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ABSTRACT

We consider a scenario in which there are resources at or
near nodes of a network, which are either static (e.g. fire
stations, parking spots) or mobile (e.g. police cars). Over
time, events (fires, crime reports, cars looking for parking)
arise one-by-one at arbitrary nodes, and need to be quickly
matched to and serviced by an appropriate nearby resource,
without knowledge of future requests, and without the ability
to alter any decision once it has been made.

We develop distributed algorithms to direct available re-
sources in the network to these events (or vice versa) in a
coordinated fashion, so that no two resources are assigned to
the same event, and the total distance of the events from their
matched resources is minimized. The key idea is to extract,
in a preprocessing stage, a well-separated tree metric that
approximates the original network metric by a logarithmic
distortion, allowing greedy matching algorithms to generate
close to optimal matchings, and enabling communication-
efficient probing-based algorithms for events to detect nearby
available resources. The distributed matching algorithm re-
quires no global coordination and achieves polylogarithmic
performance ratio in both online and offline settings. Simu-
lation experiments corroborate the theoretical results on so-
lution quality and further evaluate the communication costs
of our scheme in practice.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network pro-
tocols—Routing protocols; F.2.2 [Analysis of Algorithms
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1. INTRODUCTION

Recent advances in wireless sensor networks reveal the po-
tential of such embedded networked systems for revolution-
izing the way we observe, interact with, and influence the
physical world. Applications of sensor networks now ex-
tend beyond military deployments and the monitoring of an-
imal or other natural habitats to places where humans work
and live: homes, cars, buildings, roads, cities, etc. In these
human spaces a sensor network serves users embedded in
the same physical space as the network, allowing real-time
data acquisition, situational understanding, event response
and control, eventually leading to a fully intelligent living
environment.

In this paper we explore the challenge of using a network
of embedded sensors in aiding information discovery and re-
source management so as to allow coordinated response to
distributed emerging events. The embedded sensors serve
two purposes: discovering/detecting the events of interest
(e.g., a parking spot is left empty); and forming a support-
ing infrastructure for distributed resources/users to act on the
detected events (e.g., help a vehicle to look for an empty
parking spot). In the parking scenario, multiple vehicles can
be consulting with the sensor network for available parking
spots at the same time. The sensor network needs to re-
solve competition and match vehicles with empty parking
spots, in a way that avoids directing two cars to the same
empty parking spot. In another scenario, emergency events



detected by sensor nodes such as abnormalities, sensor bat-
tery outages, or local data overflows need to be handled im-
mediately. Thus the sensor network faces the problem of
directing surveillance vehicles/network helpers/data mules,
one per event, to support real-time response and maintain
network normal functioning.

When multiple events arise with multiple available resour-
ces to possibly act on them, there is an immediate need for
coordinated and distributed resource management, to assign
the resources to these events in a balanced yet efficent way.
Here the event refers to, for example, a new vehicle querying
for parking spots, or an emergency situation waiting for res-
cue efforts; and the resource refers to available parking spots
or rescue teams. We model the resource management prob-
lem as follows: there are k available resources residing in
the network, events may emerge at any time near any node,
and multiple events can appear simultaneously. Both avail-
able resources and these emerging events are detected and
tracked by their nearby sensor nodes. We would like to de-
sign a distributed matching mechanism to assign each event
to a distinct available resource. Naturally, to reduce response
delay and energy expense, an event should be matched to
a nearby resource, with the distance measured either in the
network metric (the number of hops in the network from the
resource location to the event location) or other underlying
metric (e.g., the Euclidean distance metric), depending on
how the event is to be serviced. The quality of the solution is
naturally represented by the total distance of the matching.

This resource management problem, in the centralized set-
ting, is simply a classical minimum cost bipartite matching
problem. Each resource 7 is connected to each event j with
an edge of cost equal to the distance between them (in the
appropriate sense). The optimal matching with the minimum
total cost of the edges in the matching can be found by flow
algorithms in O(k?) running time for & events and k resour-
ces [16]. However, implementation of the centralized min-
cost matching solution is not feasible in the sensor network
setting for two reasons. First this would require the collec-
tion of all the information on the resources and events at a
central place to execute the flow algorithm, which we would
like to avoid. In addition, the events may emerge anywhere
anytime and often require immediate response. Thus we deal
with an online setting in which resource commitments must
be made before we know the entire event sequence in the fu-
ture. How to achieve the coordination needed in the match-
ing algorithm in a distributed setting, with the events coming
online, not aware of each other and not aware of the locations
of available resources, is the main problem we will tackle in
this paper.

2. OVERVIEW

For distributed resource management, we need to solve the
following two problems:

e low-cost resource discovery and aggregation: when an
event emerges, how does it discover nearby available
resources in a communication efficient way; and

e close to optimal matching algorithm: which resource
should an event select to be matched with, and how to
resolve competition, so that no two events select the
same resource.

The two problems, resource discovery and distributed match-
ing, are closely related. The solution for one may impact the
solution for the other.

