
Deformable Spanners and Applications

Jie Gao∗ Leonidas J. Guibas∗ An Nguyen∗

ABSTRACT
For a set S of points in R

d , an s-spanner is a graph on S such that any
pair of points is connected via some path in the spanner whose total
length is at most s times the Euclidean distance between the points.
In this paper we propose a new sparse (1+ε)-spanner with O(n/εd)

edges, where ε is a specified parameter. The key property of this
spanner is that it can be efficiently maintained under dynamic inser-
tion or deletion of points, as well as under continuous motion of the
points in both the kinetic data structures setting and in the more re-
alistic blackbox displacement model we introduce. Our deformable
spanner succinctly encodes all proximity information in a deform-
ing point cloud, giving us efficient kinetic algorithms for problems
such as the closest pair, the near neighbors of all points, approxi-
mate nearest neighbor search (aka approximate Voronoi diagram),
well-separated pair decomposition, and approximate k-centers.

Categories and Subject Descriptors: E.1 [Data]: Data Struc-
tures—graphs and networks; F.2.2 [Theory of Computation]: anal-
ysis of algorithms and problem complexity—non-numerical algo-
rithms and problems

General Terms: Algorithms, Theory

Keywords: Spanner graphs, kinetic data structures, proximity main-
tenance, collision detection, approximate nearest neighbor, well-
separated pair decomposition, geometric k-center

1 Introduction
A subgraph G′ is a spanner of a graph G if πG′(p, q) ≤ s ·πG(p, q)

for some constant s and for all pairs of nodes p and q in G, where
πG(p, q) denotes the shortest path distance between p and q in the
graph G. The factor s is called the stretch factor of G′ and the graph
G′ an s-spanner of G. If G is the complete graph of a set of n points
S in a metric space (S, | · |) with πG(p, q) = |pq|, we call G′ an s-
spanner of the metric (S, | · |). We will focus on collections of points

∗Department of Computer Science, Stanford University, Stanford, CA
94305. E-mail: jgao, guibas, anguyen@graphics.stanford.edu.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SCG’04, June 8–11, 2004, Brooklyn, New York, USA.
Copyright 2004 ACM 1-58113-885-7/04/0006 ...$5.00.

in R
d , in settings where proximity information among the points is

important. Spanners are of interest in such situations because sparse
spanners with stretch factor arbitrarily close to 1 exist and provide an
efficient encoding of distance information. In particular, continuous
proximity queries requiring a geometric search can be replaced by
more efficient graph-based queries using spanners.

There is a vast literature on spanners that we will not attempt
to review in any detail here because our intent is to pursue a rela-
tively new direction: spanner maintenance under point motion. The
readers are referred to a number of survey papers for background
material [2, 14, 30]. Extant spanner constructions are all static,
based on sequential centralized algorithms. Our interest is in devis-
ing spanner data structures for points in a Euclidean space that can
be maintained efficiently under dynamic insertion/deletion as well
as continuous motion of the point set.

Maintaining proximity information is crucial in many physical
simulations, as most forces in nature are short range — things inter-
act when they are near. This is true across all scales, from smoothed
particle hydrodynamics in astronomy to molecular dynamics in bi-
ology. We regard collision detection as a special case of proximity
maintenance — indeed many extant approaches to collision detec-
tion already noted the similarity between that task and that of dis-
tance estimation between objects [26]. Of special importance to us
is collision or self-collision detection among deformable objects.
We came upon the deformable spanners that form the topic of this
paper while searching for a lightweight combinatorial data structure
that can address the needs of such simulations. Proximity is also
important is many aspects of distributed mobile computing, as in ad
hoc mobile communication networks. Nodes typically can commu-
nicate only where they are within a certain range. Proximity-based
clustering has been widely used as a way to structure networks and
economize on resources [17].

Our spanner structure, which we call a DefSpanner (or de-
formable spanner), is built on point sets with bounded aspect ratio,
i.e., ones where the ratio of the maximum pairwise distance to the
minimum pairwise distance is polynomially bounded by the number
of points. In terms of simulations, these points can be thought of
as the centers of small elements on which the physical simulation
model acts. The bounded aspect ratio condition naturally applies
to modeling deformable shapes such as vines, ropes, cloth, tissue
and proteins [29, 20, 27]. In all these cases, a deformable object
is modeled as a connected collection of small non-overlapping el-
ements of roughly the same size. Thus the aspect ratio is linear in
the number of elements. Even when connectivity or disjointness is
not required, other physical constraints usually prevent the elements
from penetrating too much or drifting too far apart. An example of
a spanner for the backbone of a protein is shown in Figure 1.

We propose in this paper a new deformable (1+ε)-spanner (given

Figure 1. A spanner of a protein backbone. The spanner consists of the
backbone edges (black) and a number of additional edges, the shortcuts
(light gray). There is a path between any two backbone atoms with length
at most 3 times their Euclidean distance.

any ε > 0) for a set of n points in R
d under the Euclidean metric.

We study the properties and applications of such a spanner. Our
spanner has O(n/εd) edges. If the point set has bounded aspect ra-
tio, our spanner will have low-degree, i.e., the maximum number of
spanner edges incident to any point is O(log n/εd). Furthermore,
the DefSpanner enjoys the additional advantage that it can be up-
dated efficiently under both dynamic and kinetic situations. The
previously proposed algorithms to compute (1+ ε)-spanners are all
sequential and efficient updates are difficult. To be specific, in the
DefSpanner, insertion or deletion of any point can be done in time
O(log n/εd) in the worst case. When the points move continuously,
we study the kinetic properties of our spanner in the Kinetic Data
Structure (KDS for short) framework [8, 21]. The kinetic spanner
changes only at discrete times and has all the properties of a good
KDS: efficiency, locality, responsiveness and compactness. To our
knowledge, this is the the first kinetic spanner data structure.

The focus of this paper are the theoretical and combinatorial prop-
erties of this spanner construction. We plan to report elsewhere on
an implementation and comparisons with other proximity mainte-
nance methods. However, we discuss certain aspects of the use of
the spanner in physical simulations when appropriate to motivate
and justify the choices we have made. In particular, one of our
goals has been to address a deficiency of kinetic data structures in
the physical simulation setting.

In the classical KDS presentation, all objects are assumed to move
according to known motion plans. This may be a good model for air-
traffic, but it is not well-suited for modeling deformable objects. In a
typical deformable simulation, elements are moved in discrete time
steps by an integrator implementing the physical model, typically
an ordinary or partial differential equation. Thus, after an integrator
step, the KDS has to recover the structure being maintained, even
though the intermediate motions of the elements are hidden from
view and possibly multiple certificates have failed. We call this the
blackbox displacement model: a ‘black box’ moves the points and
we need to repair the spanner structure after these small displace-
ments. The general issue of how to repair a geometric structure after
small perturbations of its defining elements can be quite hard. We
might hope that we can correlate the amount of repair needed in the
structure to, for example, the size of the displacements or the num-
ber of failed KDS certificates. But this may not be always possible.
As Figures 2 and 3 show, another well-known proximity structure,
the Delaunay triangulation, behaves in highly discontinuous ways.

