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A Note on the Complexity of Lp Minimization

Dongdong Ge · Xiaoye Jiang · Yinyu Ye

Abstract We show that the Lp (0 ≤ p < 1) minimization problem arising from sparse solution construction
and compressed sensing is both hard and easy. More precisely, for any fixed 0 < p < 1, we prove that finding
the global minimal value of the problem is strongly NP-Hard; but approximating a local minimizer of the
problem is polynomial-time doable. We also develop an interior-point algorithm with a provable complexity
bound and demonstrate preliminary computational results of effectiveness of the algorithm.
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1 Introduction

In this note, we consider the following optimization problem:

(P) Minimize p(x) :=
∑

1≤j≤n

xp
j

Subject to x ∈ F := {x : Ax = b, x ≥ 0},
(1)

and
Minimize

∑

1≤j≤n

|xj |p

Subject to x ∈ F ′ := {x : Ax = b},
(2)

where data A ∈ Rm×n, b ∈ Rm, and 0 < p < 1.
Sparse signal or solution reconstruction by solving optimization problem (1) or (2), especially for the

cases of 0 ≤ p ≤ 1, recently received great attentions, e.g., see [4,7–9,11,13]. In signal reconstruction, one
typically has linear measurements b = Ax where x is a sparse signal, and the sparse signal would be recovered
by solving inverse problem (1) or (2) with p = 0, that is, to find the sparsest or smallest support cardinality
solution of a linear system (here |x|0 = 1 if x 6= 0 and 0 otherwise). From the computational complexity
point of view, when p = 0, problem (1) or (2) is shown to be NP-hard [15] to solve; when p = 1, both
problems are linear programs, hence they are polynomial-time solvable. For more general convex programs
involving Lp norm(p > 1) in the objective(or constraints), readers are referred to [16].

In [5,10], it was shown that if certain restricted isometry property holds for A, then the solutions of
(2) for p = 0 and p = 1 are identical. Hence, problem (2) with p = 0 can be relaxed to problem (2) with
p = 1. However, restricted isometry property may be too strong for practical basis design matrices A to
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hold. Instead, one may consider sparse recovery by solving relaxation problem (1) or (2) for a fixed p,
0 < p < 1. Recently, this approach has attracted a lot of research efforts in variable selection and sparse
reconstruction, e.g., [11]. It exhibits desired threshold bounds on any non-zero entry of a computed solution
[9], and computational experiences show that by replacing p = 1 with p < 1, reconstruction can be done
equally fast with many fewer measurements while being more robust to noise and signal non-sparsity [8].

In this note we present some interesting properties of the Lp (0 ≤ p < 1) minimization problem. The Lp

(0 ≤ p < 1) minimization problem (1) or (2) is strongly NP-Hard. However, any basic feasible solution of (1)
or (2) is a local minimizer. Moreover, a feasible point satisfying the first order and second order necessary
conditions is always a local minimizer. This motivates us to design interior-point algorithms to approximate
a local minimum point satisfying the Karush-Kuhn-Tucker(KKT) conditions.

1.1 Notations and Preliminaries

For the simplicity of our analysis, throughout this paper we assume the feasible set F is bounded and A is
full-ranked.

A feasible point x is called a local minimum point or local minimizer of problem (1) if there exists ε > 0,
such that p(x′) ≥ p(x) for any x′ ∈ B(x, ε)

⋂F where B(x, ε) = {x′ :‖ x′ − x ‖2≤ ε}.
Let X := Diag(xi)1≤i≤n and Xp := Diag(xp

i )1≤i≤n. At a local minimum point x∗ of problem (1), the
first order necessary condition or KKT condition [2] holds: there exists unique Lagrange multiplier vector
y∗ ∈ Rm, such that

p(X∗)p −X∗AT y = 0. (3)

If p(x) is differentiable at x∗, i.e., x∗ > 0, we have the second order necessary condition

λT∇2
xxp(x∗)λ ≥ 0, (4)

for all λ ∈ Rn such that Aλ = 0.
In the general case a local minimizer x∗ may lie on the boundary so that p(x) is not differentiable at

x∗. Let S be the support set of x∗, so |S| = k ≤ n. Let z∗ ∈ Rk be a vector of the nonzero coordinates of
x∗ and AS ∈ Rm×k be the submatrix of A exactly consisting of the columns in A corresponding to |S|. It
is not difficult to verify that z∗ is a local minimizer of problem min pS(z) :=