Let us first consider a typical setting when a set of events
pop up at the same time. In a distributed setting where no
sensor node is taking full control, the challenge for the re-
source discovery problem is to decide what information is
to be sent, and to where. The naive solution of flooding the
entire network with all the events allows each event to solve
for the centralized min-cost matching solution, but is obvi-
ously too communication expensive. To reduce communi-
cation cost, one may use restricted flooding to discover the
closest available resource from each event. In particular, the
TTL of the flooding messages from an event doubles until a
resource is found. The communication cost, measured in the
number of message transmissions, is O(¢?), if the closest re-
source is ¢ hops away. In this way, each event discovers the
closest resource that has not yet been matched with others.
The problem is that such a greedy matching algorithm may
give a very poor approximation ratio of ©(k'¢23) to the min-
cost matching of k events [17]. To get a better approximation
ratio, one may adopt the 2-approximation algorithm for min-
cost matching by the primal-dual method [12]. This would
require a flooding from each event and global coordination
of the growth of each aggregated component, thus incurring
a much higher total communication cost.

From the above discussion, it is clear that we need to find
a solution that achieves a balance between a low communi-
cation cost for resource discovery and a good approximation
ratio for distributed matching. Our solution is to define a
tree metric from the underlying network metric (minimum
hop count distance metric of the sensor network) so that

e the simple greedy algorithm in the tree metric gives
a polylogarithmic approximation ratio (or competitive
ratio in the online setting when the events appear one
by one [7]);

o the tree structure allows easy probing based detection
of nearby resources, thus significantly saving commu-
nication cost (when compared with flooding the net-
work).

The tree metric we extract is based on a hierarchical well-
separated tree. An a-hierarchically well-separated tree (-
HST) is defined as a rooted weighted tree such that: the
weight of all edges between a node and its children are the
same; the edge weights along any path from the root to a leaf



are decreasing by a factor of o. The nodes of the HST are the
nodes in the original communication network G, but a tree
edge is virtual, i.e., it maps to a path in the original network.

This hierarchical well-separated tree is going to approx-
imate the original graph metric G' by a logarithmic distor-
tion factor, in terms of the shortest path distance between
any two nodes. In particular, what we propose to extract is
one a-HST, chosen by a distribution D from a family S of
«-HSTs such that for each HST T in the family S, the dis-
tance dr(u,v) between any two nodes u, v in the tree T is
greater than the shortest path length dg(u,v) in the origi-
nal graph G, and that the expected distance between u, v,
Eres|dr(u,v)D(T)], taken over the distribution D on the
family S of trees, is no greater than 3-d¢g (u, v), where D(T)
is the probability of 7" in the family S. Such a family of HSTs
is said to B-probabilistically approximate the original metric
G, with ( being the (expected) distortion factor.

The hierarchical well-separated tree brings in two bene-
fits to the distributed resource management problem. First, a
HST is a special and simpler metric such that simple greedy
algorithm by recursively matching closest pairs on the tree,
instead of the original graph, gives good performance for
both off-line and online matching. In the off-line (but dis-
tributed) setting when k events appear at the same time, the
greedy algorithm gives optimal min-cost matching on the
HST. As the tree metric approximates the original graph met-
ric by a logarithmic factor, this algorithm gives an O(log k)
approximation ratio for the min-cost matching on the orig-
inal communication graph. In the online setting when the
events appear in any order and we compare the quality of
the online matching with the off-line optimal solution (when
the entire sequence of events is known), the simple greedy
algorithm gives a competitive ratio of O(log2 k) compared
with the optimal matching on the HST, and consequently
O(log® k) in the original metric. Secondly, working on the
hierarchical well-separated tree solves information discovery
and aggregation easily. We adopt a similar probing scheme
as in our previous sparse aggregation framework [11]. Each
event sends probes from along the HST looking for the near-
est unmatched resource.

In section 4 we describe a distributed algorithm for the
extraction of the probabilistic HST from the sensor network
metric. The construction of HST is a preprocessing step that
is executed during the network setup phase. Nodes od the
HST correspond to nodes in the network; each network node
maps to at least one tree node, possibly more. Edges of the
HST correspond to paths in the network. Each such path
is stored as a (bidirectional) chain of next-hop pointers, one
per node along the path. Each HST node records information
required to associate its outgoing paths to its adjacent HST
edges, as well as the weights of those edges in the HST. In
summary, to store the HST in the network, a network node
has to store the amount of information proportional to the
number of paths that go through it, and the number of HST

edges adjacent to HST nodes that it represents.

For a particular resource management problem, we can
condense the HST to get a tree with the leaf nodes only on
the available m resources with the total size of the tree be-
ing O(m). For load balancing, we can build a few HSTs,
with different random seeds, and rotate between them pe-
riodically. The construction of the HST assumes a random
indexing of the nodes and proceeds in O(logn) rounds. At
round %, only a subset of the nodes P; ‘survive’ to be quali-
fied as the nodes on the i-th level of the tree (counted from
the leaf level of the tree). These nodes flood the network
with maximum hop count 3 - 2¢, where (3 is a number chosen
randomly between 1/2 and 1 in the initialization phase by a
preconfigured ‘leader’ node, who bradcasts the value to the
rest of the network. Every node selects, among all the mes-
sages it received at this round, the node with minimum index
to be its ancestor at level i + 1 with an edge weight as 2°.
The nodes that are not nominated by any node will quit after
round ¢. Intuitively as ¢ increases, although the flooding radii
increase, the number of candidates decreases. We show that
the total communication cost for each round, in terms of the
number of message transmissions, is bounded by O(n), and
the total communication cost for the construction of a HST
is O(nlogn), if the underlying communication graph has a
constant doubling dimension!.

The construction of the HST in a distributed environment
is interesting on its own and can potentially have more ap-
plications besides the distributed matching algorithm for re-
source management explained above — working on a tree is
much easier than working on the original graph; thus many
optimization problems admit algorithms of improved perfor-
mance on a tree. The construction of the HST naturally ex-
tends the applicable domain of these algorithms to a sensor
network setting with only a logarithmic factor loss.

