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Abstract

We introduce a novel feature size for bounded planar @
mains endowed with an intrinsic metric. Given a paint

in such a domainX, the homotopy feature sizef X at z, owhs
or hfs(x) for short, measures half the length of the shorte
loop throughz that is not null-homotopic inX. The resort | 2hfs@|_

to an intrinsic metric makekfs(z) rather insensitive to the
local geometry ofX, in contrast with its predecessors (lo z
cal feature size, weak feature size, homology feature .sizej

This leads to a reduced number of samples that still capture i . . . . .
the topology ofX. Under reasonable sampling ConditionrFlgure 1: Two Lipschitz domains with very different weak

involving hfs, we show that the geodesic Delaunay tria eature sizesy(fs), but similar homotopy feature sizelsfg).
gulation Dx (L) of a finite samplingL of X is homotopy
equivalent toX. Moreover,Dx (L) is sandwiched betweenlar scale. Examples in data analysis include the topology es
the geodesic witness compl€X’ (L) and a relaxed versiontimation algorithm of [16] and the multi-scale reconstront
C}Q"W( L), defined by a parameter Taking advantage of thisalgorithm of [6, 27]. Both algorithms rely on the structural
fact, we prove that the homology @ix (L) (and hence of properties of thewitness complexa data structure specifi-

X) can be retrieved by computing the persistent homologglly designed by de Silva [15] for use with the landmarking
betweenCY (L) andCY ,(L). We propose algorithms forstrategy. Examples in sensor networks include theo&r
estimatinghfs, selecting a landmark set of sufficient densityputing scheme and its variants [22, 21]. The idea underly-
building its geodesic Delaunay triangulation, and compuig these techniques is that the use of sparse landmarks at
ing the homology ofX usingCy' (L) andC¥,(L). We also different density levels enables us to reduce the size of the

present some simulation results in the context of senser rita structures, and to perform calculations on the inpiat da

works that corroborate our theoretical statements. set at different scales. Two questions arise naturallyh¢®)
many landmarks are necessary to capture the invariants of a
1 Introduction given objectX at a given scale? (2) what data structures

There are many situations where a topological domain $ou!d be built on top of them? , , _
spaceX is known to us only through a finite set of sam- Manifold sampling issues have been intensively studied

ples. Understanding the global topological and geometlficthe past, independently of the context of landmarking.

properties ofX through its samples is important in a vari] N€ first results in this vein were obtained by Amenta,

ety of applications, including surface parametrizatiogéa B€™M: and Eppstein, for the case whe¥eis a smoothly-
ometry processing, non-linear dimensionality reduction f€MmPedded closed curve in the plane or surface in 3-space

manifold learning, routing and information discovery imse [1, 2]. Their bound on the landmark density depends on the

sor networks, etc. Recent advances in geometric data anE](}@I distance to the medial axis BF \ X (thelocal feature

sis and in sensor networks have made an extensive use 9¢4: @nd @ data structure built on top bfis the so-called
landmarking strategyGiven a point cloud?” sampled from restricted Delaunay triangulation Several extensions of

a hidden domain or spac¥, the idea is to select a subséeir result have been proposed, to deal with noisy data sets

L C W of landmarks, on top of which some data structure[iy]' sampled from closed manifolds of arbitrary dimension