Unlike the Delaunay triangulation, however, our DefSpanner

Figure 2. The points shown are nearly cocircular. The Delaunay triangula-
tion could change dramatically even when the points move ever so slightly.

Figure 3. The points on top move to the left. While only one edge (the thick
edge) in the triangulation after the motion fails the local Delaunayhood test,
repairing the triangulation is very expensive – �(n2) flips are required.

is a highly non-canonical structure: for a given configuration of
points, many roughly equally good spanner structures are possible.
Because of that, we can show that our spanner can be provably
and efficiently updated in the blackbox displacement model. The
essential reason is that, among all valid spanners for the current
configuration we can always choose one that is very similar to the
one from the previous time step. In fact, the DefSpanner is the
first non-trivial data structure that can be provably maintained under
the blackbox displacement model.

In addition to basic proximity maintenance, our DefSpanner
can be used to give efficient kinetic and blackbox displacement al-
gorithms for several related problems. For example, we can main-
tain the closest pair of points and thus have a collision detection
mechanism. We can maintain the near neighbors of all points (to
within a specified distance), and perform approximate nearest neigh-
bor searches (aka get the functionality of approximate Voronoi di-
agrams). We also get the first kinetic algorithms for maintaining
well-separated pair decompositions and approximate k-centers of
our point set. So this one simple combinatorial structure provides
a ‘one-stop shopping’ mechanism for a wide variety of proximity
problems and queries on moving points.

2 Specific contributions
We now discuss in greater detail the specific problems we address
and the contributions that the DefSpanner data structure makes.

Closest pair and collision detection. The crucial insight here is
that before a pair of elements can collide in a deformable model,
any spanner must put an edge between them (otherwise the bounded
spanning ratio condition would be violated) — see Figure 4. Note
also that the closest pair of elements must have an edge in any
(1+ε)-spanner, if ε < 1. Thus the DefSpanner naturally contains
the information we need for closest pair maintenance and collision
detection.

Again, there is a huge literature on collision detection, but rela-
tively little of it deals with collision detection for deformable ob-
jects. The standard approaches based on rigid bounding volume
hierarchies do not extend easily to deformable shapes. Such hierar-
chies would need to be recomputed as an object deforms, often at
considerable cost. One can mitigate the frequency of recomputing
the hierarchies by using larger or looser bounding volumes to allow

Figure 4. Before a collision happens, a spanner edge must connect the
colliding elements.

for some deformation, but then the efficiency of the intersection tests
suffers. Some efforts towards better deformable bounding volume
hierarchies for ‘linear’ objects are the kinematic chains of Lotan
et al. [27], where the hierarchy allows for quick updates after a sin-
gle, or few, joints in the chain move, and the combinatorial sphere
hierarchy of Guibas et al. [20], where bounding spheres are defined
implicitly through feature points on the surface of an object. Both
of these structures can perform intersection tests in O(n4/3) time in
3-D. There has also been work based on deformable tilings of the
free space among moving objects [1], but this is currently limited
to 2-D.

Compared to these structures, the DefSpanner is much lighter
weight. It is a purely combinatorial structure (edges, specified by
pairs of points) of size O(n/εd) that allows self-collision detection
in O(n) time.

All near neighbors search. The all near neighbors search prob-
lem is to find all the pairs of points with distance less than a given
value r , i.e., for each point, we must return the list of points in-
side the ball with radius r . In physical simulations such search is
often used to limit interactions to only pairs of elements that are
sufficiently near each other. For example, most molecular dynam-
ics (MD) systems maintain such ‘neighbor-lists’ for each atom and
update them every few integration steps.

A typical MD algorithm performs this task by voxelizing space
into tiles of size comparable to the size of a few atoms and tracks
which atoms intersect which voxels. Since many voxels may be
empty, a hash table is normally used to avoid huge voxel arrays.
Atoms are reallocated to voxels after each time step. The simplicity
of this method is appealing, but its performance is intimately tied to
a prespecified interaction distance.

With the DefSpanner, to find all the points within a certain
distance r from a point p, we start from p and follow the spanner
edges until the total length is greater than s · r . We then filter the
points thus collected and keep only those that are within distance
r of p. We can show that the cost of this is O(n + k), where k is
the number of pairs in the answer set — thus the method is output
sensitive and the cost of filtering does not dominate.

Well-separated pair decompositions. The concept of a well-
separated pair decomposition for a set of points in R

d was first pro-
posed by Callahan and Kosaraju [12]. A pair of point sets (A, B)

is s-well-separated if the distance between A, B is at least s times
the diameters of both A and B. A well-separated pair decompo-
sition (WSPD) of a point set consists of a set of well-separated
pairs that ‘cover’ all the pairs of distinct points, i.e. any two distinct
points belong to the different sets of some pair of the decomposi-
tion. In [12], Callahan and Kosaraju showed that for any point set
in a Euclidean space and for any positive constant s, there always
exists an s-well-separated pair decomposition with linearly many
pairs. This fact has been very useful in obtaining nearly linear time
algorithms for many problems such as computing k-nearest neigh-
bors, n-body potential fields, geometric spanners and approximate
minimum spanning trees [9, 10, 12, 11, 6, 2, 28, 25, 19, 15].

In fact, many of the spanner constructions for points in Euclidean
space use the well-separated pair decomposition as a tool [6, 2, 28,

25]. The basic idea is this: the graph defined by taking an arbitrary
edge connecting each s-well-separated pair must be a spanner [9].
The spanning ratio can be made arbitrarily close to 1 as long as we
choose a large enough s. Here we show that the other direction is also
true: the DefSpanner we build can be used to generate an s-well-
separated pair decomposition, for any positive s — it suffices to take
ε = 4/s in the spanner construction. The size of the WSPD is linear,
which matches the bound by Callahan and Kosaraju [12]. Since the
spanner can be maintained in dynamic and kinetic settings, the well-
separated pair decomposition can also be maintained efficiently for
a set of moving points.

(1+ε)-nearest neighbor query/approximateVoronoi diagram.
The DefSpanner we propose can be used to output the approximate
nearest neighbor of any point p ∈ R

d with respect to the point set S,
in time O(log n/εd). There has been a lot of work on data structures
to answer approximate nearest neighbor queries quickly [23, 3, 5,
4]. However, they all try to minimize the storage or query cost and
do not consider points in motion.

k-centers. For a set S of points in R
d , the k-center is a set

K of points, K ⊆ S, |K| = k, such that maxp∈S minq∈K |pq|
is minimized. The geometric k-center problem, where the points
lie in the plane and the Euclidean metric is used, is approximable
within 2, but is not approximable within 1.822 [16]. However, the
usual algorithms to compute approximate k-center are of a greedy
nature [16, 18], and thus not easy to kinetize. For the dual prob-
lem of k-centers, i.e., minimizing the number of centers when the
radius of each cluster is prespecified, efficient kinetic maintenance
schemes are available [17, 22]. Here we show how to compute an 8-
approximate k-center by using the DefSpanner. Furthermore, we
are first to give a kinetic approximate k-center as the points move.

