years. We now discuss these.

Mate [17, 19] provides a framework for implementing
high-level application-specific virtual machines on motes
and for disseminating bytecode. A key observation of this
work is that a fairly complicated action, such as transmitting
a message over the radio, could be represented as a single
bytecode instruction provided by an application-specific in-
struction set. This would greatly reduce the overhead in dis-
seminating new applications and would simplify application
construction. The tradeoff—as in Tenet—is expressiveness.
To the extent that it disseminates and executes task instruc-
tions, Tenet defines a virtual machine. However, our focus
has been less on the mechanics of bytecode dissemination
and execution, and more on defining the right high-level in-
structions for sensor networks to carry out. ASVMs execute
one high-level program at a time, although that program can
contain multiple threads. Tenet motes explicitly support con-
current and independent application-level tasks. In that re-
spect, Tenet also differs from tasks in SHARE [22], a system
that allows applications on a wireless mesh network to ex-
press computation in the form of tasks, and optimizes task
execution to eliminate or reduce repeated execution of over-
lapping task elements.

Tenet’s mote software runs with the TinyOS [12] operat-
ing system and is written in nesC [7]. The design choices of
TinyOS—pushing as many decisions as possible to compile-
time—has led to the development of an impressively sta-
ble and flexible runtime and library of drivers. However,
static allocation is not the right model for dynamically in-
voked application-level tasks. Although our software runson
TinyOS, it makes widespread use of dynamic memory and

function pointers. Tenet’s attribute-based data structures and
processing chains are similar to Snack [8].

To our knowledge, no prior work has proposed or im-
plemented a complete networking subsystem for a tiered
network, as we have. The components of the networking
subsystem bear some resemblance to prior work, but are
uniquely influenced by Tenet’s communication patterns and
generality.

TRD employs similar techniques (exponential timers and
suppression) as prior code dissemination protocols [13, 18,
33]. However, although all reliable dissemination mecha-
nisms employed for code dissemination assume a single
sender (for obvious reasons), TRD supports multiple masters
sending different tasks concurrently to all motes, and em-
ploys reliable flooding both on the master and the mote tiers.
Second, reliable code dissemination designs are optimized
for the particular application; unlike TRD’s summaries, the
meta-data summaries used for loss recovery are specific to
code pages.

Reliable data transport has received some attention in the
literature. RMST [32] (Reliable Multi-Segment Transport)
adds reliable transport on top of Directed Diffusion. RMST
is a NACK-based protocol in which loss is repaired hop-by-
hop. However, unlike Tenet’s transport, it is tightly integrated
with Diffusion, designed for larger and more capable plat-
forms, and optimized for recovering losses of image frag-
ments. PSFQ [37] (Pump Slowly, Fetch Quickly) is a hop-
by-hop reliable transport protocol designed for sensor net-
work reprogramming, Wisden [39] is a system for reliably
transporting structural vibration data from a collection of
sensors to a base station, and DataRel [34] provides a TCP-
like abstraction for transporting data from a mote to a bor-
der master in a tiered network. By contrast to these systems,
Tenet’s reliable transport ensures point-to-point delivery of
processed sensor data to any master in a tiered network.

Most prior routing protocols either support data delivery to
a base station [27, 38] or to multiple sinks [10]. Some, such
as Centroute [34], also centrally compute efficient source
routes to individual motes on demand, supporting unicast
traffic from a base station to a mote. Tenet’s routing system,
in contrast, supports unicast traffic from a mote to any master
in the tiered network, and builds routing entries for trafficin
the reverse direction in a data-driven fashion.

6 Conclusions

In this paper, we have shown that the Tenet architecture sim-
plifies application development for tiered sensor networks
without significantly sacrificing performance. By constrain-
ing multi-node fusion to the master tier, Tenet also bene-
fits from having a generic mote tier that does not need to
be customized for applications. Our Tenet system is able to
run applications concurrently, and our collections of tasklets
support data acquisition, processing, monitoring, and mea-
surement functionality. Many interesting research directions
remain: energy-management, support for mobile elements,
network congestion control, extending the task library to in-
corporate a richer tasklet set, and so forth.