3. PREVIOUS WORK

The min-cost matching problem in a bipartite weighted
graph can be solved optimally by the flow algorithm in a cen-
tralized setting. The greedy matching algorithm that matches
closest pairs achieves a worst-case approximation ratio of
©(k'823) for k vertices on a general graph or under Euclidean
metric [17], but is optimal on a HST metric [3]. For the
online min-cost matching problem, the & vertices (blue ver-
tices) on one side of the bipartite graph are given, the k
vertices (red vertices) on the other side of the graph are re-
vealed one by one. When a red vertex appears, it needs to
be matched with a blue vertex immediately. The solution is
compared with the optimal matching when all the red ver-
tices are given altogether and the performance degradation is

'The doubling dimension of a metric space (X, d) is the smallest
value p such that each ball of radius R can be covered by at most
27 balls of radius R/2 [13]. If we place at most a constant number
of sensor nodes inside any unit disk and the holes in the sensor
networks are not very fragmenting, the communication graph has
constant doubling dimension.



captured by the competitive ratio of the online decision mak-
ing procedure. Meyerson et al. [15] proposed the first ran-
domized online algorithm that achieves a logarithmic com-
petitive ratio of O(log® k), by using the probabilistic HST
approximation of a general graph metric. Essentially each
red node is matched to the closest blue node on the HST
and ties are broken randomly. An improved algorithm by
Bansal ef al. [3] achieves a competitive ratio of O (log? k).

Approximating a metric with probabilistic hierarchical well-
separated trees was first proposed by Bartal [5, 4], with the
motivation that many problems are easier to solve on a tree
than on a general graph. Later, Fakcharoenphol et al. [9] im-
proved the distortion to O(logn) for any n node metric and
this is tight.

This paper borrows from these ideas. This previous works,
however, were for a centralized environment. In this paper
the distributed algorithm design and the communication cost
analysis for both (i) extracting a HST from the network met-
ric and (ii) applying probing-based mechanisms on the HST
for information discovery and resource management, in a re-
source constrained sensor network setting, are new.

The results in this paper is also related with our previous
work on aggregation of sparsely located events, none of them
with knowledge of each other [11]. The idea is to use light-
weight local probes (in the vertical and horizontal directions)
from the simultaneously emerging events to achieve distance
sensitive neighbor discovery with nearby events discovering
each other first. Aggregation is performed when multiple
events ‘find” each other and at the same time an aggregation
tree is formed to suppress the probing of all but one event
being aggregated. The probes that survive this aggregation
will carry the aggregated information and propagate further
to look for other possible events. The fact that aggregation
is done naturally along a tree structure constructed by the
individual probes substantially reduces the total communi-
cation cost for the group discovery of these events to only an
O(log k) factor over the cost of the minimum spanning tree
connecting all the events. The novelty in this paper is the dif-
ferent tree metric (the HST) that we use and the benefits of
the special tree metric for the distributed matching problem.
We show in Section 4.5 that the HST can also be used for
sparse aggregation with the same communication cost.

4. HIERARCHICALLY WELL-SEPARATED
TREES

In this section we give the definition of an a-hierarchically
well separated tree (a-HST) and show how to compute the
a-HST embedding of a constant doubling dimension graph
metric in a distributed way.

Definition 4.1 (o-HST). A rooted weighted tree T' is an a-
HST if the weights of all edges between an internal node
and its children are the same, all root-to-leaf paths have the
same hop-distance, and the edge weights along any such path

decrease by a factor of a as we go down the tree.

Throughout this paper we ‘count levels from leaves to the
root’, i.e., we define the level of a node u in a-HST as the
distance in hops from u to any of its leaves. In particular, all
leaves have level 0. We define the level of a subtree to be the
level of its root.

Fakcharoenphol et al. [9] give a centralized algorithm to
compute, given an n-point metric (P, d), a random 2-HST
T whose tree metric dp O(logn)-probabilistically approx-
imates d. That is, for any u,v € P, dr(u,v) > d(u,v)
and E[dr(u,v)] < O(logn) - d(u,v), where the expectation
is taken over random choices of the algorithm, equivalently
over the distribution on the resulting trees. In this paper, we
use P to denote the set of nodes in an undirected graph mod-
eling the sensor network, and d(u,v) denotes the minimum
hop count between u, v € P in the sensor network. When we
use a 2-HST to approximate the graph metric d, all the nodes
in P are placed as the leaf nodes of the 2-HST. The distance
between two nodes u,v € P on the tree T, dr(u,v), is de-
fined as the sum of the distances along the paths from u, v
to their lowest common ancestor in the 2-HST. The internal
nodes in the HST are abstract nodes, although they might be
labeled by some nodes of P, as will be explained later. We
denote by B(p, r) the ball centered at point p with radius .