built to encode the geometry and topologyXfat a particu- [6, 13], smoothly or non-smoothly embedded in Euqlldean
spaces [7]. In parallel, others have focused on unions of
_ o congruent Euclidean balls and their topological invasant
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values ofr, the union of the Euclidean open balls of radiusa new quantity, called theomotopy feature siz@r hfs for
about the points of. deformation retracts ont& . short, which measures the size of the smallest topological
The above results hold only for closed manifolds. THeature (hole in this case) of the considered planar domain
presence of boundaries brings in some new issues and chal-Specifically, given a point: € X, hfs(x) is defined as
lenges. An interesting class of manifolds with boundargeshalf the length of the shortest loop througlthat is not null-
the one of bounded domains IRi*, modeling the existencehomotopic inX — see Figure 1 for an illustration. In partic-
of natural obstacles to sampling certain areas. By studyar, hfs(x) is infinite whenever lies in a simply connected
ing the stability of distance functions to compact set®in component ofX. In contrast with previous quantitiekfs
Chazal and others have extended the results of Nigbgl. depends essentially on the global topology2of and it is
to a larger class of objects, including all bounded domaiosly marginally influenced by the local geometry of the do-
X with piecewise-analytic boundaries [11]. Their bound anain boundary. Under the assumption tikahas Lipschitz
the landmark density depends on the so-calledk feature boundaries (the actual Lipschitz constant being unimporta
sizeof X, defined as the smallest positive critical value @ our context), we show thatfs is well-defined, positive,
the Euclidean distance @X. This mild sampling condi- and1-Lipschitz in the intrinsic metric. Moreover, if is a
tion makes the results of [11] valid in a very general settingeodesichfs-sample ofX, for somes < % then the cover
However, the weak feature size can be small compared todfieX formed by the geodesic Voronoi cells of the points of
size of the topological features &f, as illustrated in Figure L satisfies the conditions of the Nerve theorem [8, 33], and
1 (right). As a result, many sample points are wasted satiserefore its dual Delaunay compléXy (L) is homotopy
fying the sampling condition of [11], when very few coulequivalent toX. By geodesichfs-sample ofX, we mean
suffice to capture the topology &f. In practice, this results that every pointc € X is at a finite geodesic distance fg
in a considerable waste of memory and computation pow@ounded from above byhfs(x). In the particular case when
The use of local/weak feature sizes in sampling a d&-is simply connected, our sampling condition only requires
main faces new challenges in certain classes of applicatitimat . have at least one point on each connected component
such as sensor networks for which the extrinsic metric is raftX, regardless of the local geometry &f. In the general
readily available. In a sensor network, nodes may not knoase, our sampling condition can be satisfied by placing a
their locations, nor do they have any idea of the global picenstant number of landmarks around each hol& pfind
ture such as whether there are holes in the network or theaumber of landmarks in the remaining partsXofthat is
nodes on the hole boundaries. The only available metridagarithmic in the ratio of the geodesic diameter6to the
the wireless connectivity graph distances as measurecebyghodesic perimeter of its holes. This is rather independent
hop count or shortest path distance metric. This strongly nod the local geometry of the boundafyX and can result in
tivates us to use an intrinsic metric on the domain, instéadselecting far fewer landmarks than required by any of the
the extrinsic metric provided by the embedding for topogarlier sampling conditions that guarantee topology aaptu
ogy discovery and understanding. Intrinsic metrics have The homotopy feature size is closely related to the
been studied in the context of Riemannian manifolds witbencept of injectivity radius in Riemannian geometry. We
out boundary [30] and, from a more computational point efress this relationship in the paper, by showing that, ffor a
view, in the context of the so-calladtrinsic Delaunay tri- pointz € X, hfs(z) is equal to the geodesic distance from
angulations (iDT) of triangulated surfaces without bougdax: to its cut-locus inX. This result also suggests a simple
[5]. 2-D triangle meshes in 3-D that happen to coincide wifirocedure for estimatinifs(z) at any pointz € X. Using
the iDT of their vertices are known to have many attractithis procedure, we devise a greedy algorithm for generating
properties for PDE discretization [23], and generatinghsuehfs-samples of any given Lipschitz planar domainbased
iDT meshes is a topic of considerable interest in geometry a packing strategy. The size of the output lies within
processing [18]. a constant factor of the optimal, the constant depending
I N the doubling dimension oK. Our algorithm relies on
Our contributions. In the paper we focus on the specig| . ?
.o . 0 oracles whose actual implementations depend on the
case of bounded domains in the plane — a setting whidhp O« . . . .
) ) ' . application considered. We provide some implementations
already raises numerous questions and finds important apgli o
: . .0 the context of sensor networks, based on pre-existing
cations in sensor networks. We make the novel claim traat .
) o . . istributed schemes [22, 32].
resorting to an intrinsic metric instead of the Euclideari-me .
) . S . . Next, we focus on the structural properties of the so-
ric can result in very significant reductions in terms of the L
. called geodesic witness complean analog of the usual
number of samples required to recover the homotopy type 0 . Lo ) .
. L . ) . witness complex in the intrinsic metric. In many applica-
a bounded domain. This is an especially appealing fact in ﬁ\"le

context of resource-constrained sensor nodes, as the mumﬁgs' computingDy (L) can be hard, due to the difficulty of

. . ? ecking whether three or more geodesic Voronoi cells have
of samples directly translates to the storage requirenment |

the GLIDER routing scheme [22]. To this end, we introduca common intersection. This is especially true in sensor net



works, where the intersections between the Voronoi cellsweé write~ : (I,0I) — (X, z). Note thaty can also be seen
the landmarks can only be sought for among the set of nodssa continuous map from the unit circlexq and we write
W, due to the lack of further information on the underlying : (S*,1) — (X, z) to specify thaty(1) = .
domainX. Therefore, it is convenient to replage (L) by To any loopy : S — S corresponds a unique integer
the geodesic witness compléX! (L), whose computation degy € Z, called thedegreeof ~, such thatleg y = 0 if ~ is
only requires us to perform geodesic distance comparisomspnstant mag! — {z}, anddeg(y-+’) = deg~y + deg~’
instead of locating points equidistant to multiple landksar for any loop+y’ : S* — S! satisfying+/(0) = ~(1).
Assuming that the geodesic distance can be computed Moreover, it can be proved thdieg~y = deg~’ iff v and
actly, we prove an analog of de Silva’s theorem [15], whiefi are homotopic inS* [28, Thm. 1.7], so thatleg~ is
states that’¥ (L) is included inDx (L) under some mild a unique descriptor of the homotopy class of the laop
sampling conditions. We also prove an analog of Lemmasimilar concept exists for loops in the plane. Given
3.1 of [27], which states that a relaxed versio€§f (L) (in v : S* — R? andz € R? \ v(S'), consider the map
which a simplex is/-witnessed byw if its vertices belong v, = 7, oy : St — S!, wherer,, : R?\ {z} — St is the
to thev + 1 nearest landmarks a#), denoted b)C)‘?fy(L), radial projection:m, (y) = ﬁ Sincer, is continuous
containsDx (L) under similar conditions. Unfortunately, agver R2 \ {z}, v, is a continuous loop ir51. We then
pointed outin [27], itis often the case that neither of them Cdefine the degree (aka winding number)~ofvith respect
incides withDx (L). However, taking advantage of the fadlp ; as: deg, v = degn,. f T': S x I — R?\ {z}isa
that D (L) is sandwiched betweefly (L) andC¥/,,(L), homotopy between two loops+/ in R\ {z}, thenr, ol is
we show that computing the persistent homology betweghomotopy between, o v andr, o4’ in 1, and therefore
C¥ (L) andC¥ (L) gives the homology oDx (L). This e have:deg, v = deg(m; o v) = deg(m; 0 v') = deg, 7'
allows us to retrieve the homology df without comput- . )
ing Dx (L) in practice. Similar results have been proved f&OFfOLLlARY 2'21' For any pointz € R _an;:l any loops
other types of filtrations [12, 14] and used in the context 8f 7 : © — R\ {‘”}/ that are homotopic 'm?_ \ {z}, we
sensor networks [26]. However, to the best of our knowavedeg: ¥ = degm? - In particular, if y or 7" is constant,
edge, our result is the first one of this type for the witnelfiendeg, v = deg, 7" = 0.
complex filtration. . . .