Acknowledgements
We thank the anonymous reviewers and our shepherd Feng
Zhao for their comments. We also thank David Culler,
Joseph Polastre, and the other attendees of the first SNA
workshop in Berkeley for inspiring discussions on Tenet and
for suggesting PEG as a test case.

References
[1] The MIT Roofnet Project. http://pdos.csail.mit.edu/

roofnet/.
[2] A. Arora et al. ExScal: Elements of an extreme scale wireless sensor

network. InProc. 11th IEEE International Conference on Real-Time
and Embedded Computing Systems and Applications (RTCSA ’05),
August 2005.

[3] R. A. Brooks. Solving the find-path problem by good representation
of free space.IEEE Transactions on Systems, Man and Cybernetics,
13(3):190–197, Mar./Apr. 1983.

[4] N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low cost outdoor
localization for very small devices.IEEE Personal Communications,
7(5):28–34, Oct. 2000.

[5] D. Culler et al. Towards a sensor network architecture: Lowering the
waistline. InProc. 10th Hot Topics in Operating Systems Symposium
(HotOS-X), pages 139–144, June 2005.

[6] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century
challenges: Scalable coordination in sensor networks. InProc. 5th An-
nual International Conference on Mobile Computing and Networking
(MobiCom ’99), pages 263–270, Aug. 1999.

[7] D. Gay et al. The nesC language: A holistic approach to networked
embedded systems. InProc. ACM SIGPLAN 2003 Conference on Pro-
gramming Language Design and Implementation (PLDI), pages 1–11,
June 2003.

[8] B. Greenstein, E. Kohler, and D. Estrin. A sensor networkapplication
construction kit (SNACK). InProc. 2nd ACM Conference on Em-
bedded Networked Sensor Systems (SenSys 2004), pages 69–80, Nov.
2004.

[9] B. Greenstein et al. Capturing high-frequency phenomenausing a
bandwidth-limited sensor network. InProc. 4th ACM Conference on
Embedded Networked Sensor Systems (SenSys ’06), Nov. 2006. To
appear.

[10] R. Guy et al. Experiences with the Extensible Sensing System ESS.
Technical Report 61, CENS, Mar. 29 2006.

[11] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. A dy-
namic operating system for sensor nodes. InProc. 3rd International
Conference on Mobile Systems, Applications, and Services (MobiSys
’05), June 2005.

[12] J. Hill et al. System architecture directions for network sensors. In
Proc. 9th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-IX), pages
93–104, Nov. 2000.

[13] J. Hui and D. Culler. The dynamic behavior of a data dissemination
algorithm at scale. InProc. 2nd ACM Conference on Embedded Net-
worked Sensor Systems (SenSys 2004), Nov. 2004.

[14] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A
scalable and robust communication paradigm for sensor networks. In
Proc. 6th Annual International Conference on Mobile Computing and
Networking (MobiCom 2000), pages 56–67, Aug. 2000.

[15] V. A. Kottapalli et al. Two-tiered wireless sensor network architec-
ture for structural health monitoring. In S.-C. Liu, editor,Proc. SPIE
5057—Smart Structures and Materials 2003: Smart Systems and Non-
destructive Evaluation for Civil Infrastructures, Aug. 2003.

[16] B. J. Kuipers and Y.-T. Byun. A robust qualitative methodfor spatial
learning in unknown environments. InProc. 7th National Conference
on Artificial Intelligence (AAAI-88), July 1988.

[17] P. Levis and D. Culler. Maté: A tiny virtual machine for sensor net-
works. InProc. 10th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS-
X), pages 85–95, Oct. 2002.

[18] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: Aself-regulating
algorithm for code propagation and maintenance in wireless sensor
networks. InProc. 1st Symposium on Networked Systems Design and
Implementation (NSDI ’04), Mar. 2004.

[19] P. Levis, D. Gay, and D. Culler. Active sensor networks.In Proc. 2nd
Symposium on Networked Systems Design & Implementation (NSDI
’05), May 2005.

[20] B. Liu, Z. Liu, and D. Towsley. On the capacity of hybrid wireless net-
works. InProc. 22nd Annual Joint Conference of the IEEE Computer
and Communications Societies (IEEE Infocom 2003), Mar. 2003.