The algorithm of [9] is centralized and executes in a top-
down fashion to partition the nodes in the network hierar-
chically. The HST naturally corresponds to this hierarchical
partition of P. The nodes of P are the leaf nodes of the HST
and each internal node in the HST corresponds to a clus-
ter of nodes in the hierarchical partitioning. For complete-
ness, we review this algorithm below. We fix a permutation
m: P — {1,2,...,n} of the nodes, chosen uniformly at
random from the set of all permutations. We also fix a value
/3 chosen uniformly at random from [, 1). To get a 2-HST,
we compute for each node v a O(log(n))-dimensional sig-
nature vector S(u), where the i-th element in the vector is

m(v), (1)

St =ors i
fori = 0 to m = [log D] + 1 with D the network diam-
eter. That is, each node keeps the node with the smallest
rank among all nodes within distance 2'3. For all nodes u,
S(u)m is the node with rank 1. These signature vectors de-
fine the HST embedding of d. In particular, the leaves are
nodes of P, the level-i ancestor of a node w is labeled S(u);,
and the weights of all edges between level ¢ and level ¢ — 1
is 2¢. The fact that this is indeed a 2-HST (in the sense of
Definition 4.1) is not obvious; its proof appears in [9]. The
top-down construction of the 2-HST in [9] is hard to imple-
ment in a distributed network.

4.1 Distributed algorithm to compute 2-HST

In this section we propose a bottom-up construction to
compute a 2-HST in a distributed way, with total communi-



cation cost O(nlogn). The HST construction is performed
as preprocessing at the network initialization stage. Specifi-
cally, we will show how to compute signature vectors shown
in (1) and the necessary information for each node to find
path to its parent in a distributed way.

Our algorithm proceeds in a bottom-up fashion and com-
putes the i-th element of the signature vector for every node
in round i, for ¢ starting at 0. If S(u); = v, we say that u
nominates v at round ¢. Intuitively, as ¢ increases, only the
nodes with small indices can possibly be nominated and ap-
pear in the signature vector. Observe that if at level ¢ a node
u is not nominated by any other node, i.e., every node v al-
ready has some other node with index smaller than » within
radius 2°3, the node u cannot possibly be nominated at level
t + 1. Thus we keep track of the subset of nodes that have
been nominated and ‘survive’ round ¢ and only these nodes
will flood the network with maximum hop count (TTL) value
of 27t 3 in round i + 1. We use P; to denote the nodes that
are nominated from the round 7 and thus are candidates to be
nominated in round ¢ + 1.

At the beginning, every node is a candidate, that is Py =
P. A fixed pre-determined node (‘leader’) chooses a random
/3 uniformly from [, 1) and distributes it to all nodes using
a single global flood. In round ¢ + 1, the nodes of P; flood
the network up to distance 2'*1 3. The flooding packets are
cached at the nodes receiving these packets until the end of
the current round. Now every node u receives some flooding
messages from the candidate nodes P; N B(u, 27! 3). Dur-
ing round % + 1, node v maintains the identity of the node
Vmin With lowest rank that it has received. At the end of
round 7 + 1, u nominates vy, as its (z + 1)-th level element
in its signature vector for round ¢ + 1 (also its level-(¢z + 1)
ancestor), i.e., S(u);+1 = Umin-

Each node records the information where it got the flood-
ing message from. With this information, each node u can
trace back to get the path to the ancestor vy,;, and report the
nomination. By this process, each node knows its parent and
its children in that level of the tree. At the end of each round,
all nodes clear all flooding messages that are not traced back
by other nodes. P;;; consists of the nodes in P; that are
nominated by some nodes during round ¢ + 1. Continue the
above process until there are no more candidates.

We remark that the 2-HST is computed and stored in a
completely distributed manner. This is sufficient for the ap-
plications in the distributed matching problem.

4.2 Communication cost

In this section we prove that the total communication cost,
measured by the total number of message transmissions, for
the computation of the 2-HST described earlier is bounded
by O(nlogn), provided that the doubling dimension of our
minimum hop metric is bounded by a constant. The constant
doubling dimension metric has been used in prior work as an
appropriate model of a sensor network metric, when the sen-

sor nodes are densely and uniformly deployed in a geometric
region [10].

First we formalize the intuition stated above, that the sets
of candidates P; become sparser as level ¢ increases. As the
construction algorithm is randomized, the following bounds
are taken in expectation on random permutations and param-
eters 3. Actually, communication cost analysis in this sec-
tion holds for any fixed g (the fact that (3 is random is only
important for the distortion bound).

Lemma 4.2. If the doubling dimension is at most ~y, any ball
of radius 2° contains at most 257 elements of P; in expecta-
tion, for all 1.

PROOF. For convenience, let 267 =: ¢. The proof is by
induction on ¢. The claim is true for the first round (¢ = 0)
as every node sends a message to its 1-hop neighbors, and
each node only responds by one message to the neighbor
with minimum index.

Consider the ball B(v,2%) for arbitrary v. Nodes of P; in
this ball may only be nominated (in the i-th round) by nodes
in B(v,2'"1). The latter can be covered by a family A of
227 palls of radius 2¢~1, so it suffices to prove that each ball
of A nominates at most 2~27¢ nodes in P;.

Figure 1. Any ball of radius 2° contains at most 2% elements of
P; in expectation, for all 7. The arrow from w to w means node w
nominates v in round 7.

Let A be any of the covering balls, A € A. Denote by
|A| the number of nodes of P inside A. If a node in P, N
B(v,2%) is nominated from A, it must be chosen from P;_1N
B(v,2%). See Figure 1 for illustration. Since B(v, 2%) can be
covered by at most 27 balls of radius 2°~*, and by inductive
hypothesis, there are at most 27 ¢ choices for this nomination.
That is, |P;_1 N B(v,2%)| < 27c. We claim that for a fixed
choice u, the probability that u is nominated by a node in A
is at most ﬁ. To see this, note that any w € A contains
entire A inside its 2i-ball, that is A C B(w,2%). So if u
is nominated by any node in A, then in particular, 7(u) is
smaller than the ranks of all nodes in A, which is true for at
most ﬁ—fraction of permutations. Hence in expectation, the

number of nominations by A is %. On the other hand, it

is also deterministically bounded by | A|, as each node in A
can nominate only once. Hence the number of nominations
by A is bounded by min{| 4|, %} < v/27c. This is at most

2727¢ by our choice of c. ]

Now we can prove the main result.