2.1 Result summary
We summarize the results below. All the algorithms/data structures
are deterministic and we consider the worst-case behavior. For n

points S in R
d , we have,

• A (1 + ε)-spanner with O(n/εd) edges;

• An O(n) structure for finding all near neighbors in time O(k+
n), where k is the size of the output;

• A (1/ε)-well-separated pair decomposition with sizeO(n/εd);

• An O(n) structure for (1 + ε)-nearest neighbor queries in
O(log α/εd) time, where α is the aspect ratio of S;

• An O(n) data structure for closest pair and collision detection;

• An 8-approximate k-center, for any 0 < k ≤ n.

Furthermore, if the point set also has bounded aspect ratio, we
have efficient kinetic and dynamic maintenance for the spanner so
that each operation takes O(log n/εd) time. The kinetic data struc-
tures for maintaining the (1 + ε)-spanner, the (1/ε)-well-separated
pair decomposition, the 8-approximate k-center, have the four de-
sirable properties of efficiency, compactness, locality, and respon-
siveness.

3 The Deformable spanner
In this paper we focus on a set S of points in the Euclidean space
R

d . The aspect ratio of S, defined by the ratio of the maximum
pairwise distance to the minimum pairwise distance, is denoted as
α. Without loss of generality, we assume that the closest pair of
points has distance 1, so the furthest pair of S has distance α.

3.1 Spanner definition
A set of discrete centers with radius r for point set S is defined as a
maximal subset S′ ⊆ S such that the balls with radius r centered at
the discrete centers contain all the points of S but any two centers
are of a distance at least r away from each other. Notice that the set
of discrete centers is generally not unique.

We construct a hierarchy of discrete centers such that S0 is the
original point set S and Si is a set of discrete centers of Si−1 with
radius 2i , for i > 0. Intuitively, the hierarchical discrete centers are
well-distributed samplings of the point set at different spatial scales.

The DefSpanner G on S is constructed as follows: we first
construct the hierarchy of discrete centers Si and then add edges of
length no more than c ·2i between points in Si to the graph G, where
c = 4 + 16/ε. These edges connect each center to other centers in
the same level whose distances are comparable to the radius at that
level. As pointed out later in Lemma 3.1(3), the edges also connect
each center to the points (or centers) it covers in the next lower level.

We use the following notations throughout the paper. Since a
point p may appear in many levels in the hierarchy, when it is not
clear, we use p(i) to denote the point p in level Si . A center q in Si is
said to cover a point p in Si−1 if |pq| ≤ 2i . A point p in Si−1 may
be covered by many centers in Si . We denote by P(p) one of those
centers and call it the parent of p. The choice of P(p) is arbitrary
but fixed. We also call p a child of P(p). We recursively define
P j−i (p) as the ancestor in level Sj of p by P 0(p) = p, P j−i (p) =
P(P j−i−1(p)), and call Ci−1(p) = {q ∈ Si−1|P(q) = p} the set
of children ofp inSi−1. We denoteNi(p) = {q ∈ Si | |pq| ≤ c·2i}
the set of neighbors of p in Si .

3.2 Spanner property
We first prove some properties about the discrete center hierarchy
and the spanner.

Lemma 3.1. 1. Si ⊆ Si−1.

2. For any two points p, q ∈ Si , |pq| ≥ 2i .

3. If q ∈ Ci(p) and q �= p, then q ∈ Ni(p), i.e. there is an
edge from each point q to its parent.

4. The hierarchy has at most �log2 α	 levels.

5. For any point p ∈ S0, its ancestor P i(p) ∈ Si is of a distance
at most 2i+1 away from p.

Proof. The first three claims are obvious. For the fourth claim,
an i-th level center p ∈ Si has radius 2i . So if 2i ≥ α, the ball
centered at p contains all the points in S. Therefore the height of
the hierarchy h is at most �log2 α	. The last claim holds because
there is a path from p ∈ S0 to P i(p) with total length of at most
2 + 22 + · · · + 2i . �

We are now ready to prove that G is a spanner.

Theorem 3.2. G is a (1 + ε)-spanner.

Proof. For a pair of points p, q ∈ S0 we find the smallest level i
so that there is an edge between their i-th parents P i(p) and P i(q).
Denote pi = P i(p), qi = P i(q), pi−1 = P i−1(p), qi−1 =
P i−1(q). To prove that G is a spanner, we show that the path
connecting p, q via pi, qi has length at most (1 + ε)|pq|.

> c · 2i−1

p q

pi−1 qi−1

pi qi≤ c · 2i

Figure 5. There exists a path in G between any two points p and q with
length at most (1 + ε)|pq|.

First, we have that |piqi | ≤ c · 2i and |pi−1qi−1| > c · 2i−1. By
Lemma 3.1, |ppi−1| ≤ 2i , |qqi−1| ≤ 2i . So |pq| ≥ |pi−1qi−1| −
|ppi−1| − |qqi−1| > (c − 4) · 2i−1. Also the length of the path
that connect p, q via pi, qi is at most 2i+1 + |piqi | + 2i+1 ≤
8 · 2i + |pq| ≤ (1 + 16/(c − 4))|pq| = (1 + ε)|pq|. This proves
that G is a (1 + ε)-spanner. �

3.3 Size of the spanner
By a standard packing argument, we have,

Lemma 3.3. Each point in Si covers at most 5d points in Si−1.

Lemma 3.4. The number of edges any point p ∈ Si has with other
points of Si is at most (1 + 2c)d − 1.

Note that the bound in Lemma 3.3 could be improved. A more
careful analysis, see Sullivan [32], shows that in R

2, the maximum
number of children is 19, and in R

3, 87. In higher dimensions, the
number of children is at most O(2.641d).

Lemma 3.5. The maximum degree of G is (1 + 2c)d�log2 α	.

Proof. It follows from Lemma 3.4 and Lemma 3.1 (4). �

Lemma 3.6. The total number of edges in G is less than 2(1+2c)d ·
n.

Proof. Note that if G is a DefSpanner and p is a point in G

that does not have any children, then removing p and all edges
incident on p from G gives us another DefSpanner G′ with one
less vertex. The lemma follows if we can show that we can always
find a childless point p in G that is incident to at most 2(1 + 2c)d

edges.
Let p and q be the closest pair of points in G and let k =

log2 |pq|�. As p and q cannot be both in Sk+1, we assume further
that p is not in Sk+1. Since p is at least 2k apart from all points,
it does not have any children in level k − 1 or below, and thus it
is childless. By a packing argument similar to that in Lemma 3.4,
p is incident to at most (1 + 2c/2j)d − 1 edges in Sk−j , for all
0 ≤ j ≤ log2 c. The total number of edges incident on p is thus at

most
∑log2 c

j=0

(
(1 + 2c/2j)d − 1

)
≤ 2(1 + 2c)d . �

To summarize, we have,

Theorem 3.7. For a set of n points in R
d with aspect ratio α, we

can construct a (1 + ε)-spanner G so that the total number of edges
is O(n/εd) and the maximum degree of G is O(log2 α/εd).