Finally, remark that when a bounded planar domain l|'sen(‘:]th structures and Lipschitz planar domains. A

. . o oo . good introduction to length spaces can be found in [9,
given explicitly with its embedding, its topology is capdr Chap. 2]. Every subset of R? inherits a length structure

by its meqlial axis [4], and it can be computed effigientl%om R?, where admissible paths are all continuous paths
by extracting homotopy bases [19, 20]. The work in thi . X. and where the length of a pathis defined by:

paper gives a way of extracting and learning the topology of n—1
) L . o = . - - = <
the domain through its intrinsic geodesic metric, wnhdm&tM sup{d_i—g dr(v(t:),1(tis1)), n € Nﬁ 0 =1y <
t; < .-+ < t, = 1}, the supremum being taken over

need for a geometric embedding. all decompositions of into an arbitrary (finite) number of
intervals. We clearly havéy| = |v|. However,|| is not
. _always finite. Take for instance Koch’'s snowflake, a fractal
Let I = [0,1]. The ambient space i&*, endowed with cyrve defined as the limit of a sequence of polygonal curves
the Euclidean metric, noted. Given a subseX of R?, i, the plane. It can be easily shown that, at each iteration of
X, X, andd.X, stand respectively for the interior, closurene construction, the length of the curve is multiplied by
and boundary ofX". Givenz € R? andr € Ry, Bi(z,7)  so that the length of the limit curve is infinite. We say that
denotes the Euclidean open ball of raditsboutz. Finally, ~: I — X is arectifiablepath if its lengthly| is finite.
St R x {0}, andR% , denote respectively the unit circle, the  \ne makeX into a length space by defining amtrinsic
abcissa line, and the closed upper half-plan&in (or geodesip metricd x as follows:Vz,y € X, dx (z,y) =
inf{|y], v : I — X, v(0) = z, v(1) = y}, the infimum
Pathsand loops. Given a topological spac¥, apathin X being taken over all paths from to y in X. Clearly,
is a continuous map — X. Foralla,b € I (a <b),wecall dx(x,y) = 400 wheneverz,y belong to different path-
Y|[a,p) the paths — ~(a + s(b — a)), which can be viewed connected components of. However, the converse is not
as the restriction ofy to the segmenfu, b]. In addition,5 always true. Take for instance a domaih made of two
denotes the inverse path— ~(1 — s). Given another path disjoint disks connected by Koch’s snowflakezify belong
~" : I — X such thaty’(0) = ~(1), we cally - 4’ their to different disks, then all curves connectingand y go
concatenation, defined by- 7/(s) = v(2s) for0 < s < 1 through Koch's snowflake and therefore have infinite length.
andy - v/(s) = 7/(2s — 1) for 3 < s < 1. Given a point As a consequence, the intrinsic topology inducedikyon
x € X, aloopthroughz in X is a pathy in X that starts and X can be different from the Euclidean topology induced by
ends atz, i.e. such thaty(0) = (1) = «. For simplicity, dg. This is a critical issue because the geodesic Voronoi

2 Theintrinsic metric



diagram is bound to the intrinsic metric, whereas our goalrisighborhood as above. However, Definition 2.1 provides us
to retrieve the homotopy type of in the extrinsic metric. with a neighborhood’,, and a Lipschitz homeomorphisin.
Another issue is that not all pairs of pointsy € X with such that, ! (V,NX) is convex. Then, inside, ! (V,NX),
dx(z,y) < 400 may have a shortest path i, i.e. a we can deform any given arc into a rectifiable arc, whose
pathy : I — X such thaty(0) = =z, v(1) = y, and image throughp,. is rectifiable and included iXX.

|v| = dx(z,y). Take for instance two diametral points on

the boundary of the unit closed disk, to which the clos& Thehomotopy featuresize

disk of radius; has been removed. These issues lead UsgriniTioN 3.1. Given a Lipschitz planar domai and

consider the special case of Lipschitz domains: a pointz € X, the homotopy feature sizef X at x

is the quantity: hfs(z) = 3 inf{]y[, v : (S%,1) —

DEFINITION 2.1. A Lipschitz planar domaiis a compact .
P P P (X, z) non null-homotopic inX }.

embedded topological 2-submanifold ®f with Lipschitz
boundary. Formally, it is a compact subs&t of R? such g jjjystrated in Figure 1, the resort to the intrinsic metri

that, for all pointz € 90X, there exists a neighborhoodyakes the homotopy feature size rather insensitive to the
V. in R? and a Lipschitz homeomorphism : R? — R?, |5qg geometry of the domaik .

such thate,.(0) = z, ¢, (R x {0}) NV, = dX NV, and

¢x(R§r) NV, =XnNV,. LEMMA 3.1. Let X be a Lipschitz planar domain.