Theorem 4.3. For a sensor network with n nodes, the total
communication cost for constructing the 2-HST is O(n logn)
in expectation, and each node uses expected storage space
for O(log n) node IDs.

PROOF. The initial flood (to dsitribute the value of 3) takes
O(n) messages, because the maximum degree of the net-
work is bounded. Now it suffices to prove that each node
at each round receives O(1) messages. The communication
cost will then be only O(n) in each round as there are n
nodes in total. Since there are O(logn) rounds, the total
number of messages is O(n logn).

The number of messages transmitted (propagated) by node
winroundiis at most | P;_1NB(u,2'8)| < |P;_1NB(u,2%)|.
Since B(u,2%) can be covered by at most 27 balls of ra-
dius 2t~ !, each of which contains at most 2%7 elements of
P;_; (by Lemma 4.2), we conclude that u transmits at most
27 = O(1) messages in each round.

Total storage requirement consists of all next-hop pointers
that encode the paths that realize edges of the HST. Notice
that each such pointer can be charged to a unique flooding
packet reception event. Hence the storage requirement for a
given node u is at most the number of flooding messages that
u received throughout the computation. Again, Lemma 4.2
implies that this number is O(1) per round, or O(logn) in
total. O

4.3 o-HST

The algorithm described above computes a 2-HST for a
distributed network. It is not hard to convert a 2-HST to an
«a-HST for any value o > 2. We remark that converting a
2-HST to an a-HST can also be done in a distributed setting.
Basically at the end of our distributed algorithm, each node
identifies its ancestors in the 2-HST 7'. Now we condense the
tree T' to an a-HST 7" by removing some intermediate lev-
els of T and re-connecting the nodes directly to their lowest
ancestors that are not removed. In particular, the leaf nodes
remain the same. For 7 increasing from 0, suppose we have
constructed the tree 7" up to level i. The nodes on level 7
of T” correspond to the nodes on level j on tree T. Now we
proceed to build the tree 7" in level ¢ + 1. To do that, we
take the lowest level j' in the tree T such that the distance
Z{I:jl oh — 21" — 97 is no greater than o and remove all
the internal nodes onlevel j +1,5+2,--- , 7/ — 1 of tree T'.
The nodes on level j' are nodes on level ¢ + 1 in tree 7”. The
nodes in level ¢ connect to their corresponding ancestors on
level i + 1 by a single edge with weight o. See Figure 2 for
an example. Notice that the tree metric 7" again dominates
the original metric as we are only relaxing the edge weights.
In particular, the edge connecting a node on level 7 in 77 to
its parent has weight o, with 20" — 29 < of < 2/'+1 — 2i
by construction, where j is level ¢’s corresponding level in 7'
and j’ is level (i + 1)’s corresponding level in 7.

The relaxation of the edge weights of 7" will add at most
a constant multiplicative factor on the distortion as shown

below. For any two leaf nodes u, v on T, suppose their lowest
common ancestor is located at level ¢ on T” and level 7 on
T. Clearly j < j” < j'. Now we would like to bound
dr(u,v) by dr(u,v). First dp(u,v) = 2 - Zi”:gl 20 =
227" 1), dp(u,v) = 2- 0ol = 2(af — 1) /(a = 1).
Since a'~! < 291, We have

4o — 2
dro(,0) < = (u,0) +

< 7dr(u,v).

That is, the distortion for dr- is also bounded by O(logn).
This conversion can be executed by each node in the net-
work examining its signature vectors and selecting subset of
the elements in exactly the same way. In the end we have an
o-HST that is again implicitly stored on the nodes in the net-
work, and O(log n)-probabilistically approximates the un-

derlying network metric.
1
—
o

Figure 2. Convert a 2-HST to an a-HST for any o > 2.

At the end we summarize the properties of the a-HST that
will be useful later.

[y —

Lemma 4.4. Suppose for level i on the a-HST T" corre-
sponds to level £(i) on the 2-HST T'. Now we have:

1. 2€(i+1) _ 2@(1') < ot < 2€(i+1)+1 _ 2@(1')'

2. Each leaf node is within distance (o' — 1)3/(a — 1)
from its i-level ancestor on T".

PROOF. The first claim is due to the construction of the a-
HST. For the second claim, we know each leaf node is within
distance 27 3 of its j-level ancestor on the 2-HST. Now the
distance from a leaf node to its i-level ancestor on 7" is at
most 2¢(0 3 < [a'~1 +20-DB < (af —1)3/(a—1). O

4.4 HST on k resources

In Section 5 we will need to construct an HST only on the
sub-metric of the original shortest-path metric which is in-
duced by a given subset K of k nodes, let’s call them special
nodes for now. This can be done with the same communica-
tion and storage cost as before, by simply picking the permu-
tation uniformly at random from the set in which the special
nodes are k lowest-ranked nodes, and in the end taking the
part of the tree containing special nodes (notice that this is
still a tree, and that it has the same root?).