Remark. Notice that the hierarchy has at most �log2 α	 levels.
We can replace the logarithm base with any number greater than 1.
Specifically if we choose β > 1, we can build the hierarchy so that
for any two points p, q in Si , |pq| ≥ βi . The hierarchy has at most
�logβ α	 levels. Similar to Theorem 3.2, we can show that the graph

constructed is a (1+ε) spanner when c = max
(
β,

4β2

(β−1)ε
+ 2β

β−1

)
.

4 Construction and dynamic maintenance
The previous section defines a set of properties such that a graph
with those properties is a spanner. In this section we show that we
can efficiently construct the spanner in O(n log2 α) time, where n

is the number of points and α is the aspect ratio of the point set. We
also show that we can dynamically insert or remove a point from
our hierarchy, at a cost of O(log2 α) for each operation. In practical
settings where α is a polynomial function of n, the construction
of the hierarchy is O(n log2 n), and dynamic update operations are
done in O(log2 n) time each.

To describe the dynamic maintenance of the spanner, we adopt a
slightly different setting. We assume that the aspect ratio α is always
bounded by a polynomial of the number of points. However, as the
points are inserted and deleted, the minimum separation of the point
set may change. To address this, we imagine that we virtually keep
a set of points Si , −∞ < i < ∞, such that Si is a set of discrete
centers of Si−1 with radius 2i . Since the aspect ratio is bounded,
there exist m and M such that there are spanner edges only on Si ,
m ≤ i ≤ M , M−m = O(log n). We refer to Sm and SM the bottom
and the top of the hierarchy respectively. For each point p other than
the root of the hierarchy, we store the maximum number Mp such
that level SMp

contains p, and store its parent P(p(Mp)). We also
store the minimum number mp such that p has a neighbor in Smp ,
non-empty lists of neighbors of p in each of the levels between
Smp and SMp

, and non-empty lists of children of p in all levels
below SMp

. We also store the value of m and M for the hierarchy.
Notice that we can always scale the point set so that the minimum
separation is 1 and thus return to the previous setup.

We begin with the following simple yet crucial observation which
is used repeatedly in this section. It asserts that if there is an edge
between two nodes, then there is also an edge between their parents:

Lemma 4.1. If q ∈ Ni(p) then P(q) ∈ Ni+1(P (p)).

Proof. If q ∈ Ni(p), |pq| ≤ c · 2i . Thus |P(p)P (q)| ≤
|P(p)p| + |pq| + |qP (q)| ≤ (c + 4) · 2i ≤ c · 2i+1. �

4.1 Spanner construction
We construct the hierarchy incrementally by inserting points one by
one. Suppose that we already have a hierarchy of n− 1 points. The
n-th point p is inserted as follows. We first pretend that p appears in
all levels of the hierarchy and insert p into the hierarchy from the top
level to the bottom level; p(i)’s parent is p(i+1). From Lemma 4.1,
p only connects to nodes on level i whose parents on level i + 1
have already been connected to p. So we compute Ni(p) in each
level i in the hierarchy by checking the distance from p to all its
‘cousins’, i.e., the children of the neighbors of its parent. We stop
if p does not have any neighbor. If p has a neighbor in the bottom
level, we check whether p has any neighbors in even lower levels
and if necessary, decrease m and extend the hierarchy downward.
Intuitively, in this step we do point location from top down by using
Lemma 4.1 and connect edges no longer than c · 2i to p on each
level i.

We then traverse the hierarchy from the bottom up and clean up
the hierarchy of discrete centers. We find the highest level Si and
the point q ∈ Ni(p) such that |pq| < 2i . We set the parent of p in
Si−1 to be q, and remove p from all levels Si and above. If p still
remains in the top level, we increase M and extend the hierarchy
upward.

Note that we are making two passes through the hierarchy. In each
level in each pass, the work is at most 5d(1 + 2c)d = O(1/εd),
and thus the cost of one insertion is O(h/εd), and the total cost of
the construction is O(nh/εd), where h = O(log2 α) is the height
of the hierarchy.

4.2 Dynamic updates
From the previous subsection, it is clear that we can insert points
into the hierarchy at the cost of O(log2 α/εd) each. In this section,
we show that points can be removed from the hierarchy, again at the
cost of O(log2 α/εd) each.

To remove a point p from the hierarchy, we remove p from bottom
up. If p has no children (except itself), we can simply remove p

and all edges incident on p in each level. If p has children, its
children would become orphans, and we need to find new parents
for them before we can remove p. We assume q(i) is a child of
p(i+1), q �= p. From (3) in Lemma 3.1, q(i) is a neighbor of p(i)

on level i.
From Lemma 4.1, we know the parent of q(i) must be a neighbor

of the parent of p(i), i.e., p(i+1). If there is a neighbor w of p(i+1)

that covers q(i), we set q(i)’s parent to be w and we are done. If
not q(i) is not covered by any centers on level i + 1, and thus it
must be inserted into level i +1. Notice that q(i+1) is a neighbor of
p(i+1), we can recursively either find a parent for q(i+1) or promote
q further up. The neighbors of q can then be computed from top
down in a way similar to point insertion in previous subsection.

Note that the cost of raising a child of p up one level is O(1/εd),
and as the child may end up in the top level, the cost of fixing a child
of p is O(log2 α/εd). Since p could appear in O(log2 α) levels
and has O(log2 α) children, removing p may cost O(log2 α/εd).
However notice that for any level Si , all children of p on or below the
level are inside a disk of radius 2 · 2i , and the minimum separation
in Si is 2i . By a packing argument, at most O(1) of the children
can end up being in Si . The total cost of removing a point is thus
O(log2 α/εd).

Theorem 4.2. Dynamic insertion and deletion of points in the span-
ner takes O(log2 α/εd) each, α is the aspect ratio. The spanner can
be constructed in time O(n log2 α/εd).

5 Maintenance under motion

5.1 Kinetic data structure overview
We analyze the maintenance of the spanner in the kinetic data struc-
ture (KDS) framework [8, 21]. A KDS tracks an attribute of a
moving system over time by maintaining a set of certificates as a
proof of attribute value correctness. In our case, we would like
to maintain a set of certificates showing that the discrete centers
hierarchy is valid, and that the edges are connecting precisely the
appropriate nearby pairs of points in each level. When the points
move, the certificates may become invalid. A KDS event happens
when a certificate fails. At each event, we need to update the cer-
tificate set and possibly the spanner. In the KDS framework, the
motion of the points are assumed to be explicitly known, so that
the failure times of the certificates can be predicted precisely. The
KDS processes the certificate failures in order of the failure time,
jumping from one event to the next.

We will show how we maintain the spanner in the KDS framework
and vaerify that our spanner enjoys all the desirable properties of
a good KDS. We will then discuss how to maintain the spanner in
practice, when the motion of the points are given by a black box.