(i) Given a pointz € X, if the path-connected compo-
Observe that, for any neighborhodd < V,, we also nent of X that containsz is simply connected, then
have ¢, (0) = z, ¢-(R x {0}) NV = 0X NV, and hfs(z) = 4oc. Else,hfs(z) < +oo, and there exists
¢:(RY) NV = X nV,. Therefore,V, can be assumed a non null-homotopic rectifiable loop : (S',1) —
to be arbitrarily small. Moreover, singg, (0) =  and¢,, is (X, ) such thatfs(z) = L || > 0.
continuousg; ' (V;) is a neighborhood of the origin iR®, (i) The mapz — hfs(x) is 1-Lipschitz in the intrinsic
hence it contains an open Euclidean dislabout the origin. metric. As a consequence, it is continuous for the
By taking¢(B) as the new neighborhodd,, we ensure that Euclidean topology, by Theorem 2.1, ahf(X) =
¢, (X NV,) is the intersection dk%. with the open diskB, inf{hfs(z), x € X} is positive.

and therefore that it is convex.

Note that the actual Lipschitz constants of the chagts The proof of assertion (i) considers an arbitrary sequence
in Definition 2.1 are unimportant: only the fact that the ©f non null-homotopic rectifiable loops through whose
are Lipschitz counts. This makes the class of Lipschitz plgngths converge towardshfs(z), and it applies Theorem
nar domains quite large: in particular, it contains all pian2.1 (ii) to this sequence. The proof of assertion (ii) takes t
domains with piecewise-analytic boundaries. Moreovaer, tROINtsz, y lying in a same path-connected componenfof
pathologies described above cannot occur on a Lipschitz ¥t is not simply connected, and it considers the non null-

main, by the following theorem: homotopic loopy, throughz provided by assertion (i), as
well as a shortest pathfromy to x. Then,y, =~v -7, - ¥
THEOREM2.1. For any Lipschitz planar domaii, is a non null-homotopic rectifiable loop throughof length
(i) the intrinsic topology coincides with the Euclideany, | = 2 hfs(z) + 2 dx(z,y). It follows thathfs(y) <
topology onX’; 1yy| = his(z) + dx (z,y).

(i) every sequence of paths with uniformly bounded

length contains a uniformly converging subsequendeEMMA 3.2. Let X' be a Lipschitz planar domain. For
therefore, all pointsz,y € X such thatdx (z,y) < all point z € X every loop |r_15|_de the geodesic open ball
o0 have a shortest path ify : Bx (z,hfs(z)) is null-homotopic inX.

(iii) for any path : I — X and any real number The proof is omitted in this abstract. Intuitively, a geddes
¢ > 0, there exists a rectifiable path. : I — pa|| of centers and radius less thahfs(z) cannot enclose
X, homotopic toy relative' to 9 in X, such that any hole ofy, therefore every loop inside such a ball must be
maxer minger dx (7=(s),7(t)) <e. null-homotopic inX. Note that Lemma 3.2 does not imply

The proof of the theorem is given in the full version of thif1at Bx (z, his(x)) itself is contractible. This fact is true
paper [25]. It relies on the following facts: given a poirﬁ)evertheless, but its proof requires some more work.
z € X, there is a small convex neighborhodd C X inside
which any given arc can be continuously deformed into”a Structural results
rectifiable arc. Now, given a point € 9X, there is no such Given a Lipschitz planar domaiX, and a set of landmarks

L C X that is dense enough with respect to the homotopy
" TThis means that the homotopy betwesn and  is constant over feature size of{’, we show in Section 4.1 that the geodesic
a1 ={0,1}. Delaunay triangulatio® x (L) is homotopy equivalent t&



(Theorem 4.1), and in Section 4.2 tag (L) is sandwiched dx (v(s), x), wheredx (¢,7(s)) < dx(»,7(s)) < 0.5
between the geodesic witness compl8 (L) and its re- anddx (y(s),z) < |- Hence, we havelx(q,z) <
laxed versiorC}’(‘fV(L), for any set of witnesseéd” C X that |04 + |7(s,5| = |7] = dx(p, ), which contradicts the
is dense enough compareditdTheorems 4.3 and 4.4).  assumption that € Vx (p). Therefore; (1) C Vx(p). This
shows thalx (p) is path-connected.
4.1 Geodesic Delaunay triangulation. Consider a do- Assume now for a contradiction thafx(p) is not
main X C R? and a finite set of site C X. Thegeodesic simply connected. Then, sindéy(p) C X is a bounded
Voronoi cellof a sitep is the locus of the points € X sat- subset ofR?, its complement ifR? has at least two path-
isfying dx (z,p) < dx(z,q) for all ¢ € L. Thegeodesic connected components, only one of which is unbounded, by
Voronoi diagramof L in X, or Vx (L) for short, is the cellu- the Alexander duality — se=g.[28, Thm. 3.44]. LetH be a
lar decomposition o formed by the geodesic Voronoi cellsounded path-connected componenR3f\ Vx (p). H can
of the sites. The nerve dfx (L) is called thegeodesic De- be viewed as a hole iW’x (p). We claim thatH is included
launay triangulationof L in X, notedDx (L). The face of in X. Indeed, consider a loop : S! — Vx(p) that winds
Vx (L) dual to a given simplex € Dx (L) is notedVx (o). aroundH —such a loop exists sindé is bounded bywx (p).
Consider now a Lipschitz planar domalfy and a finite Take any pointz € Vx(p). For ally € Vx(p), we have
set of sitesL C X that is ageodesicchfs-sampleof X, dx(z,y) < dx(z,p) + dx(p,y) < € his(z) + € his(y),
for somee < 1. This means that, for all point € X, which is at most*<hfs(z) sincehfs is 1-Lipschitz in the
the geodesic distance from to L is finite and at most intrinsic metric (Lemma 3.1 (ii)). Thu3/x (p) is included in
e hfs(z). Note thatL has at least one point in every paththe geodesic closed bally (x, 2 hfs(x)), where2= < 1
connected component &f, because geodesic distanced.tosince s < % Therefore,y : S' — Vx(p) is null-
are required to be finite. We will see how to generate sugbmotopic inX, by Lemma 3.2. Lef : S' x I — X
point sets in Section 5.2. be a homotopy betweenand a constant map il. For any
point z € H, we havedeg, vy # 0 since the loopy winds
aroundH. If z did not belong td"(S* x I), thenI’ would be
a homotopy betweef and a constant map iR? \ {z}, thus
by Corollary 2.1 we would havéeg, v = 0, thereby raising
The rest of Section 4.1 is devoted to the proof of Theorearcontradiction. Hence;(S* x I) contains all the points of
4.1, which uses the Nerve theorem: hole H, which is therefore included i .
- It follows that the hole is caused by the presence of
THEOREM4.2. (FROM(8, 33]) Let U/ be a finite closed ome sites ofL \ {p}, whose geodesic Voronoi cells form