The parent of a special node is always special, due to the choice
of ranks. Notice that the parent of a node could be itself if it has
the lowest rank among all the nodes inside its proper neighborhood.
Hence a breadth-first search from the root, stopped upon encounter-
ing a non-special node, is guaranteed to discovers special nodes.



Why does this work? The main observation is that the ex-
ecution of the algorithm restricted to K does not depend on
non-special nodes at all. In fact, this is simulates the execu-
tion of the original algorithm of [9] on the metric (K, dk),
where d is the restriction of the shortest path metric on K.
Recall that the same construction works for any metric, as
long as the 273-neighborhoods are determined with respect
to the appropriate distance function. Since this is the case
here, and the metric has k points, correctness follows.

4.5 Sparse aggregation with HST

We also remark that the 2-HST computed in Section 4
can be used to get an aggregation tree when spontaneously
emerging resources spread out in the network are detected
by their local sensors and no resource is aware of how many
and where the other resources are. That is, it solves the same
problem as in the sparse aggregation framework [11].

Suppose the a set K of k resources are detected simultane-
ously (i.e., at network setup), each node with new detection
sends a message along the path in the tree towards the root.
With the same assumption as in [11] that the messages travel
with speed lower-bounded by V/, these messages can be ag-
gregated and pruned when they travel towards the root. In
particular, an internal node u at level 7 will wait for a period
of time 2¢ - V after the network setup — so that all messages
from the resources in its subtree will be able to arrive at u
for sure. After that u aggregates the messages it received
and sends a message to its parent on the tree.

Eventually the process will result in a sparse aggregation
tree T'(K) with root as the lowest common ancestor LC'S(K)
of all the resources in K. The edges of T'(K) include the
paths from the & resources to LC'S(K). From LC'S(K) one
message travels to the root (as it does not know whether there
are resources in other part of the tree and has to travel to the
root to find that out). The total communication cost of the
sparse aggregation is O(|T'(K)| + ¢), where |T'(K)| is the
size of the sparse aggregation tree, ¢ is the distance from
LCS(K) to the root of the HST and is upper bounded by
the network diameter. See Figure 3 for an example. The
blue nodes are the resources. The thick edges are the edges
traveled by aggregation messages.

LCS(K

Figure 3. Sparse aggregation of k resources/events by an HST.

We claim that the tree 7'(K) has total size O(log k) times
the smallest aggregation tree possible (i.e., minimum Stei-
ner tree) in the original network (if the resources know each

other in advance). In particular, 7'(K) is the minimum Stei-
ner tree of the resources in K on the HST metric. Suppose
the minimum Steiner tree in the original network is 7"(K),
we replace each edge zy on T'(K) by the path between
nodes zy on the HST, with a blowup factor of O(log k), us-
ing Section 4.4. Now the resulting network must have a size
no smaller than the size of T'(K) — as T'(K) is the min-
imum Steiner tree on the HST. This shows that |T(K)| <
O(logk - |M STY|), where M ST is the minimum Steiner tree
in the original network.

We remark that the paper [11] requires a double rulings
scheme supported in the underlying network, for the probe
messages to meet and discover each other. Our solution does
not require that and can work on any network with bounded
doubling dimension, given that the 2-HST has been com-
puted in the preprocessing phase.

S. DISTRIBUTED MATCHING
ALGORITHMS

In this section we describe several algorithms for distribu-
ted bipartite matching problem, in online and offline settings.
The main goal of the section is to show that, if preceded
by a preprocessing phase in which an HST is computed as
in Section 4, the matching algorithms have output-sensitive
communication cost, in addition to providing good approx-
imation/competitive ratio (in offline and online setting, re-
spectively).

In all models we consider there are k resources whose
number and locations do not change over time. The location
of a given resource is initially unknown to any other node ex-
cept the nearest sensor nodes that detect it. Also, we assume
that there are exactly k requests, which can either be present
in the beginning, or arrive one by one. In any case, a perfect
matching always exists. We remark that most of our results
continue to hold if this is not the case.

We assume that packets traverse one hop per time unit, i.e.,
that appropriate algorithms are employed to handle low-level
issues such as medium access, packet buffering and trans-
mission scheduling. We also assume for simplicity that all
nodes have enough local storage, and focus on minimizing
communication cost. This is justified by the fact that with
today’s technology energy is a much more valuable resource
than storage space.

5.1 Offline setting

First we consider the offline case, in which both resources
and requests are present simultaneously (but the resources
and the requests do not know each other). Bansal et al. [3]
proved that the natural greedy algorithm — go through the
set of requests in arbitrary order and match each request with
the closest unmatched resource in the a-HST tree metric,
breaking ties arbitrarily — gives as O(« log k)-approximation
(in expectation) to the optimal solution in the original met-
ric, for any o > 1. In the following we use a 2-HST and



describe a distributed implementation of this algorithm that
uses a factor of O(log k) more packets than the total length of
the returned matching (the sum of hop-distances of matched
pairs).

We may assume without loss of generality that no node has
both a resource and a request; such pairs can be immediately
paired and removed from consideration. We allow multiple
resources to occupy the same node, the same with requests.