5.2 KDS maintenance
To maintain the spanner G in the KDS framework, we need to main-
tain the discrete centers hierarchy and the edges between the centers
at each level. First, we keep the neighborhood information for each

node p. We have three kinds of certificates for this purpose. A
parent-child certificate guarantees that a child p is within distance
2i+1 from its parent in level i + 1. An edge certificate guarantees
that a neighbor q of p at level i is within distance c ·2i . A separation
certificate guarantees that a neighbor q of p at level i is of distance
2i away. These three certificates prove the validity of the discrete
centers hierarchy and also detect when the near neighbors move
further away. However, the more difficult part is to detect when
two currently far away points move close to each other for the first
time. The key observation on the spanner hierarchy is that before
two points can become neighbors at some level i, their parents are
already neighbors at level i + 1, as shown in Lemma 4.1. Therefore
we only need to keep track of the potential neighbors of a point p,
which are the ‘cousins’ of p, i.e., the centers that are not neighbors
of p but their parents are P(p)’s neighbors. A fourth certificate,
potential neighbor certificate, guarantees that a potential neighbor
of p at level i is of distance c · 2i further away. All certificates are
simple distance comparisons among pairs of points. To summarize,
the four kinds of certificates make sure that for each center p in
level i, the values P(p) (if P(p) �= p), Ni(p), and Ci−1(p) we
maintain are valid. The failure of four types of certificates generates
five types of events, which are discussed separately as follows. Let
p be a point in level i:

1. Addition of a spanner edge. When a potential neighbor
certificate fails, i.e., a potential neighbor q of p comes within
a distance c · 2i of p, we add an edge between p and q,
making q a neighbor of p. We also update the list of potential
neighbors of the children of p and q.

2. Deletion of a spanner edge. When an edge certificate fails,
i.e., a neighbor q of p moves such that it is further than c · 2i

from p, we drop the edge between p and q, making them po-
tential neighbors. We also update the list of potential neigh-
bors of the children of p and q.

3. Promotion of a node. When a parent-child certificate fails,
i.e., q = P(p) no longer covers p, |pq| > 2i+1. p becomes
an orphan, and we need to find a new parent for p or promote
it into higher levels. We deal with orphans the same way as
in dynamic updates. We then update the potential neighbors
of p in level i and above.

4. Demotion of a node. When a separation certificate fails, i.e.,
a neighbor q of p comes within a distance of 2i , we need to
remove one of the two points from level i. Assume without
lost of generality that p is not in level i + 1. We demote p,
i.e., removing p from level i. Each former child t of p in
level i −1 becomes an orphan, and we deal with each of them
as in the previous event.

The number of certificates for a point in any level it participates is
O(1/εd), and thus the total number of certificates is O(n/εd), and
the number of certificates associated with any point is O(log2 α/εd).
Assuming that the motion preserves the bounded aspect ratio α, the
total number of events in maintaining the spanner under pseudo-
algebraic motion is bounded by O(n2 log2 α) since an event only
happens when the distance between two points becomes either 2i

or c · 2i for i = 0, · · · , log2 α.

Note that both the dynamic and kinetic maintenance can also be
done exactly in the same way for spanners with hierarchy expansion
ratio β > 1 and c > max(β, 2β/(β − 1)).

5.3 Quality of the kinetic spanner
There are four desirable properties that a good KDS should have [8,
21]: (i) compactness: the KDS has a small number of certificates;
(ii) responsiveness: when a certificate fails, the KDS can be updated
quickly; (iii) locality: each point participates in a small number of
certificates so that when the motion of that point is changed, the
KDS can be updated quickly; (iv) efficiency: there are not too many
certificate failures in the sense that the number of events is not too
large comparing to the number of times the attribute being tracked
changes combinatorially in the worst case.

As pointed out in the previous subsection, our kinetic spanner
has linear number of certificates, and that each point participates
in at most O(log2 n/εd) certificates. It is also easy to see that the
cost to repair the KDS when a certificate fails is either O(1) or
O(log2 n/εd). Our spanner KDS is thus compact, responsive, and
local. As for the efficiency, we first have the following result:

Lemma 5.1. There exists a set of n points so that any linear-size
c-spanner has to change �(n2/c2) times.

Proof. We consider a necklace of balls in the plane. The neck-
lace consists of three segments. For the two segments close to the
ends, each contains n/c bumps, where each bump has height c and
the distance along the necklace between adjacent bumps is 2c. The
two segments are connected by a bent segment with 2n balls. The
total number of balls in the necklace is 10n. The top segment with
bumps is moving linearly towards the left; the bottom segment re-
mains static. The balls on the middle segment moves accordingly
to keep the necklace connected. Figure 6 shows the configuration
of the necklace at the starting and ending point.

Figure 6. Motion of the points.

2c

2c + 1 1

Figure 7. Lower bound �(n2/c2) for the changes of any linear-size spanner.

Consider the time when a top bump is directly above a bottom
bump, so that the distance between their peaks is 1. See Figure 7. For
any c-spanner, there must be a path connecting the two peaks with
length no more than c. Therefore there must be an edge between
some point in the top bump and some point in the bottom bump,
since otherwise any path between the two peaks will be longer than
c. So the total number of edges in the c-spanner that ever appear
during the motion is at least �(n2/c2). Since the spanner starts
with O(n) edges. there must be at least �(n2/c2) changes of any
linear-size c-spanner. �

As the number of events that our spanner KDS has to handle is
O(n2 log2 α) = O(n2 log2 n), we have thus established:

Theorem 5.2. The kinetic spanner is efficient, responsive, local and
compact. Specifically, the total number of events in maintaining G

is O(n2 log2 n) under pseudo-algebraic motion. Each event can
be updated in O(log2 n/εd) time. A flight-plan change can be
handled in O(log2 n/εd) time. Each point is involved in at most
O(log2 n/εd) certificates.

5.4 Maintenance in a physical simulation set-
ting

In practice, the motion of the points may not be known in advance.
Instead, the new point positions are given by some physics black box
after every time step, and we are called in to repair the spanner. If
the points move a lot, it can be difficult to repair the structure. How-
ever, when the points’ motion is small, we can repair the spanner
efficiently, since the spanner depends only on the pairwise distances
of the points.

We first verify and update the hierarchy from the top down, using
update operations as in the KDS setting. Suppose that we have
updated all levels above level i and we would like to update level
i. First we verify that all centers in level i are still covered by their
parent centers in level i+1. For each center in level i that became an
orphan, we find a new parent for it. Then for each pair of neighbors
in level i that are closer than 2i , we demote one of the two centers
and find new parents for the orphans. Edges in level i are then
verified, and updated if necessary.

To show that the hierarchy is correct after the update, we need the
following lemma which extends Lemma 4.1.

Lemma 5.3. Let p, q be centers in level i and r = P(p), s = P(q)

in a time frame. If p, q, r, s do not move more than (c/4 − 1) · 2i

in each time step, then in the next time frame p and q are neighbors
only if r = s or r and s are neighbors.