∑
i∈S zp

i , s.t. ASz = b, z ≥ 0.
The second order necessary condition holds:

λT∇2
zzpS(z∗)λ ≥ 0, (5)

for all λ ∈ Rk such that ASλ = 0. We also call (5) the second order necessary condition for general x∗.
There is also a dual problem associated with (P):

(D) Maximize d(x, y) := (1− p)p(x) + bT y

Subject to (x, y, s) ∈ Fd := {(x, y, s) : pXp −XAT y −Xs = 0, x, s ≥ 0}, (6)

The fact that F is bounded and nonempty implies p(x) has a minimum value(Denote by z) and a
maximum value(Denote by z̄). An ε-minimal solution or ε-minimizer is defined as a feasible solution x such
that

p(x)− z

z̄ − z
≤ ε. (7)

Vavasis [20] demonstrated the importance to have the term z̄−z in the criterion for continuous optimiza-
tion. Similarly Ye [18] defined an ε-KKT (or ε-stationary) point as an (x, y, s) such that x ∈ F , (x, y, s) ∈ Fd,
and

xT s

z̄ − z
≤ ε. (8)

Ye also developed an interior point algorithm converging to an ε-KKT point for the nonconvex quadratic
progrm. In this note similarly we present an interior point algorithm to find an ε-KKT point for the Lp mini-
mization problem. This potential reduction algorithm is shown to be a fully polynomial-time approximation
scheme(FPTAS) and it converges to an ε-KKT point in no more than O(n

ε log 1
ε ) iterations.

The note is organized as follows. In section 2 We show that the Lp (0 ≤ p < 1) minimization problem
(1) or (2) is strongly NP-Hard. In section 3 we prove that the set of all basic feasible solutions of (1) or (2)
is identical with the set of all local minimizers. In section 4 we present our FPTAS algorithm to find an
ε-KKT point of problem (1). Numerical experiments are conducted to test its efficiency in section 5.
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2 The Hardness

Theorem 1 The Lp (0 ≤ p < 1) minimization problem (1) (or (2)) is strongly NP-hard.

Proof We present a polynomial time reduction from the well known strongly NP-complete 3-partition
problem [12]. The partition problem can be described as follows: given a multiset S of n = 3m inte-
gers {a1, a2, . . . , an}. The sum of S is equal to mB and each integer in S is strictly between B/4 and B/2.
Can S be partitioned into m subsets, such that the sum of the numbers in each subset is equal to B, which
implies each subset has exactly three elements?

We describe a reduction from an instance of the 3-partition problem to an instance of the Lp (0 ≤ p < 1)
minimization problem (1) that has the optimal value n if and only if the former has an equitable 3-partition.
Given an instance of the partition problem, let vector a = (a1, a2, . . . , an) ∈ Rn and n = 3m. Let the sum
of a be mB and each ai ∈ (B/4, B/2). Consider the following minimization problem in form (1):

Minimize P (x) =
n∑

i=1

m∑

j=1

xp
ij

Subject to
∑m

j=1 xij = 1, i = 1, 2, · · · , n,∑n
i=1 aixij = B, j = 1, 2, · · · , m,

xij ≥ 0, i = 1, 2, · · · , n; j = 1, 2, · · · , m,

(9)

From the strict concavity of the objective function, and xij ∈ [0, 1],

m∑

j=1

xp
ij ≥

m∑

j=1

xij(= 1), i = 1, 2, · · · , n.

The equality holds if and only if xij0 = 1 for some j0 and other xij = 0, ∀j 6= j0. Thus, P (x, y, z) ≥ n for
any feasible solution of (9).

If there is a feasible (optimal) solution x such that P (x) = n, it must be true that
∑m

j=1 xp
ij = 1 =∑m

j=1 xij for all i so that for any i, xij0 = 1 for some j0 and other xij = 0, ∀j 6= j0. This generates an
equitable 3-partition of the entries of a. On the other hand, if the entries of a have an equitable 3-partition,
then (9) must have a binary solution x such that P (x) = n. Thus we prove the strong NP-hardness of
problem (1).