The distributed algorithm proceeds in a similar way as
the sparse aggregation algorithm described in subsection 4.5.
Resources and events send their information up the tree. In-
ternal nodes match the resources and events in its subtree
whenever possible. Information on unmatched resources or
events is propagated further up the tree until every event is
matched. Specifically, leaves that have resources or requests
send this information to their parents (at level 1). Note that
empty leaves do nothing. Parents then locally compute an
arbitrary matching between requests and resources they re-
ceived and notify matched leaves. We recursively solve the
problem with unmatched requests and resources, where we
think of them as residing at level-1 nodes. The resulting
matching is represented by a number of paths in the HST,
and corresponding paths that are constructed (by establish-
ing ‘next hop’ pointers) in the underlying graph. Once this is
done, level-1 nodes finish the algorithm by propagating each
path to the leaf that initially holds the corresponding matched
resource/request.

Notice that level-1 nodes have to wait at most one time
unit for the packets coming from their children. This follows
from out assumption on packet propagation speed, and 2-
HST structure, i.e., the fact any leaf is within 218 <2 hops,
hence at most one hop, away from its parent. If a packet
from some child is not received within this time, it means
that the child has no requests/resources to report. Similar
time bounds hold in recursive calls.

Now we turn to bounding the communication cost. Clearly,
no communication is ever ‘wasted’, i.e., if a node sends a
packet to its parent reporting resources or requests (recall,
never both), eventually that HST edge (and the correspond-
ing path in the graph) will be used in the paths that match
those resources/requests.

Theorem 5.1. The expected communication cost of comput-
ing a matching of length [ with our algorithm is O(log k) - [.

PROOF. The claim easily follows by observing that each
edge computed by the algorithm may be a factor of O(log k)
shorter in the original metric than in the HST metric, and by
summing over all edges in the matching. (|

5.2 Online setting

Now we turn our attention to the online setting in which
requests come in one by one, and each request must be ir-
revocably matched to some resource before the next request
arrives. This models fairly common applications of wire-
less networks in which decisions are time-critical, cannot be

changed once they are made, and there is no a priori upper
bound on the time between consecutive request arrivals.

We propose a distributed algorithm which never pays more
than order of /7 in communication cost for computing a match-
ing of cost (length) I/, where + is the doubling dimension of
the metric. Throughout this section we assume that the next
request does not arrive until the current source is matched
and all associated messages have been delivered. This as-
sumption captures the application scenarios when event inter-
arrival times are much greater compared with message prop-
agation time.

One solution is based on the following randomized greedy
algorithm proposed in a centralized setting by [15]. When a
new request arrives, it is matched to the closest unmatched
resource on an a-HST, breaking ties randomly, i.e., by choos-
ing each of the tied resources with equal probability. They
proved that this algorithm is O(«a log® k)-competitive (in ex-
pectation) on the original metric, provided that a > 1 +
2Ink.

For a node u, let T'(u, i) be the unique level-i subtree that
contains u. Also, for i > 1, define N(u,i) = T(u,i) —
T(u,i — 1). Current request r can be matched to its ran-
domly chosen closest unmatched resource by having the leaf
that holds r gradually explore its neighborhood in the HST.
Specifically, the exploration proceeds by levels: the first level
is N(r,0) = {r}, then N(r,1), then N(r,2) etc. It is essen-
tially a post-order traversal of the HST, which starts from
r and stops on encountering an unmatched resource. No-
tice that, with such organization, each N(r,4) can be ex-
plored with a communication cost of at most twice the total
length of all paths (in the underlying graph) that realize all
edges of the subtree. This also includes the task of picking
a uniformly random unmatched resource, if the subtree hap-
pens to contain any. For example, each resource, once found
by exploration broadcast, can choose a random number uni-
formly from [0, 1], and then the minimum of all choices can
be computed using sparse aggregation (as in Section 4.5).
The ‘trail’ left by the minimum number’s packet during ag-
gregation leads to a uniformly random resource.

It is easy to see that the algorithm is correct (under the
above assumption on request arrivals). It is also obvious that
if r is matched to s after exploring levels up to i, i.e., entire
T'(r, 1), the communication cost involved is at most twice the
total length of T'(r, ).

Lemma 5.2. Consider an a-HST constructed as in Section 4
for an underlying metric with doubling dimension ~y. Let
T be a level-i subtree and let h be its height (root-to-leaf
distance) in the HST metric. Total length of T (all its edges)
in the HST metric is at most C'(«,y)h?", where C(a,7y) =
257

PROOF. By the a-HST construction in subsection 4.3 and
Lemma 4.3, the root of the subtree T is at level £(7) at the
corresponding 2-HST. Thus all leaves can be covered by a




single ball of radius 2°() =13 < 2¢()—1 centered at the root
of the subtree 7. Now we consider a level j in the subtree
T with 0 < j <4 — 1 and we would like to count the num-
ber of nodes at level j. By Lemma 4.2, any ball of radius
20 has at most 267 level-j nodes. Hence the leaves can be
covered by at most 27D =1-£()) balls of radius 2¢). Thus
the number of level-j nodes is at most 27(¢()—£()+5)  Each
level-j node has a single edge of length o/ connecting it to
its parent. Furthermore, the total length of the tree is exactly
the sum of all these edges. So, summing over j, we have

i—1 i—1
Z V(U@ —LG)+E) . o = 9Y((E)+5) Z o~ (=1DEG)
§j=0 j=0
27(L(i)+5) o,y
< -
- oY —«

Q1257 ol =1\
< . .
AR (a—l)

The height of the subtree is 1 +a+a?+---+a'~ ! = =1

a—1"

Thus the total length of T" is bounded by O(C'(a, y)R"Y). O

This directly implies a bound of O(C'(«v,y)!") on the com-
munication cost of computing a single matching edge whose
length is [ in HST metric.