Proof. Let p1, q1, r1, s1 and p2, q2, r2, s2 be the positions of
the centers in the two time frames respectively. If p2 and q2 are
neighbors, then |r2s2| ≤ |r2r1|+|r1p1|+|p1p2|+|p2q2|+|q2q1|+
|q1s1| + |s1s2| ≤ (c − 4) · 2i + 2 · 2i+1 + c · 2i = c · 2i+1, and
thus r2 = s2 or r2 and s2 are neighbors. �

Note that the cost of the update consists of the cost of traversing
the hierarchy, the cost of verifying all edges, and the cost of fixing
orphans. The cost of traversing and the cost of verifying all edges is
proportional to the number of edges, which is O(n). The total cost
of the update is thus O(n+k log α) where k is the number of changes
to the hierarchy. If we know more about the motions of the points,
we can lower the spanner update cost by computing conservative
bounds on the failure times of various spanner certificates and using
the bounds to avoid examining these certificates for a series of steps.
The topic of tighter coupling between the spanner maintenance and
the integrator module will be discussed in a future paper.

6 Applications

6.1 Spanners and well-separated pair decom-
position

We show by the following theorem that the spanner implies a linear
size well-separated pair decomposition.

Lemma 6.1. The spanner can be turned into an s-well-separated
pair decomposition, so that s = c/4 − 1 = 4/ε. The size of the
WSPD is O(n/εd).

Proof. For each node pi in the spanner, we denote Pi be the
set of all decedents of pi and pi itself. Now we consider the set
C of pairs (Pi, Qi) where pi and qi are not connected by an edge
in some level i, but their parents in level i + 1 are connected by an
edge. |piqi | > c · 2i . Note that all nodes in Pi (or Qi) are within a
distance of 2i+1 from pi (or qi), and thus, the distance between Pi

and Qi is at least (c − 4)2i . The diameter of Pi (or Qi) is at most
2i+2. Thus Pi and Qi is s-separated, where s = (c − 4)/4. Note
that each pair of points in the hierarchy is covered by one and exactly
one pair (Pi, Qi) in C. It follows that C is an s-well-separated pair
decomposition. The number of pairs in C is O(n/εd). �

Theorem 6.2. The s-well-separated pair decomposition can be main-
tained by a KDS which is efficient, responsive, local and compact.

Proof. We construct and maintain the spanner. By using the
spanner as a supporting data structure, we maintain the well-separated
pair decomposition implicitly by marking the pairs (Pi, Qi) where
pi and qi are not connected by an edge in some level i, but their
parents in level i + 1 are connected by an edge. They only change
when the edges are inserted/deleted. So the total number of events
is O(n2 log n), as per Theorem 5.2. Upon request, a well-separated
pair can be output in time proportional to the number of points it
covers.

On the other hand, there exists a set of n points such that any
linear-size c-well-separated pair decomposition has to change�(n2/c2)

times. For the setting in Figure 7, there must be a well-separated
pair that contains only the points of the upper bump and lower bump.
The total number of such pairs is �(n2/c2), so is the total number
of changes. �

6.2 All near neighbors query
The near neighbors query for a set of points, i.e., for each point p,
returning all the points within distance � from p, has been studied
extensively in computational geometry. A number of papers use
spanners and their variants to answer near neighbors query in almost
linear time [7, 13, 24, 31]. Specifically, on a spanner, we do a
breadth-first search starting at p until the graph distance to p is
greater than s · �, where s is the stretch factor. Due to the spanning
property, this guarantees that we find all the points within distance
� from p. Furthermore, we only check the pairs with distance at
most s · �. Notice that unlike the previous papers that focus only
on static points, the DefSpanner can be maintained under motion,
so the near neighbors query can be answer at any time during the
movement of the points.

Before we bound the query cost of the algorithm, we first show
that the number of pairs within distance s · � will not differ signifi-
cantly with the number of pairs within distance �. A similar result
has been proved in [31]. The following theorem is more general
with slightly better results and the proof is much simpler.

Theorem 6.3. For a set S of points in R
d , denote by χ(�) as the

number of ordered pairs (p, q), p, q ∈ S such that |pq| ≤ �, then
χ(s · �) ≤ 2(2s + 3)dχ(�) + n(2s + 3)d/2.

Proof. We first select a set of discrete centers S�/2 with radius
�/2 from points S. We then assign a point q to a center p if |pq| ≤
�/2. A point can be within distance �/2 of more than 1 centers.
In this case, we assign it to one of them arbitrarily. Any point is
assigned to one and only one discrete center. We say q is covered
by p if p is the assigned center for q. The set of points covered by
p ∈ S�/2 is denoted by C(p), and N(p) = |C(p)|. Note that any

pair of points within the same C(p) for any p are within a distance
of � of each other.

We consider the pairs of sets C(p) and C(q) such that the distance
between C(p) and C(q) is at most s · �. Clearly |pq| ≤ (s + 1) · �,
and thus each center participates in at most (2s + 3)d such pairs.
Since all the pairs (p′, q ′) with � < |p′q ′| ≤ s · � are covered by
at least one pair. We try to charge the long ‘inter-distances’ to the
short ‘intra-distances’.

From the inequality ab ≤ a(a − 1) + b(b − 1) + 1 for all
real values a and b, summing over all pairs of p and q such that
the distance between C(p) and C(q) is at most s · �, we obtain∑

p,q N(p)N(q) ≤ 2(2s+3)d
∑

p N(p)(N(p) − 1)+n(2s+3)d ,

and thus 2χ(s · �) ≤ 4(2s + 3)2dχ(�) + n(2s + 3)d . �

Theorem 6.4. For a set S of points in R
d , we organize the points

into a structure of size O(n) so that we can perform the near neigh-
bors query, i.e., for each point p, find all the points within distance
� of p, in time O(k + n), if the size of the output is k.

Proof. As we described before, we traverse the s-spanner G by
a breadth-first search and collect the pairs with distance at most s · �
that include all pairs with distance no more than �. We then filter out
unnecessary pairs and only keep the pairs within distance �. From
Theorem 6.3, χ(s�) ≤ 2(2s + 3)dk + n(2s + 3)d/2, where k is the
size of the output. We choose s as a constant, the size of the spanner
G is O(n), from Theorem 3.7. �

We remark that this output sensitivity is not valid on a per point
basis. Figure 8 shows an example situation where for point p the
number of neighbors within distance s ·� is not proportional to those
within distance �.

p

Figure 8. The number of neighbors of point p increases abruptly.

6.3 (1 + ε)-nearest neighbor

An s-approximate nearest neighbor of a point p ∈ R
d with respect

to a point set S is a point q ∈ S such that |pq| ≤ s · |pq∗|, where
q∗ is the nearest neighbor of p. We first show that a (1 + ε) nearest
neighbor is embedded in a (1 + ε) DefSpanner.

Lemma 6.5. For a (1 + ε) DefSpanner on a set S of points in R
d ,

we can perform the (1+ε)-nearest neighbors query in O(log α/εd)

time, i.e., given a point p ∈ R
d , find a point q in S such that

|pq| ≤ (1 + ε)|pq∗|, where q∗ is the nearest neighbor of p.