[21] J. Liu and F. Zhao. Towards semantic services for sensor-rich infor-
mation systems. InProc. 2nd International Conference on Broadband
Networks (BROADNETS 2005), pages 44–51, Oct. 2005.

[22] J. Liu, E. Cheong, and F. Zhao. Semantics-based optimization across
uncoordinated tasks in networked embedded systems. InProc. 5th
ACM Conference on Embedded Software (EMSOFT 2005), Sept.
2005.

[23] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A
Tiny AGgregation service for ad-hoc sensor networks. InProc. 5th
Symposium on Operating Systems Design and Implementation (OSDI
’02), Dec. 2002.

[24] V. P. Mhatre, C. Rosenberg, D. Kofman, R. Mazumdar, and N. Shroff.
A minimum cost heterogeneous sensor network with a lifetime con-
straint.IEEE Transactions on Mobile Computing, 4(1):4–15, Jan./Feb.
2005.

[25] J. Paek, K. Chintalapudi, J. Cafferey, R. Govindan, andS. Masri. A
wireless sensor network for structural health monitoring: Performance
and experience. InProc. 2nd IEEE Workshop on Embedded Net-
worked Sensors (EmNetS-II), May 2005.

[26] J. Polastre et al. A unifying link abstraction for wireless sensor net-
works. InProc. 3rd ACM Conference on Embedded Networked Sensor
Systems (SenSys ’05), pages 76–89, Nov. 2005.

[27] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-low
power wireless research. InProc. 4th International Symposium on
Information Processing in Sensor Networks (IPSN ’05), SPOTS track,
Apr. 2005.

[28] S. Ratnasamy et al. GHT: A geographic hash table for data-centric
storage. InProc. 1st ACM International Workshop on Wireless Sensor
Networks and Applications (WSNA), pages 78–87, Sept. 2002.

[29] S. Rhee, D. Seetharam, and S. Liu. Techniques for minimizing power
consumption in low data-rate wireless sensor networks. InProc. IEEE
Wireless Communications and Networking Conference (WCNC 2004),
Mar. 2004.

[30] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in
system design.ACM Transactions on Computer Systems, 2(4):277,
Nov. 1984.

[31] C. Sharp et al. Design and implementation of a sensor network sys-
tem for vehicle tracking and autonomous interception. InProc. 2nd
European Workshop on Wireless Sensor Networks (EWSN), Jan. 2005.

[32] F. Stann and J. Heidemann. RMST: Reliable data transportin sensor
networks. InProc. 1st IEEE Workshop on Sensor Network Protocols
and Applications (SNPA), May 2003.

[33] T. Stathopoulos, J. Heidemann, and D. Estrin. A remote code update
mechanism for wireless sensor networks. Technical Report 30, CENS,
Nov. 26 2003.

[34] T. Stathopoulos, L. Girod, J. Heidemann, and D. Estrin. Mote herd-
ing for tiered wireless sensor networks. Technical Report 58, CENS,
Dec. 7 2005.

[35] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler.
An analysis of a large scale habitat monitoring application.In Proc.
2nd ACM Conference on Embedded Networked Sensor Systems (Sen-
Sys 2004), pages 214–226, Nov. 2004.

[36] D. L. Tennenhouse and D. J. Wetherall. Towards an activenetwork ar-
chitecture.Computer Communication Review, 26(2):5–17, Apr. 1996.

[37] C. Y. Wan, A. T. Campbell, and L. Krishnamurthy. PSFQ: A reliable
transport protocol for wireless sensor networks. InProc. 1st ACM In-
ternational Workshop on Wireless Sensor Networks and Applications
(WSNA), Sept. 2002.

[38] A. Woo and D. Culler. Evaluation of efficient link reliability esti-
mators for low-power wireless networks. Technical Report CSD-03-
1270, University of California, Berkeley, Apr. 2003.

[39] N. Xu et al. A wireless sensor network for structural monitoring. In
Proc. 2nd ACM Conference on Embedded Networked Sensor Systems
(SenSys 2004), Nov. 2004.

[40] M. Yarvis et al. Exploiting heterogeneity in sensor networks. InProc.
24th Annual Joint Conference of the IEEE Computer and Communi-
cations Societies (IEEE Infocom 2005), Mar. 2005.