For the same instance of the 3-partition problem, we consider the following minimization problem in
form (2):

Minimize
n∑

i=1

m∑

j=1

|xij |p

Subject to
∑m

j=1 xij = 1, i = 1, 2, · · · , n,∑n
i=1 aixij = B, j = 1, 2, · · · , m,

(10)

Note that this problem has no non-negativity constraints on variables x. However, for any feasible solution
x of the problem, we still have

m∑

j=1

|xij |p ≥
m∑

j=1

xij(= 1), i = 1, 2, · · · , n.

This is because the minimal value of
∑m

j=1 |xij |p is 1 if
∑m

j=1 xij = 1, and the quality holds if and only if
for any i, xij0 = 1 for some j0 and other xij = 0, ∀j 6= j0.

Therefore, similarly we can prove that this instance of the partition problem has an equitable 3-partition
if and only if the objective value of (10) is n. This leads to the strong NP-hardness of problem (2).

3 The Easiness

The above discussion reveals that finding a global minimizer for the Lp norm minimization problem is NP-
hard as long as p < 1. Thus, relaxing p = 0 to some p < 1 gains no advantage in terms of the (worst-case)
computational complexity. We now turn our attention to local minimizers. Note that, for many optimization
problems, finding a local minimizer, or checking if a solution is a local minimizer, remains NP-hard. What
about local minimizers of problems (1) and (2)? The answer is that they are easy to specify.

Theorem 2 The set of all basic feasible solutions of (1) is exactly the set of all local minimizers.



4 Dongdong Ge et al.

Proof If x is a basic feasible solution(or extreme point), without loss of generality, assume x = (x1, · · · , xm, 0, · · · , 0)
where xi > 0, i = 1, 2, · · · , m. Consider an arbitrary nonzero feasible direction d = (d1, d2, · · · , dn) at x.
There exists an appropriate ε0 > 0, such that x + εd is feasible for any 0 < ε < ε0. By the property of a
basic feasible solution, there must exist some i, m + 1 ≤ i ≤ n, such that di > 0. Assume i = m + 1.

Thus

p(x + εd)− p(x) ≥ (
m∑

i=1

(xi + εdi)
p − xp

i ) + (εdm+1)
p.

Define the index set I− = {i : di < 0}. Without loss of generality, assume I− is nonempty. We can also
choose sufficiently small ε such that xi + εdi ≥ xi

2 for any i ∈ I−.
Then

p(x + εd)− p(x) ≥ (
∑

i∈I−
((xi + εdi))

p − xp
i ) + (εdm+1)

p ≥
∑

i∈I−
(εdi)p(

xi

2
)p−1 + (εdm+1)

p ≥ 0.

The last inequality holds if

ε ≤ d
p

1−p

m+1(p
∑

i∈I−
(−di)(

xi

2
)p−1)

1
p−1 . (11)

This shows that any feasible direction at x is an increasing direction. Let V be the vertex set of F
and choose di in the same direction as the line connecting x to vertex vi. Since di is feasible, we can
choose the corresponding εi as in (11) such that p(xi + εdi) ≥ p(x) for any 0 ≤ ε ≤ εi. Denote by
Conv{x + εidi : i = 1, 2, · · · , |V |} the convex hull spanned by x + εidi, i = 1, 2, · · · , |V |.

For any x′ ∈ F ⋂
Conv{x + εidi : i = 1, 2, · · · , |V |}, we have p(x′) ≥ p(x) by the strict concavity of

p(x). Thus we can always choose a sufficiently small ε > 0, such that B(x, ε)
⋂F ⊂ F ⋂

Conv{x + εidi : i =
1, 2, · · · , |V |}. By the definition x is a local minimizer.

On the other hand, if x is a local minimizer but not a basic feasible solution, there must exist a feasible
direction d 6= 0 such that both x+ εd and x− εd are feasible for sufficiently small ε > 0. The strict concavity
of p(x) implies that either d or −d will be a descent direction. Thus, x cannot be a local minimizer.

Similarly, we can prove

Theorem 3 The set of all basic solutions of (2) is exactly the set of all of its local minimizers.

Furthermore, one can observe the following property of a local minimizer.

Theorem 4 If the first order necessary condition (3) and the second order necessary condition (5) hold at
x and x ∈ F , then x is a local minimizer of problem (1).

Proof If x is in the interior of the feasible region F and satisfies the first order condition (3), The strict
concavity of p(x) implies x must be the only maximum point.