cover of X, such that the intersection of any collection oil Assume without loss of generality that there is onl
elements d¥ is either empty or contractible. Then, the nervgn'e g Y1 y

. . such siteg. We haveVx(q) = H, and 0H =
oft/is homotopy equivalent & Vx(q) N Vx(p). Consider the El(Jc)Iidean rdy, q), and call
In our case, we s&t to be the collection of the geodesie its first point of intersection wittVH beyondg. Line
Voronoi cells: i = {Vx(p), p € L}. The nerve of this segmentlg, z] is included inH C X, therefore we have
collection is precisely the geodesic Delaunay triangafatidx (7, ¢) = de(z, q), which yields:dx (z, p) > dg(z,p) =
Dx(L). Thus, Theorem 4.2 reduces the proof of Theoretw (2, q) + dg(q,p) = dx(z,q) + dr(¢,p) > dx(z,q).
4.1 to showing that the intersection of any arbitrary numbéhis contradicts the fact thatbelongs tod /' and hence to
of cells of Vx (L) is empty or contractible. We first showVx (p). Thus,Vx (p) is simply connected. Since it is also

THEOREMA4.1. If X is a Lipschitz planar domain, and if
is a geodesiehfs-sample ofX, for somes < £, thenDx (L)
and X are homotopy equivalent.

that the geodesic Voronoi cells are contractible: path-connected, it is contractiblé.]
LEMMA 4.1. Under the hypotheses of Theorem 4.1, every By very similar arguments, we can prove that the union
cell of Vx (L) is contractible. of any two intersecting cells oPx (L) is contractible. It

_ _ follows then from Lemma 4.1 and from the following classi-
Proof. Let p € L. We first show thatVx (p) is path- cal result of algebraic topology that their intersectioaliso
connected. Letr € Vx(p), and lety : I — X be contractible:

a shortest path fronp to z in X. Such a pathy exists
by Theorem 2.1 (ii), since: and p lie in the same path- L
connected component of, dx(z,p) being finite due to
the fact thatL is a geodesiehfs-sample of X. We will
show thaty(I) C Vx(p). Assume for a contradiction that
~(s) ¢ Vx(p) for somes € I. This means that there exists a

pointg € L\ {p} such thatlx (v(s),q) < dx(v(s),p). By
the triangle inequality, we havéx (¢, 2) < dx(¢,7(s)) + We will now extend the above results to the intersections of

EMMA 4.2.
(i) The intersection of an¥ simply connected subsets of
R? is either empty or simply connected.
(i) If X,Y are path-connected subsets &f such that
X UY is simply connected, theXinY is either empty
or path-connected.



L] the intrinsic metric. The proof uses the same machinery asin
1 - ) g [3], and it relies on the intuitive fact that, when the &e a
geodesichfs-sample ofX, the geodesic distances between
a pointz € X and itsk nearest landmarks in the intrinsic
metric are at most*e hfs(z), the exponent coming from the

5 , fact thathfs is 1-Lispchitz.

o i1 i THEOREMA4.3. Let X be a Lipschitz planar domain, and
@ a geodesichfs-sample ofX. If ¢ < ﬁ, for some integer
T T T T k > 0, then thek-skeleton o’} (L) is included inDx (L)
forall W C X.

Figure 2: The size of gy, -~ ,qx} is % times that of{p, p'},

although both point sets are sparse geodesisamples. Our next result is an analog of Theorem 3.2 of [27], whose

proof relies on a simple packing argument. It involves a
arbitrary numbers of cells dx (p), thereby concluding the relaxed version of the witness complex, defined as follows.
proof of Theorem 4.1: Given an integerr > 0, a simplexo is v-witnessed by

w € W if the vertices ofo belong to ther + 1 landmarks
LEMMA 4.3. Under the hypotheses of Theorem 4.1, for aRyysest tow in the intrinsic metric. The geodesiewitness
k sitespy,---,pp € L, the intersectionVx (p1) N -~ N complex of L relative to T, or C¥, (L) for short, is the
Vx (pr) is either empty or contractible. maximum abstract simplicial complex madezofvitnessed

Proof. The proof is by induction ork. Casesk = 1 and simplices. Its dimension is at mast

k = 2 have just been proved. Assume now that the réeHEOREM4.4. Let X be a Lipschitz planar domain, of
sult is true up to somé& > 2, and considelk + 1 sites doubling dimensioni. Let W be a geodesi@hfs-sample
p1, -, Ppr+1 € Lsuchthalx (p1) N+ N Vx(pe+1) # 0. of X, and L a geodesicshfs-sample of X that is also