Proof. We construct the (1 + ε) DefSpanner G as before.
Firstly, we do a fake insertion of p. Assume q is the direct neighbor
of p in the spanner with the closest distance, |pq| = x, and q∗ is
the nearest neighbor of p. From the spanner property we know that
πG(p, q∗) ≤ (1 + ε) · |pq∗|. On the other hand, since pq is the

shortest edge attached with p in the graph G, then we must have
πG(p, q∗) ≥ |pq|. This implies that |pq| ≤ (1 + ε) · |pq∗|.

We find such a q, i.e., the closest neighbor of p on the spanner, as
follows. Take the lowest level i where edge pq appears, c · 2i−1 <

|pq| ≤ c ·2i . Then for the level j ≤ i −1, there is no edge attached
with point p. Otherwise that edge would have shorter distance than
pq. Therefore for each point p ∈ S, we take the lowest level i

where p has an edge in the spanner. We take the shortest edge pq

among all the level i edges. q is the (1 + ε)-approximate neighbor
of p. The theorem then follows from Theorems 3.7 and 4.2. �

Furthermore, if we keep for each point its shortest edge in the
spanner, we can get the (1+ ε)-nearest neighbor of any point p ∈ S

by a single lookup. The maintenance of the spanner implies the
maintenance of the (1 + ε)-nearest neighbor information as well.
So we have,

Theorem 6.6. For a set S of points in R
d , we can maintain a kinetic

data structure of size O(n/εd) that keeps the (1 + ε)-nearest neigh-
bor in S of any node p ∈ S. The structure is efficient, responsive,
local and compact.

Proof. All we need to prove is the efficiency of the KDS. The
example in Lemma 5.1 shows that any linear-size structure maintain-
ing the (1 + ε)-approximate neighbor has to change (n2ε2) times.

�

So far we build a (1 + ε) DefSpanner to answer and maintain
the (1 + ε)-approximate nearest neighbor query for a specific ε. In
fact, to answer the (1 + ε)-approximate nearest neighbor query, we
can decouple the dependency of the DefSpanner on the parameter
ε by using a O(1) DefSpanner as an auxiliary structure.

Theorem 6.7. For a set S of points in R
d , we can organize the

n points into a structure of size O(n) so that we can perform the
(1 + ε)-nearest neighbor query in O(log α/εd) time, i.e., given a
point p ∈ R

d , find a point q in S such that |pq| ≤ (1 + ε)|pq∗|,
where q∗ is the nearest neighbor of p.

Proof. Fix a constant c > 4 and construct a DefSpanner using
that constant. Given an ε > 0 and a query point p, we let t =
2 + 4/ε. To answer the (1 + ε) approximate nearest neighbor of
p, we traverse the DefSpanner top down and keep track of the set
Ki = {q | q ∈ Si, |pq| < t · 2i} as the level i decreases.

First of all, we notice that |Ki | = O(td), for any i, since the
points in Si are at least distance 2i apart. Secondly, we observe that
for a point q ∈ S, if |pq| < t · 2i , then |pP (q)| < t · 2i+1. This
is due to the triangular inequality: |pP (q)| ≤ |pq| + |qP (q)| <

t · 2i + 2i+1 ≤ t · 2i+1. Therefore Ki must be included in the
set of the children of Ki+1. So we can construct Ki from Ki+1 in
O(td) time. The total running time of such a traversal is bounded
by O(td log α) = O(log α/εd).

At the end of the traversal of the DefSpanner, let q be the point
closest to p in K0. We will show that q is a (1+ε)-nearest neighbor
of p. Let q∗ ∈ S0 be the closest point to p among all points in the
spanner. If q∗ is in K0, then clearly |pq| = |pq∗|, and we are done.
If not, let j be such that P j−1(q∗) /∈ Kj−1 and P j (q∗) ∈ Kj . By

definition of q and Lemma 3.1, |pq| ≤ |pP j (q∗)| ≤ |pq∗|+2j+1.
Since |pq∗| ≥ |pP j−1(q∗)| − 2j > (t − 2) · 2j−1, |pq| < (1 +
4/(t − 2))|pq∗| = (1 + ε)|pq∗|. The theorem is proved. �

We note that while we need c > 4 in order to construct and
maintain the DefSpanner, if we are only interested in static nearest
neighbor queries, a DefSpanner with c > 2 would be suffice, even
though a DefSpanner may not be a spanner when c ≤ 4.

6.4 Closest pair and collision detection

Theorem 6.8. For a set S of points in R
d , we have a structure of

size O(n) to output the closest pair of the point set.

Proof. We construct the (1+ε)-spanner G as before. If we take
ε < 1, then the closest pair pq must have an edge in G. Otherwise,
since the shortest path between p, q in G contains at least 2 edges,
each of them is longer than |pq|, πG(p, q) > 2|pq|. This contra-
dicts with the spanner property. To maintain the closest pair, we
simply use a kinetic priority queue [21] to keep the shortest edge
among all the spanner edges. �

6.5 k-center

For a set S of points in R
d , we choose a set K of points, K ⊆ S,

|K| = k, we assign all the points in S to the closest point in K . The
k-center problem is to find a K such that the maximum radius of the
k-center, maxp∈S minq∈K |pq|, is minimized.

We take the lowest level i such that |Si | ≤ k. If |Si | = k, then
we take K = Si . If |Si | < k, we also add some (arbitrary) children
of Si to K so that |K| = k.

Lemma 6.9. K is an 8-approximation of the optimal k-center.

Proof. On level i − 1 we have more than k points with distance
at least 2i−1 pairwise apart. So in the optimal solution, at least two
points in Si−1 are assigned to the same center. Thus the optimal
k-center has maximum radius at least 2i−2. But K has radius at
most 2i+1. So K is an 8-approximation. �

Theorem 6.10. For a set S of points in R
d , we can maintain an

8-approximate k-center. The KDS is efficient, responsive, local and
compact.

Proof. We first maintain a constant-spanner under motion. When
the nodes in Si changes, we update the approximate k-center as well.
If a node p ∈ Si is deleted from level i, we add a children of Si to
K to keep |K| = k.

The only problem that needs to be clarified is when the number of
centers at level i − 1 becomes k or less. However, since Si ⊆ Si−1
and we take K to be Si and some children of Si , we thus smoothly
switch from level i to level i−1. The other event is when |Si | = k+1,
we simply take Si+1. Notice that Si+1 ⊆ Si ⊆ Si−1 so the update
to K is O(1) per event. And K is changed at most O(n2 log2 α)

times.

In addition, there exists a situation and a certain k where the op-
timal k-center undergoes �(n3) changes, as the example in [17].
In fact, that example shows that any approximate k-center with ap-
proximation ratio < 1.5 has to change �(n3) times. For a gen-
eral approximation factor c, there exists an example showing an
�(n2) bound. The details are omitted. So the KDS to maintain
8-approximate k-center is efficient.

�

Remark Notice that the spanner actually gives an approximate so-
lution to a set of k-center problems with different k simultaneously.
We can maintain t subsets K1, K2, · · · , Kt such that Ki is an 8-
approximation of the optimal ki -center, where 0 ≤ ki ≤ n. The
update cost per event is O(t + log2 n).