If x lies on the boundary, define its support set S and positive vector z as in the second order necessary
condition (5). We check its Hessian. ∇2

zz(z) cannot be positive semidefinite unless {λ : ASλ = 0} = {0}.
Thus the second order necessary condition (5) holds only when x is a basic feasible solution. By Theorem 2,
x is a local minimizer.

4 Interior-Point Algorithm

These local minimizer results show that we can approximate a local minimizer problem (1) by searching
for an ε-KKT point of it. Considering the differentiability of p(x) in the interior feasible region, one would
naturally consider an interior point algorithm approach. It starts from an interior point, follows a interior
feasible path and finally converges to either an ε-global point or an ε-KKT point. At each step, it chooses
a new interior point which produces the maximal potential reduction to a potential function by an affine-
scaling operation. See [14] or [19] for an intensive introduction on interior-point algorithms.

Our algorithm starts from an interior-point feasible solution such as the analytic center x0 of the feasible
polytope. Similar to potential reduction algorithms for linear programming, one could consider the potential
function

φ(x) = ρ log(
n∑

j=1

xp
j − z)−

n∑

j=1

log xj = ρ log(p(x)− z)−
n∑

j=1

log xj , (12)
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where z is a lower bound on the global minimal objective value of (1) and parameter ρ > n. For simplicity,
we set z = 0 throughout the discussion. Note that

∑n
j=1 xp

j

n
≥




n∏

j=1

xp
j




1/n

.

So
n

p
log(p(x))−

n∑

j=1

log xj ≥ n

p
log n.

Thus, if φ(x) ≤ (ρ− n/p) log(ε) + (n/p) log n, we must have p(x) ≤ ε, which implies that x must be an
ε-global minimizer.

Starting from the analytic center x0, an interior algorithm looks for the best possible potential reduc-
tion at each iteration. In a manner similar to the algorithm discussed in [18] for non-convex quadratic
minimization, one can consider the potential reduction φ(x+)−φ(x) by one-iteration update from x to x+.

Note that

φ(x+)− φ(x) = ρ(log(p(x+))− log(p(x))) + (−
n∑

j=1

log(x+
j ) +

n∑

j=1

log(xj)).

Let dx, Adx = 0, be a vector such that x+ = x+ dx > 0. Then, from the concavity of log(p(x)), we have

log(p(x+))− log(p(x)) ≤ 1

p(x)
∇p(x)T dx.

On the other hand, by restricting ‖X−1dx‖ ≤ β < 1, where X = Diag(x), we have(See [3] for details)

−
n∑

j=1

log(x+
j ) +

n∑

j=1

log(xj) ≤ −eT X−1dx +
β2

2(1− β)
.

From the analysis above, if ‖X−1dx‖ ≤ β < 1, then x+ = x + dx > 0, and

φ(x+)− φ(x) ≤ (
ρ

p(x)
∇p(x)T X − eT )X−1dx +

β2

2(1− β)
.

Let d′ = X−1dx. Then, to achieve a potential reduction, one can minimize an affine-scaled linear function
subject to a ball constraint as it is done for linear programming(See Chapter 1 and 4 in [19] for more details):

Z(d′) := Minimize
(

ρ
p(x)∇p(x)T X − eT

)
d′

Subject to AXd′ = 0
‖d′‖2 ≤ β2.

(13)

This is simply a linear projection problem. The minimal value is Z(d′) = −β · ‖g(x)‖ and the optimal
direction is given by d′ = β

‖g(x)‖g(x). Here

g(x) = −(I −XAT (AX2AT )−1AX)(
ρ

p(x)
X∇p(x)− e)

= e− ρ

p(x)
X(∇p(x)−AT y),

where y = (AX2AT )−1AX(Xp − p(x)
ρ e).

If ‖g(x)‖ ≥ 1, then the minimal objective value of the subproblem is less than −β so that

φ(x+)− φ(x) < −β +
β2

2(1− β)
.

Thus, the potential value is reduced by a constant if setting β = 1/2. If this case would hold for O((ρ −
n/p) log 1

ε ) iterations, we would have produced an ε-global minimizer of (1).