Notice first thatVx (p1) N --- N Vx (pr+1) is the intersec- r-hfs-sparse. Ife + 20 < 1, then, for any integer >

tion of (7, Vx (p:) With Vx (pi+1), which by the induc- gd+1 0+490e) 1 (1) is included inCYY, (L).

tion hypothesis are simply connected. Hence, their interse ) E ' .

tion Vx(p1) N --- N Vx(prs1) is also simply connected,T}Tfe theortlem ;{ssu?eﬁ thatis tzillt?hfs-spa_rsef Igec(;demi
, , chfs-sample ofX, which means that every pair of landmarks

by Lemma 4.2 (i). Observe now th<lﬂf:1 VX(pi)> U

p,q satisfies: dx(p,q) > 15z min{hfs(p), his(q)}. The
Vx (pr+1) can be rewritten aﬁle (Vx (p;) UVx (pr+1)). lower bound onv depends on theloubling dimensiorof
By the induction hypothesis (more precisely, according (&, dx ), which is defined as the smallest integkisuch
the casek = 2), everyVx (p;) U Vx (pr+1) is simply con- that every geodesic closed ball can be covered by a union
nected, hence so ﬁle (Vx (pi) U Vx (prs1)), by Lemma of 2¢ geodesic closed balls of half its radius. The doubling
4.2 (i). It follows then from Lemma 4.2 (ii) that the intersecdimension measures the shape complexityXof and it
tion Vx (p1) N --- N Vx(prs1) is path-connected, since bycan be arbitrarily large. An example is given in Figure 2,

induction both(*_, Vx (p;) and Vx (px1) are, and since Where thek geodesic balls3x (¢;,1) are included in their
their union is simply connectedd] respective branches, and therefore are disjoint. Morgover

they are packed inside the bdlx(p,3), which therefore

4.2 Geodesic witness complex. Consider a domaitk C fequires at least geodesic unit balls to be covered, by a
R2, as well as two finite subsefs and W. Given a point esult of [29]. It follows that the doubling dimension &fis
w € W and a simplexs = [po,--- ,p] with vertices in at least} log, k, which can be made arbitrarily large.
L, wis awitnessof o if for all i = 0,--- 1, dx(w,p;) It follows from Theorems 4.3 and 4.4 that, wheneler
is finite and bounded from above by (w, q) for everyq ¢ @nd W are dense enougix (L) is sandwiched between
L\{po,- - ,p1}. Observe thaw may only witness simplicesCx (L) andC¥’, (L), provided that is chosen sufficienly
whose vertices lie in the same path-connected componeriggge. Our simulation results — see Section 6 — suggest that
X. The geodesic witness complek L relative tol¥, or €ven small values of suffice in practice.
C¥ (L) for short, is the maximal abstract simplicial complex _
with vertices inL, whose faces are witnessed by points & Algorithms
W. The fact thaC¥¥ (L) is an abstract simplicial complexWe will now describe high-level procedures for computing
means that a simplex belongs to the complex only if all itds, for generating geodesichfs-samples, and for comput-
faces do. In the sequéll’” will be referred to as the set ofing the homology of a Lipschitz planar domain. Our algo-
witnesses, and as the set of landmarks. rithms rely essentially on two oracles, whose implementa-

Our first result is an analog of de Silva’s theorem [15] itions depend on the application considered.




5.1 Computing the homotopy feature size. As pointed in the path-connected componentXfcontainingp. There-
out by Erickson and Whittlesey for Riemannian surfacésre, L is a geodesiehfs-sample ofX. Furthermore,

[20], the homotopy feature size is closely related to the ) )
concept of cut-locus. Given a path: I — X, we call LEMMA 5..2. For all € 'e]o,.l[,' the aIgorEhm termlnatgs,
trajectory ofy the sety(I). If ~ is a shortest path betweer@nd the size its output is withizf’ #£5=£2= times the size
z = ~(0) andy = ~(1), theny(I) is called a shortestof any geode5|ehfs-sample ofX, whered is the doubling
trajectory between andy. Given a pointz € X, the cut- dimension ofX.

Ioc_us ofz in X_' or CLx (x) for S_“‘?“' is the lOCUS_Of thE_’The proof, omitted in this abstract, relies on a simple pagki
points of X having at least two distinct shortest trajectorleérgumem. The influence of the doubling dimension’of
tox in X. The geodesic distance fromto its cut-locus is is illustrated in Figure 2, where® = {p,p'} andQ =

denoted byl (z, CLx (z)). {1, ,qu} are geodesinfs-samples ofX, becauséfs(z)