We can now prove the main result about our online algo-
rithm.

Theorem 5.3. The expected communication cost for com-
puting a matching of total length [ is O(17).

PROOF. In expectation, a matched pair may be a factor of
O(log k) closer in the original metric than in HST, yielding
a ratio of O(C(a,y)log” k) for each edge. The same ratio
holds for the total length, since Y, ) < (3=, ;)7, fory >
1. The claim follows by substituting o = ©(log k). O

6. SIMULATIONS AND EXPERIMENTS

6.1 HST Construction

We implemented the 2-HST-construction algorithm (Sec-
tion 4) in MATLAB and tested it on 100 randomly gener-
ated networks. The networks were generated by perturbing
n nodes of the \/n x y/n grid in the [0, 1] unit square, by
2D Gaussian noise of standard deviation 072, and connect-
ing two resulting nodes if they are at most % apart (in Eu-
clidean distance). We also made sure that all generated net-
works were connected.

Figure 4 illustrates a typical 2-HST layout on our test net-
work, and Figure 5 shows a typical distribution of commu-
nication load and storage requirements. Communication is
evenly distributed, as predicted by Lemma 4.2. Storage re-
quirement is higher for nodes higher up in the hierarchy, but
it grows slowly with the network size (Theorem 4.3). This

result means that the hidden constant in Theorem 4.3 is in

Figure 4. A typical HST on n = 400 nodes. Thicker lines represent
higher-level edges.

practice much smaller than predicted by our theoretical anal-
ysis.

Figure 6 shows how the communication cost and storage
requirement change, on average, as a function of network
size. The value for each size is an average of 100 indepen-
dent trials. We conclude that, as predicted by Theorem 4.3,
both per-node storage and per-node communication cost grow
logarithmically with number of nodes.

6.2 Approximation and competitive ratios

We also implemented the offline algorithm described in
Section 5.1. Since we know that it is communication-optimal
in the 2-HST (Theorem 5.1), we only compared optimal costs
of the matching in the 2-HST and in the underlying graph.
This is, of course, directly related to the distortion of the
HST embedding.

We generated random perturbed grid networks from the
same distribution as in the previous experiment. Network
sizes range from 25 to 400, and the number of resources
was kept fixed at & = 10. We sampled 100 networks for
each network size. For each network, we chose k resources
and k requests uniformly at random, and computed a 2-HST
with requests and resources as special nodes (Section 4.4).
Then we computed the communication cost of the matching
computed by our offline algorithm, the length (in hops) of
the same matching in the a-HST metric, and the length of
the optimal matching on the same set of resources/requests
(computed by the Hungarian algorithm [16], as implemented
in [1]).

The following two figures show how the ratio of optimal
matching costs (in 2-HST and the original metric) changes
with the network size n when the number of resources k is
fixed (Figure 7) and vice versa (Figure 8).

Finally, we consider the online algorithm of Section 5.2.
We tested perturbed grid networks between 25 and 400 nodes,



Figure 5. Communication cost (left) and storage requirement (right) in a perturbed grid network of n = 400 nodes.
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Figure 6. Per-node communication cost and storage requirement scale sublinearly with network size.

3.5

HST/OPT
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Figure 7. In offline setting, length of the optimal matching in the
2-HST and length of the optimal matching in the underlying metric
are within a factor of 3 over a wide range of network sizes n, with
fixed k = 10.

with 50 samples for each size according to the same distribu-
tion as above. For each sample we computed an a-HST for
o = 14 2Ink and ran the algorithm, recording the resulting
communication cost, cost of the matching returned by the al-

3.5¢

HST/OPT

2% 10 15 20 25 30
number of resources

Figure 8. In offline setting, the ratio of optimal matching length
becomes worse when the number of resources k increases, and n =
225 is fixed. This is because the network embeds into 2-HST with
distortion that increases with k.

gorithm (in the HST metric), and optimal cost in the original
metric.

Figures 9 and 10 show the ratio of the communication cost
and costs of optimal matchings, one in the HST and the other



in the original metric. In Figure 9 the number of resources
k is fixed and network size changes. Figure 10 shows the
opposite situation.
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Figure 9. Communication overhead as a function of network size,
with fixed k = 15.
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Figure 10. Communication overhead as a function of the number
of resources, with fixed n = 225.

Figure 9 shows that, as predicted by Theorem 5.3, com-
munication cost grows roughly quadratically with the cost
of computed matching in the tree metric. This is expected,
since we tested on two-dimensional geometric graphs.

7. CONCLUSION

Resource management in a distributed setting is a chal-
lenging problem due to the lack of global coordination and
knowledge of available resources/emerging events. How-
ever, the problem can be simpler when the underlying net-
work metric is simpler (such as a tree). This paper shows
how to extract the hierarchically separated tree metric from
a network in a distributed and communication efficient way,
as well as how to implement the distributed resource man-
agement algorithms in the tree metric, for both offline and
online scenarios. We would like to emphasize that the idea
of working on a simpler metric can possibly be applied to
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Figure 11. Communication cost of the online matching algorithm
as a function of the cost of the computed matching in the a-HST
metric, with a fixed number of k& = 15 resources and variable net-
work size n. The slope suggests quadratic dependence (linear re-
gression yields a slope of about 2.37).

other problems in a distributed setting to derive communi-
cation efficient algorithms with quality guarantees, such as
k-server [6, 8], metric labeling [14], and tracking mobile
sinks [2]. We will further explore this direction in the fu-
ture.
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