On the other hand, if ‖g(x)‖ ≤ 1, from g(x) = e− ρ
p(x)X(∇p(x)−AT y), we must have

ρ

p(x)
X(∇p(x)−AT y) ≥ 0,

ρ

p(x)
X(∇p(x)−AT y) ≤ 2e,∀j.
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In other words,
(
∇p(x)−AT y

)
j
≥ 0,

xj

p(x)

(
∇p(x)−AT y

)
j
≤ 2

ρ
, ∀j.

The first condition indicates that the Lagrange multiplier y is feasible. For the second inequality, by
choosing ρ ≥ 2n

ε we have 1
p(x)x

T (∇p(x)−AT y) ≤ ε. Therefore,

xT s

z̄ − z
=

xT (∇p(x)−AT y)

z̄ − z
≤ xT (∇p(x)−AT y)

p(x)
≤ ε,

which implies that x is an ε-stationary solution.

Concluding the analysis above, we have the following lemma.

Lemma 1 The interior point algorithm returns an ε-stationary or ε-global point of (1) in no more than
O(n

ε log 1
ε ) iterations.

A more careful computation will make the complementarity point satisfy the second order optimal-
ity condition; see [18]. By combining these observations with Theorem 4, we immediately conclude the
convergence of interior-point algorithms.

Corollary 1 Interior-point algorithms, starting from the analytic center of the polytope, generate a sequence
of interior points converging to a local minimizer and compute an approximate local minimizer in FPTAS
time for the Lp minimization problem.

Thus, interior-point algorithms, including the simple affine-scaling algorithm that always goes along a
descent direction, can be effective (with a FPTAS time) in tackling the Lp minimization problem as well.

5 Computational Experiment of the Interior-Point Algorithm

In this section, we compute a solution of (1) using the interior-point algorithm above and compare it with
the solution of L1 problem, i.e., the solution of (1) with p = 1, which is also computed by an interior-point
algorithm for linear programming [17]. Our preliminary results reinforce our reasoning that interior-point
algorithms likely avoid some local minimizers on the boundary and recover the sparse solution.

We construct 1000 random pairs (A, x) with matrices A size of 30 by 120 and vectors x ∈ R120 for
sparsity ‖x‖0 = s with s = 1, 2, · · · , 20. With basis matrix given, vector b = Ax is known. We use several
basis design matrices A to test our algorithms. In particular, let A = [M,−M ] and M is one of the following
matrices: (1) Sparse binary random matrices where there are only a small number of ones in each column;
(2) Gaussian random matrices whose entries are i.i.d. Gaussian random variables; (3) Bernoulli random
matrices whose entries are i.i.d. Bernouli random variables. We note that Gaussian or Bernoulli random
matrices satisfy the restricted isometry property [5,6], i.e., columns of the basis matrix are nearly orthogonal,
while sparse binary random matrix only satisfies a weaker form of restricted isometry property [1]. Because
two copies of the same random matrices are concatenated in A, column orthogonality will be hard to hold,
which will lead to easy failure of sparse recovery by L1 problem. We solve (1) with p = 1/2 by the interior-
point algorithm developed above and compare the successful sparse recovery rate with the solutions of the
L1 problem. A solution is considered successfully recovering x if the l2 distance between the solution and x
is less than 10−3.

The phase transitions of successful sparse recovery rates for Lp and L1 problem for three cases of
basis matrices are plotted in figure 5. We observe that the L0.5 interior-point algorithm performs better
in successfully identifying the sparse solution x than the L1 algorithm does. Moreover, we note that when
basis matrix are binary, we have comparatively lower rates of successful sparse recovery (when sparsity
s = 4, for example, successful recovery rate for Lp solutions is about 95% for binary random matrices
compared with almost 100% for Gaussian or Bernoulli random matrices; for L1 solutions it is about 80%
for binary random matrices compared with about 90% for Gaussian or Bernoulli random matrices). This
may be supported by the fact that sparse binary random matrix has even worse column orthogonality than
Gaussian or Bernoulli cases. Our simulation results also show that the interior-point algorithm for the Lp

problem with 0 < p < 1 runs as fast as the interior-point method for L1 problem [17], which makes the
interior-point method competitive for large scale sparse recovery problems.
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Fig. 1 Successful sparse recovery rates of Lp and L1 solutions, with matrix A constructed from (a) binary matrix; (b)
Gaussian random matrix; (c) Bernoulli random matrix.
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