LEMMA 5.1. If X is a Lipschitz planar domain, ther: € is evezrywhere at Ieas_t half the peri_met_er O.f a holke, namely
X, hfs(z) = dx (=, CLx (2)). 2 + 577 Although@ is hfs-sparse, its size i€)| = 5 |P|,
wherek is of the order oR?, as emphasized in Section 4.2.
The proof is omitted in this abstract. Lemma 5.1 suggests a
simple way of estimatindgyfs: given a pointz € X, grow a 5.3 Computing the homology of a Lipschitz domain.
geodesic closed baft aboutz, starting with a radius of zeroGiven a geodesiehfs-sampleL of a Lipschitz planar do-
and ending wherB covers the path-connected componentain X, a variant of the procedure of Section 5.1 can be
X, of X containingz. Meanwhile, focus on the wavefrontused to buildD x (L): grow geodesic balls around the points
0B as the radius ofB increases — this wavefront evolvesf L at same speed, and report the intersections between the
as the iso-level sets of the magp— dx(z,y). If at some fronts. The homology oD (L) gives then the homology
stage the wavefrorgelf-intersectsi.e. if there is a point of X, by Theorem 4.1. But in many practical situatiofis,
y € OB with two or more distinct shortest trajectoriesatp is only known through a finite sampling’, which makes
then interrupt the process and return the current valueeof thhard to detect the intersections between more than two
radius of B. Else, stop oncé# coversX, and returntoo. fronts. In this discrete setting, it is relevant to replace t
By detecting the first self-intersection event in the groveonstruction ofDx (L) by the ones of ¥ (L) andC}f{V(L),
ing process, the procedure finds a point@tx (x) clos- which only require to compare geodesic distances at the
est toz in the intrinsic metric, and therefore it returngoints ofi¥’. The homology oD x (L) can then be computed
dx (x, CLx(x)), which by Lemma 5.1 is equal tbfs(x). via the persistent homology betwe€lf (L) andC¥’, (L).
The procedure relies on two oracles: one that checks whether More precisely, we use simplicial homology with co-
B covers X, entirely, the other that checks whether thefficients in a field, which in practice will b&/2 — omit-
wavefront self-intersects at a given value of the radiugpf ted in our notations. The inclusion map: C¥ (L) —
or rather between two given values of the radiugof CY,(L) induces a homomorphisnx : HRCY (L)) —
HE (C)V(‘fy(L)). By applying the persistence algorithm [34]
5.2 Generating geodesic chfs-samples. Given a Lips- g the filtrationC¥ (L) — C¥, (L), we can compute the
chitz planar domain¥’ and a parameter > 0, we US€ & rank of 4,. Thus, the goal is to relate themk i, to
greedy packing strategy to generate geodesfs-samples g, H2(Dx (L)), the kth Betti number ofDx (L). We
of X. Initially, our algorithm se!ects an arbitrary POIDE  know from Theorems 4.3 and 4.4 th@ (L) C Dx (L) C
X and setd. = {p}. It also assigns tp the geodesic opencl (1) under some sampling conditions, which we will as-
paIIBp of centerp and radius;t - hfs(p),wherehfs(p) iSes- < ime from now on. The inclusion mags: CY (L) —
timated us!ng.the prpcedure of Section 5.1hil(p) = +o0, Dx(L) andj' : Dx(L) — C¥ (L) induce homomor-
then B, coincides with the path-connected componenkof hisms j., j. on the homology groups, such that —
containingp. Then, at each iteration, the algorithm selec%, o). = j.oj.. Itfollows thatdim H2(Dx (L)) >

an arbitrary poiny € X \ U, By, and itinserts this point %, %~ 111 ;. which means that evedycycle that per-
in L. It also assigns a geodesic open lig]lto ¢, as detailed sists betweed ¥ (L) andC¥ (L) is a non-trivialk-cycle of
above forp. The process stop.s wheh \ UpeL B, =10. _ Dx(L). In fact, we even have:

The algorithm uses a variant of an oracle of Section 5.1,
which can tell whether a given union of geodesic balls covefsiEOREM 5.1. Assume that the hypotheses of Theorems 4.3
X, and return a point outside the union in the negative. Upand 4.4 are satisfied, withh = v, L. C W, and with
termination, every point € X lies in some closed balB,, hfs replaced bymin{hfs, dy}, wheredy is the Euclidean
and we havelx (z,L) < dx(x,p) < 752 hfs(p), which distance to the medial axisl of R?\ X. Then, the range
is at moste hfs(x) sincehfs is 1-Lipschitz in the intrinsic space ofi. is isomorphic toH/ 2 (Dx (L)). In other words,
metric. Moreoverdx (z, p) is finite because3,, is included we haverank i, = dim H2 (Dx (L)).



This theorem guarantees that the persistent homology b . A sass
tweenC¥ (L) andC}’{'fV(L) gives the homology oD x (L).
The bounds on the densities of landmarks and witnesses d :
pend ondy;, which requires thabl N X = (). This is true =
if X has smooth boundaries, but als@X only has convex
corners (oriented outwards). The fact thdt andd,; are
both 1-Lipschitz in the intrinsic metrigimplies that the den-
sities deep inside the domalin can be small, although they
may have to be large nearX .

The proof of Theorem 5.1, omitted in this abstract
proceeds in two steps: first it shows thatis injective, then
it shows thatj, is surjective. It follows from the injectivity
of j7 thatdim H2(Dx (L)) = rank 5., which is equal to
rank i, by the surjectivity ofj,.
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B,

(b)n =217,d ~ 7.66,c = 0.25, v = 2, welghted dlstance
Figure 3: From left to right: witness complex, relaxed
witness complex, persistence barcode of the filtration.[10]

6 Application to sensor networks

We have implemented the algorithms of Section 5 in the con Y
text of sensor networks, where the nodes do not have ger;
graphic locations, and where the intrinsic metric is approx :
mated by the hop-count distance in the connectivity graph ( &= N R O

unit disk graph in our case). The quality of the distance ap- (a)n — 353, d ~ 7.66, ¢ = 0.5, v = 2, weighted distance.
proximation can be guaranteed, provided that the node delx .
sity is sufficiently high [25]. B

Homotopy feature size computation. Given a noder,
we estimate the geodesic distance aofto its cut-locus,
which by Lemma 5.1 is equal tbfs(z). Wanget al. [32]
proposed a distributed algorithm for detecting the cut#oc (b) n=353,d ~7.66,¢ = 0.25, v = 2, weighted distance.