7 Conclusion
In this paper we have introduced a hierarchical construction that
yields a spanner for a set of n points in R

d under the Euclidean
metric. The remarkable property of this spanner is that is can be
maintained easily under point insertion, deletion, or motion. We
have shown that the DefSpanner allows a wide variety of proxim-
ity queries to be answered efficiently and provides the first known
structure so capable that can be maintained under motion.
Acknowledgements: This research was supported in part by NSF
grants CCR-0204486 and ITR-0205671, ONR MURI grant N0014-
02-1-0720, and the Defense Advanced Research Projects Agency
(DARPA) under contract number F30602-00-C-0139 through the
Sensor Information Technology Program. Jie Gao was also sup-
ported by an IBM Ph.D fellowship. The authors wish to thank
John Hershberger for useful discussions and in particular his con-
tributions to Section 6.2, as well as an anonymous reviewer for
suggesting relevant previous work.

References
[1] P. Agarwal, J. Basch, L. Guibas, J. Hershberger, and L. Zhang.

Deformable free space tilings for kinetic collision detection.
International Journal of Robotics Research, 21(3):179–197,
2002.

[2] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid.
Euclidean spanners: short, thin, and lanky. In Proc. 27th ACM
Symposium on Theory Computing, pages 489–498, 1995.

[3] S. Arya and T. Malamatos. Linear-size approximate voronoi
diagrams. In Proc. of the 13th ACM-SIAM Symposium on Dis-
crete Algorithms, pages 147–155, 2002.

[4] S. Arya, T. Malamatos, and D. M. Mount. Space-efficient ap-
proximate voronoi diagrams. In Proc. of the 34th ACM Sym-
posium on Theory of Computing, pages 721–730, 2002.

[5] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A.Y. Wu.An optimal algorithm for approximate nearest neigh-
bor searching fixed dimensions. J. ACM, 45(6):891–923, 1998.

[6] S. Arya, D. M. Mount, and M. Smid. Randomized and deter-
ministic algorithms for geometric spanners of small diameter.
In Proc. 35th IEEE Symposium on Foundations of Computer
Science, pages 703–712, 1994.

[7] S. Arya and M. Smid. Efficient construction of a bounded-
degree spanner with low weight. Algorithmica, 17:33–54,
1997.

[8] J. Basch, L. Guibas, and J. Hershberger. Data structures for
mobile data. J. Alg., 31(1):1–28, 1999.

[9] Callahan and Kosaraju. Faster algorithms for some geometric
graph problems in higher dimensions. In Proc. 4th ACM-SIAM
Symposium on Discrete Algorithms, pages 291–300, 1993.

[10] P. B. Callahan. Optimal parallel all-nearest-neighbors using
the well-separated pair decomposition. In Proc. 34th IEEE
Symposium on Foundations of Computer Science, pages 332–
340, 1993.

[11] P. B. Callahan and S. R. Kosaraju. Algorithms for dynamic
closest-pair and n-body potential fields. In Proc. 6th ACM-
SIAM Symposium on Discrete Algorithms, pages 263–272,
1995.

[12] P. B. Callahan and S. R. Kosaraju.A decomposition of multidi-
mensional point sets with applications to k-nearest-neighbors
and n-body potential fields. J. ACM, 42:67–90, 1995.

[13] M. T. Dickerson, R. L. Drysdale, and J. R. Sack. Simple algo-
rithms for enumerating interpoint distances and finding k near-
est neighbors. Internat. J. Comput. Geom. Appl., 2(3):221–
239, 1992.

[14] D. Eppstein. Spanning trees and spanners. In J.-R. Sack
and J. Urrutia, editors, Handbook of Computational Geom-
etry, pages 425–461. Elsevier Science Publishers B.V. North-
Holland, Amsterdam, 2000.

[15] J. Erickson. Dense point sets have sparse Delaunay triangula-
tions. In Proc. 13th ACM-SIAM Sympos. Discrete Algorithms,
pages 125–134, 2002.

[16] T. Feder and D. H. Greene. Optimal algorithms for approx-
imate clustering. In Proc. 20th Annu. ACM Sympos. Theory
Comput., pages 434–444, 1988.

[17] J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu. Dis-
crete mobile centers. Discrete and Computational Geometry,
30(1):45–63, 2003.

[18] T. Gonzalez. Clustering to minimize the maximum intercluster
distance. Theoret. Comput. Sci., 38:293–306, 1985.

[19] J. Gudmundsson, C. Levcopoulos, G. Narasimhan, and
M. Smid. Approximate distance oracles for geometric graphs.
In Proc. 13th ACM-SIAM Symposium on Discrete Algorithms,
pages 828–837, 2002.

[20] L. Guibas, A. Nguyen, D. Russel, and L. Zhang. Collision
detection for deforming necklaces. In Proc. 18th ACM Sym-
posium on Computational Geometry, pages 33–42, 2002.

[21] L. J. Guibas. Kinetic data structures — a state of the art report.
In P. K. Agarwal, L. E. Kavraki, and M. Mason, editors, Proc.
Workshop Algorithmic Found. Robot., pages 191–209. A. K.
Peters, Wellesley, MA, 1998.

[22] J. Hershberger. Smooth kinetic maintenance of clusters. In
Proc. ACM Symposium on Computational Geometry, pages
48–57, 2003.

[23] P. Indyk and R. Motwani. Approximate nearest neighbors: To-
wards removing the curse of dimensionality. In Proc. 30th
Annu. ACM Sympos. Theory Comput., pages 604–613, 1998.

[24] H. P. Lenhof and M. Smid. Sequential and parallel algorithms
for the k closest pairs problem. Internat. J. Comput. Geom.
Appl., 5:273–288, 1995.

[25] C. Levcopoulos, G. Narasimhan, and M. H. M. Smid. Im-
proved algorithms for constructing fault-tolerant spanners. Al-
gorithmica, 32(1):144–156, 2002.

[26] M. C. Lin and J. F. Canny. A fast algorithm for incremen-
tal distance calculation. In IEEE International Conference on
Robotics and Automation, pages 1008–1014, Apr. 1991.

[27] I. Lotan, F. Schwarzer, D. Halperin, and J.-C. Latombe. Ef-
ficient maintenance and self-collision testing for kinematic
chains. In Proc. of the 18th ACM Symposium on Computa-
tional geometry, pages 43–52, 2002.

[28] G. Narasimhan and M. Smid. Approximating the stretch factor
of Euclidean graphs. SIAM J. Comput., 30:978–989, 2000.

[29] D. K. Pai. STRANDS: Interactive simulation of thin solids
using cosserat models. In Eurographics, 2002.

[30] D. Peleg. Distributed Computing: A Locality Sensitive Ap-
proach. Monographs on Discrete Mathematics and Applica-
tions. SIAM, 2000.

[31] J. S. Salowe. Enumerating interdistances in space. Internat. J.
Comput. Geom. Appl., 2:49–59, 1992.

[32] J. M. Sullivan. Sphere packings give an explicit bound for
the besicovitch covering theorem. The Journal of Geometric
Analysis, 2(2):219–230, 1994.