which works as follows: the node sends a flood messagd-igure 4: Same setting as above, with a higher node density.
with initial hop count 1; each node receiving the message

forwards it after incrementing the hop count. Thus, evenpdes are uncovered. They wait for different random periods
node learns its minimum hop count to the nad&@ hen, each of time, after which they promote themselves to the status of
pair of neighbors check whether their least common ancedardmark. Each new landmark floods the network, computes
(LCA) is at hop-count distance at leaktlf so, then they also its homotopy feature size, and informs all the nodes within
check whether their two shortest paths to the LCA contdia geodesic ball to be covered. Thus, every node eventually
nodes at leasf away from each other (by looking at trge becomes covered or a landmark itself.

ring neighborhoods of the nodes of the paths). Every pair The witness complex is computed in a similar way as
satisfying these conditions is called a cut pair. As provénl[22]. The selected landmarks flood the network, and ev-
in [32], every hole of perimeter greater thdryields a cut ery node records its minimum hop counts to them. With this
pair. Then, every cut node checks its neighbors, and ifiriformation, it determines which simplices it witnesses. A
has the minimum hop count, then it reports back tavith round of information aggregation collects all the simpdice
the hop count value. Thus; gets a report from one nodeand constructs the witness complex. In a planar setting,
on each connected component of the cut-locus, and leamtere only the Betti numbers, and 3, are non-zero, we
the homotopy feature size as the minimum hop value. Foorly need to build the 2-skeleton of the witness complex.
weighted graph, the operation is similar. Therefore, each node may store only its three nearest land-
marks and it may avoid forwarding messages from other
Pdmarks which reduces the message complexity.

1112 13 14 15 16 17 18 18 2

O T2 15 14 18 18 171818 2

Landmark selection and witness complex computa-

tion. The landmark selection implements the incrementa

algorithm of Section 5.2 in a distributed manner. A nod§mulation results and discussion. Figures 3 to 7 present

has two statessoveredanduncovered A covered node lies some simulation results showing the dependency of the

inside the geodesic ball of some landmark. Initially, a# thandmark selection and homology computation on various
parameters. We usedsensor nodes randomly distributed in

"~ ZSincedy is 1-Lipschitz in the Euclidean metric, it is alseLipschitz & Lipschitz planar domain. Two nodes within unit Euclidean

in the intrinsic metric, becauskz < dx. distance of each other are connected. The resulting average
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Figure 5: Effect of varying versus the landmark density.
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(@n =217,d = 7.66,e = 0.5, v = 2, hop-count distance.
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(b)yn =217,d =~ 7.66, e = 0.25, v = 2, hop-count distance.

(b)e = %, insertion ofargmax{ X% g € W\ U,c, By}

=l R

Figure 7: Landmark sets obtained by two different packing
strategies, and their geodesic witness complexes.

between the witness complex and its relaxed version gives
the homology of the domain. Thus, only the intrinsic
geometry of the domain matters, not the scale of the
network, as long as the latter remains sufficiently dense.
Landmark densityFigure 5 shows our results on the same
setup as above, with (a)= 0.85 and (b)e = 0.15. In the

first case, only two holes are captured, because of the low
landmark density. In the second case, three non-genuine
holes are not destroyed in the relaxed witness complex,
because the value of the relaxation parametés too
small given the relatively low node density. Increasing
v from 2 to 4 produces the correct answer (c). But setting
v to too high a valuei = 11, £ = 0.25) destroys some of
the genuine holes (d). Throughout our experiments, the
algorithm produced correct results with small values of

(v < 4), provided that the nodes and landmarks sets were
reasonably dense. This demonstrates the practicality of
our approach, despite the large theoretical bounds stated
in Theorems 4.3, 4.4 and 5.1.

Weighted graph distance vs. hop-count distan&énce

the hop-count distance is a poorer approximation to the
geodesic distance, the range of values tifat work with

it is reduced. In Figure 6 for instance, the scheme works
well with e = 0.5, but not withe = 0.25, in contrast with

Figure 6: Same setting as above, with the weighted distancghe results of Figure 3.

replaced by the hop-count distance.

node degree is notetl The intrinsic metric is approximated
by the graph distance in the connectivity network, where
each edge can be either unweighted (hop-count distance) or

weighted by its Euclidean length (weighted distance).

e Packing strategy.Figure 7 shows some of our sampling

results. It appears that different packing strategies can
produce samples of very different sizes, as predicted
by Lemma 5.2. Maximizing the rati% at each

iteration seems to be a very effective strategy in practice,

but it is also time-consuming.

Figure 3 shows a typical example, with (@)= 0.5 :
and (b)z = 0.25. In both cases, only the genuine 3 hole-go conclude, let us emphasize that our approach turned out

persist and are therefore identified as non-trivigycles in o be also quite robus't uqder more real|'st|cl commun|cat|on
the geodesic Delaunay triangulation. models, such as quasi-unit disk graph with link failures.

e Node densityWe vary the number of nodes from 217 t®ossible extensions.  This work focuses on the planar
355. The average degree remains the same. The resadte, with applications in sensor networks. A natural ex-
is shown in Figure 4. Again, the persistent homologgnsion would be to consider bounded domains in higher-



dimensional Euclidean spaces, with applications in raisoti16] V. de Silva and G. Carlsson. Topological estimation using
and geometric data analysis. Also, it would be relevant to witness complexes. IRroc. Sympos. Point-Based Graphics
generate homology bases whose elements isolate the various Pages 157-166, 2004.

holes of X. There exists some work along this line, but for B-7]1 T- K. Dey and S. Goswami. Provable surface reconstruction
slightly different context [24].
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